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Abstract
Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer’s 
disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made 
limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry 
(IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample 
included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer’s disease Research Center who 
had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by 
targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated 
tau (195–205, 212–221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary 
logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the 
receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. 
Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifica-
tions. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest 
fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy 
in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and 
p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak 
staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and 
tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau 
species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different 
stages of the disease.
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Introduction

Alzheimer’s disease (AD) neuropathological changes 
include the intracellular accumulation of hyperphospho-
rylated tau (p-tau) as neurofibrillary tangles (NFTs) and 
neuropil threads as well as the aggregation of extracel-
lular amyloid beta (Aβ) plaques [17]. Accurate and early 
detection of AD neuropathological changes during life is 
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critical for timely therapeutic intervention [11]. Analy-
sis of cerebrospinal fluid (CSF) and positron emission 
tomography (PET) represent gold standard methods for 
the in vivo detection of AD but are expensive and invasive. 
Plasma-based assays can now detect various phosphoryla-
tion tau sites in blood [9], providing an accessible and 
cost-effective alternative for disease detection with similar 
prognostic and diagnostic accuracies [15, 22, 28].

Evaluation of plasma p-tau biomarkers against post-
mortem AD pathology is necessary for validating their 
use for clinical purposes. There are over 80 tau phospho-
rylation sites that can be abnormally phosphorylated dur-
ing AD progression [27]. Among these, plasma p-tau181, 
p-tau217, and p-tau231 have been the most studied due to 
the availability of specific immunoassays for their quantifi-
cation. Higher levels of plasma p-tau181 have been associ-
ated with increased odds for having autopsy-confirmed AD 
[20], and to discriminate between AD and non-AD pathol-
ogy up to 8 years prior to death [13]. Plasma p-tau217 can 
distinguish between individuals with autopsy-confirmed 
AD and cognitively unimpaired individuals with better 
accuracy than alternative plasma and MRI-based meas-
ures of AD pathology [21], and has been shown to reflect 
both amyloid and tau pathologies [14]. Plasma p-tau231 
is the earliest blood tau biomarker to increase in relation 
to AD neuropathological changes [1] and is selectively 
associated with amyloid plaques [2]. Only two plasma-
to-autopsy studies conducting head-to-head comparisons 
of p-tau epitopes for the detection of AD neuropathology 
have been published [24, 25], but they examine two to 
three p-tau variants using immunoassays, which require 
separate sample preparation and analysis for each targeted 
epitope. Mass spectrometry (MS) allows for increased 
specificity for detection of low abundant proteins and can 
quantify numerous p-tau epitopes simultaneously in a sin-
gle acquisition [3, 18]. This enables the characterization of 
the specific sites abnormally phosphorylated at each stage 
of the disease with a fair head-to-head comparison, provid-
ing the information for an effective utilization of blood tau 
biomarkers in both clinical practice and therapeutic trials.

Here, we used an IP-MS method to examine the asso-
ciation between six p-tau (p-tau181, p-tau199, p-tau202, 
p-tau205, p-tau217, p-tau231) and two non-phosphoryl-
ated (tau195–205, tau212–221) tau species in plasma ante-
mortem samples and post-mortem AD neuropathological 
examination. We compared the accuracy of each tau spe-
cies for discriminating brain donors with and without 
autopsy-confirmed AD, including among those with and 
without dementia during life. Each tau form was examined 
against Braak staging for NFTs, CERAD neuritic amyloid 
plaque score, and semi-quantitative ratings of p-tau sever-
ity across seven different cortical and subcortical brain 
regions.

Materials and methods

Study design and brain donors

Participants were 123 brain donors from the National 
Institute on Aging (NIA)-funded Boston University Alz-
heimer’s Disease Research Center (BU ADRC) Neuropa-
thology Core who had ante-mortem blood draw as part of 
their participation in the BU ADRC Clinical Core. The 
BU ADRC follows older adults from the Greater Boston 
area. Participants are older adults with adequate visual 
acuity and hearing. Participants are excluded for condi-
tions or disorders that interfere with making accurate neu-
rodegenerative disease diagnoses and/or preclude study 
participations (e.g., serious mental illness, brain tumor, 
multiple sclerosis, and unstable medical conditions). Pro-
cedures involve an annual National Alzheimer’s Coordi-
nating Center Uniform Data Set evaluation. Participants 
are asked to donate their brain following death to the BU 
ADRC brain bank for neuropathological processing and 
examination. Voluntary annual blood draws began at the 
BU ADRC in 2008 [8, 20, 26]. The current sample set 
included all participants who had an ante-mortem plasma 
sample and who donated their brain for neuropathologi-
cal examination at the time of this study (2022). If mul-
tiple blood draws were performed, the sample proximate 
to death was used. Procedures including brain donation 
were approved by the BU Medical Campus Institutional 
Review Board. Participants (or their Legally Authorized 
Representatives) provided written informed consent prior 
to participation in the BU ADRC protocol. Next of kin 
provided written informed consent if written informed 
consent from the participant was obtained more than 3 
years prior to death.

Plasma collection and biomarker quantification 
by mass spectrometry (MS)

Blood collection, processing, and storage followed stand-
ard operating procedures that adhere to the National 
Centralized Repository for AD and Related Dementias. 
Non-fasting blood samples were collected into plastic 
dipotassium EDTA tubes. Sample were processed with 
plasma aliquoted and frozen at − 80 °C. Frozen plasma 
aliquots were shipped on dry ice to the University of Goth-
enburg (Sweden) for batch analysis. The in-house MS 
method was previously described [18] and was used to 
analyze 1-ml EDTA plasma samples. For further details, 
see Supplementary Methods and Supplementary Tables 1 
and 2.
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Neuropathological evaluation

Neuropathological processing and evaluation were con-
ducted using published methods [29, 30]. Procedures 
followed the National Alzheimer’s Coordinating Center 
standardized Neuropathology Form and Coding Guide-
book [4, 5, 16]. The neuropathological diagnosis of AD 
was made using the NIA-Reagan Institute criteria. The AD 
group was defined by brain donors who had intermediate 
or high likelihood of AD. Published criteria were used for 
neuropathological diagnoses of other neurodegenerative 
diseases [7]. Neuropathologists used semi-quantitative 
scales (0 [none]–3 [severe]) to rate severity of cerebral 
amyloid angiopathy, atherosclerosis, and arterioloscle-
rosis. The Consortium to Establish a Registry for Alz-
heimer’s Disease (CERAD) score was used to evaluate 
the presence and severity of neuritic Aβ plaques. Braak 
staging of NFTs was rated on a scale from 0 (no NFTs) 
to VI (widespread NFTs with marked involvement of the 
neocortex). In addition to Braak scores, neuropathologists 
rated the density of p-tau pathology in various cortical 
and subcortical regions using semi-quantitative rating 
scales (0 [none]–3 [severe]). AT8-immunostained, 10 µm 
thick paraffin-embedded sections of the regions affected 
in AD were examined and included: dorsolateral frontal 
cortex, inferior orbital frontal cortex, superior temporal 
cortex, inferior parietal cortex, CA1-hippocampus, CA2-
hippocampus, CA4-hippocampus, entorhinal cortex, 
amygdala, and locus coeruleus. Frontal and hippocampal 
regions were combined to form a frontal cortex and hip-
pocampus composite, respectively.

Dementia severity

The Clinical Dementia Rating (CDR) Dementia Staging 
Instrument was used to evaluate dementia severity at the 
time of the blood draw [19].

Statistical analysis

The primary predictors included the six p-tau (p-tau181, 
p-tau199, p-tau202, p-tau205, p-tau217, and p-tau231) 
and the two non-phosphorylated peptides (tau195–209 and 
tau212–221). We examined the following ratios: p-tau217/
tau212–221 and p-tau205/tau195–209 because both the 
phosphorylated and the non-phosphorylated forms com-
prising the same amino acid sequence are included in the 
panel. All tau variables were standardized as z-scores. Out-
comes included AD status (yes/no), CERAD score, Braak 
score, and the semi-quantitative ratings of regional p-tau 
(frontal cortex, superior temporal, inferior parietal, entorhi-
nal cortex, amygdala, hippocampus, and locus coeruleus). 
Binary logistic regression models examined the association 

between each tau epitope and AD status. For each model, 
discrimination accuracy for AD neuropathological diagnosis 
was evaluated using the area under the receiver operating 
characteristic curve (AUC) statistic based on the predicted 
probabilities from the multivariable logistic regression that 
included the relevant covariates (see below). Discrimination 
accuracy was categorized based on guidelines suggested in 
Hosmer and Lemeshow [10]. For sensitivity analyses, we 
repeated models stratified by CDR scores at the time of 
blood draw (< 1 and ≥ 1). In the entire sample, multivariable 
ordinal logistic regressions tested the associations between 
each plasma tau variant and Braak NFT stage (stage 0, I/
II, III/IV, V/VI) and CERAD neuritic plaque score. Linear 
regressions were used for the ratings of p-tau severity in 
each cortical and subcortical brain region. Sample size for 
the semi-quantitative ratings of regional p-tau severity was 
reduced due to missingness. Bivariate Pearson’s correlations 
tested the associations between plasma and brain p-tau vari-
ants (i.e., p-tau181, p-tau202, and p-tau231). Model covari-
ates included age at death, years between last blood draw 
and death, sex (1 = female, 0 = male), and APOE ε4 status 
(1 = ε4 carrier, 0 = non-carrier). All analyses were conducted 
using R software. A P value < 0.05 was considered statisti-
cally significant.

Data availability

All uniform and neuropathology data set evaluation data are 
shared with the National Alzheimer’s Coordinating Center 
and are publicly available. Data are available upon reason-
able request to the BU ADRC.

Role of the funding source

The funders of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results

Sample characteristics

Table 1 and Supplementary Table 3 present sample char-
acteristics, stratified by neuropathological AD status. The 
mean (standard deviation) time between blood draw and 
death was 5.5 (3.13) years with a median of 5.0 and range 
of 0.0 (blood draw done same month of death)–12.0 years. 
Sixty-nine (56.1%) had AD at autopsy. Compared with those 
without AD, those with AD were more likely to have an 
APOE ε4 allele (P = 0.01) and a higher global CDR score at 
time of blood draw and death (P < 0.01).
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Brain donors with autopsy-confirmed AD had more 
severe cerebral amyloid angiopathy and regional p-tau 
than non-AD (P-values < 0.01). There were no other sta-
tistically significant differences between AD and non-AD 
in neuropathological diagnoses.

Plasma tau variants in brain donors stratified 
by autopsy‑confirmed AD status

Figure 1 shows the distribution of plasma tau epitope con-
centrations by AD status represented as fold-changes (FC) of 

Table 1   Sample characteristics

Binary logistic regression compared donors with and without pathological Alzheimer’s disease on binary outcomes; independent samples t-test 
was used for continuous outcomes. White and non-white were compared (1 = white, 0 = non-white). Sex was coded as 0 (male) and 1 (female). 
Sample sizes: diagnosis at death, n = 122 due to missingness; APOE ε 4 allele status, n = 120 due to missingness; plasma biomarkers, n = 121 
due to technical errors
AD Alzheimer’s disease, CDR clinical dementia rating (CDR) dementia staging instrument, MCI mild cognitive impairment

Total sample set (N = 123) AD (N = 69) Non-AD (N = 54) P value

Demographics
 Sex, n (%) female 55 (44.7) 29 (42.0) 26 (48.1) 0.50
 Age at blood draw, mean (SD) 78.17 (8.55) 77.23 (8.96) 79.37 (7.91) 0.17
 Age at death, mean (SD) 83.71 (8.92) 82.30 (8.96) 85.50 (8.62) 0.05
 Race, n (%) 0.24
  American Indian/Alaska Native 2 (1.6) 2 (2.9) 0
  Asian 1 (0.8) 0 1 (1.9)
  Black or African American 6 (4.9) 2 (2.9) 4 (7.4)
  White 113 (91.9) 65 (94.2) 48 (88.9)
  Other 1 (0.8) 0 1 (1.9)

Diagnosis at death, n (%)  < 0.01
 Normal cognition 15 (12.3) 0 (0) 15 (27.8)
 MCI/non-MCI cognitively impaired 25 (20.5) 7 (10.3) 18 (33.3)
 Dementia 82 (67.2) 61 (89.7) 21 (38.9)

Dementia severity
 Global CDR score at death, n (%)
 < 1

69 (56.1) 25 (36.2) 44 (81.5)  < 0.01

  ≥ 1 54 (43.9) 44 (63.8) 10 (18.5)
 Global CDR score at blood draw, n (%)
 < 1

71 (57.7) 26 (37.7) 45 (83.3)  < 0.01

  ≥ 1 52 (42.3) 43 (62.3) 9 (16.7)
Genetic
 APOE ε 4 allele status, n (%) carrier 53 (44.2) 37 (54.4) 16 (30.8) 0.01

Comorbidities
 Hypertension 59 (48.0) 29 (42.0) 30 (55.6) 0.14
 Diabetes 14 (11.4) 9 (13.0) 5 (9.3) 0.58
 Sleep apnea 10 (8.1) 4 (5.8) 6 (11.1) 0.33

Plasma biomarker, mean (SD)/range, (fmol/ml)
 P-tau181 0.06 (0.03)/0.01–0.18 0.07 (0.03)/0.03–0.18 0.05 (0.02)/0.01–0.14  < 0.01
 P-tau199 0.01 (0.003)/0.00–0.02 0.01 (0.003)/0.00–0.02 0.01 (0.00)/0.00–0.02  < 0.01
 P-tau202 0.01 (0.004)/0.00–0.03 0.01 (0.005)/0.00–0.03 0.01 (0.003)/0.00–0.02 0.03
 P-tau205 0.00 (0.00)/0.00–0.00 0.00 (0.000)/0.00–0.00 0.000 (0.000)/0.00–0.00  < 0.01
 P-tau217 0.01 (0.01)/0.01–1.11 0.02 (0.01)/0.00–0.07 0.01 (0.005)/0.00–0.02  < 0.01
 P-tau231 0.03 (0.03)/0.00–0.12 0.04 (0.02)/0.01–0.12 0.02 (0.01)/0.00–0.08  < 0.01
 Tau195–209 0.65 (0.26)/0.01–1.61 0.73 (0.28)/0.02–1.61 0.55 (0.19)/0.01–1.22  < 0.01
 Tau212–221 0.49 (0.17)/0.01–1.11 0.53 (0.18)/0.18–1.11 0.44 (0.15)/0.01–0.99  < 0.01
 P-tau217/tau212–221 0.03 (0.02)/0.01–0.07 0.04 (0.01)/0.01–0.07 0.01 (0.01)/0.01–0.04  < 0.01
 P-tau205/tau195–209 0.00 (0.00)/0.00–0.00 0.00 (0.00)/0.00–0.00 0.00 (0.00)/0.00–0.00  < 0.01
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the mean using the control group as a reference. The meas-
ured raw concentrations for each tau species are depicted 
in Supplementary Fig. 1. Plasma p-tau205, p-tau217 and 
p-tau231 showed highest increases in AD compared with 
controls (FCp-tau205 = 2.02, FCp-tau217 = 2.77, FCp-tau231 = 1.77, 
P < 0.001 in all cases). These FC were not higher when 
using the ratio phosphorylated/non-phosphorylated pep-
tide for p-tau205 and p-tau217 (FCp-tau205/t-tau195–209 = 1.57, 
FCp-tau217/t-tau212–221 = 2.63). Plasma p-tau181, p-tau199, 
p-tau202, and the non-phosphorylated peptides 195–209 
and 212–221 showed moderate yet significant fold-changes 
(FCp-tau181 = 1.28, P < 0.001; FCp-tau199 = 1.12, p = 0.004; 
FCp-tau202 = 1.11, P = 0.0244; FCtau195–209 = 1.27, P < 0.001; 
FCtau212–221 = 1.18, P = 0.033). Binary logistic regres-
sions (Table 2) showed that higher levels of each plasma 
p-tau and tau form were associated with increased odds for 
having AD (ORs = 1.70 [p-tau202]—27.00 [p-tau217]), 
which were particularly high for p-tau217 (OR = 27.00, 
CI 95% (8.6–112.33)) and the p-tau217/tau212–221 ratio 
(OR = 11.03, CI 95% (4.93–30.42)). The plasma p-tau217/
tau212–221 ratio and p-tau217 had outstanding accuracy 
for discriminating brain donors with AD from those with-
out AD (AUC​p-tau217/tau212–221 = 90.0, 95% CI = 84.1–96.0; 
AUC​p-tau217 = 89.8, 95% CI = 83.8–95.8). Epitopes with 
excellent discrimination accuracy included plasma p-tau231 
(AUC = 83.4, 95% CI = 75.6–91.2), p-tau205/tau195–209 ratio 
(AUC = 82.1, 95% CI = 73.9–90.2), and p-tau205 (AUC = 81.3, 
95% CI = 73.2–89.4). Plasma p-tau199 (AUC = 72.1, 95% 

CI = 73.2–89.4), p-tau202 (AUC = 71.1, 95% CI = 73.2–89.4), 
tau195–209 (AUC = 78.1, 95% CI = 62.4–81.7) and 
tau212–221 (AUC = 72.6, 95% CI = 63.1–82.1) showed 
acceptable discrimination accuracy.

Plasma tau variants in brain donors stratified 
by global CDR score at blood draw

Corresponding to global CDR scores at time of blood draw, 
there were 71 brain donors (57.7%) with CDR < 1 and 52 
(42.3%) with CDR ≥ 1 (Supplementary Figs. 2 and 3). For 
all epitopes, there was better discrimination accuracy among 
those with high CDR scores compared with low (Table 2). 
AUCs ranged from 80.2 (p-tau199) to 96.1 (p-tau217, 
p-tau217/tau212–221 ratio) among those with a CDR ≥ 1.0. 
Among those with a CDR < 1.0, there was still excellent dis-
crimination accuracy for p-tau217 (AUC = 86.0), p-tau217/
tau212–221 ratio (AUC = 86.0), and p-tau231 (AUC = 80.1) 
as well as acceptable discrimination accuracy for p-tau205 
(AUC = 77.1), p-tau205/tau195–209 ratio (AUC = 76.5), 
tau195–209 (AUC = 72.8), and p-tau181 (AUC = 71.0). How-
ever, AUCs fell below 0.70 (not acceptable discrimination) for 
p-tau199, p-tau202, and tau212–221.

Fig. 1   Box plots of the fold-changes of the tau peptide concentrations 
by Alzheimer’s disease status. The non-AD group was used as a refer-
ence. National Institute on Aging-Reagan Institute criteria were used 

for the neuropathological diagnosis of Alzheimer’s disease. Box plots 
include the median (bar) and interquartile range (whiskers) as well as 
the individual data points



	 Acta Neuropathologica           (2024) 147:5     5   Page 6 of 12

Associations between plasma tau variants 
and autopsy rating scales of amyloid pathology

As shown in Table 3, ordinal logistic regressions showed 
that higher concentrations of all tau peptides were asso-
ciated with CERAD neuritic plaque score. The effect 
sizes were strongest for p-tau217 (OR = 15.24, 95% 
CI = 6.72–34.53) followed by the ratio of p-tau217/
tau212–221 (OR = 7.62, 95% CI = 4.26–13.65), p-tau205 
(OR = 5.05, 95% CI = 2.65–9.62) and p-tau231 (OR = 3.86, 

95% CI = 2.26–6.62)). Plasma p-tau199 and p-tau202, 
together with tau195–209 and tau212–221 showed moder-
ate, yet significant associations.

Figure 2 represents the fold-changes in the levels of the 
plasma tau biomarkers when brain donors were grouped by 
CERAD scores. The raw concentrations for each tau species 
are depicted in Supplementary Fig. 4. P-tau205, p-tau217, 
and p-tau231 were the variants with higher fold-changes 
with advancing disease, but with subtle differences. Plasma 
p-tau231 showed the most pronounced increases from 

Table 2   Associations 
between plasma tau species 
and Alzheimer’s disease 
neuropathology

Binary logistic regression examined the association between plasma tau levels and intermediate to high 
Alzheimer’s disease neuropathologic change (per NIA-Reagan criteria). Models controlled for age at death, 
years between last blood draw and death, sex, and APOE ε4 carrier status. The AUC statistics were calcu-
lated using predicted probabilities from the binary logistic regression. Biomarkers are presented in rank 
order of their AUC statistic
AD Alzheimer’s disease, CDR clinical dementia rating (CDR) dementia staging instrument, OR odds ratio, 
CI confidence interval, p-tau phosphorylated tau

OR (95% CI) AUC (95% CI)

Total sample: 69 AD, 54 no AD
 P-tau217/tau212–221 11.03 (4.93, 30.42) 90.0 (84.1, 96.0)
 P-tau217 27.00 (8.60, 112.33) 89.8 (83.8, 95.8)
 P-tau231 5.28 (2.61, 12.43) 83.4 (75.6, 91.2)
 P-tau205/tau195–209 4.07 (2.21, 8.49) 82.1 (73.9, 90.2)
 P-tau205 5.62 (2.57, 14.60) 81.3 (73.2, 89.4)
 P-tau181 3.02 (1.74, 5.84) 79.0 (70.3, 87.6)
 Tau195–209 2.47 (1.47, 4.66) 78.1 (69.3, 86.9)
 Tau212–221 1.85 (1.18, 3.15) 72.6 (63.1, 82.1)
 P-tau199 1.83 (1.15, 3.11) 72.1 (62.4, 81.7)
 P-tau202 1.70 (1.05, 2.91) 71.1 (61.3, 80.9)

CDR < 1.0: 26 AD, 45 no AD
 P-tau217 22.04 (5.57, 137.05) 86.3 (76.7, 96.0)
 P-tau217/tau212–221 8.34 (3.31, 27.35) 85.6 (75.1, 95.9)
 P-tau231 5.13 (2.17, 15.20) 80.6 (69.3, 91.9)
 P-tau205 7.06 (2.28, 27.98) 77.1 (64.8, 89.4)
 P-tau205/tau195–209 4.74 (1.79, 20.10) 76.5 (63.5, 90.0)
 P-tau181 2.37 (1.28, 4.94) 71.3 (58.6, 84.0)
 Tau195–209 2.65 (1.26, 6.67) 72.8 (59.5, 86.1)
 Tau212–221 1.65 (0.89, 3.39) 64.0 (49.6, 78.4)
 P-tau199 1.65 (0.82, 3.56) 63.3 (48.6, 78.0)
 P-tau202 1.50 (0.76, 3.09) 63.3 (48.7, 77.9)

CDR ≥ 1.0: 43 AD, 9 no AD
 P-tau217 189.34 (9.76, 26,020.65) 96.1 (90.7, 100.0)
 P-tau217/tau212–221 54.82 (5.32, 5625.03) 96.1 (90.1, 100.0)
 P-tau231 19.96 (2.69, 691.77) 92.2 (84.3, 100.0)
 P-tau205/tau195–209 4.74 (1.79, 20.08) 91.9 (83.8, 100.0)
 P-tau205 5.66 (1.68, 36.66) 90.1 (81.1, 99.1)
 P-tau181 17.42 (2.75, 372.20) 89.2 (78.7, 99.7)
 Tau195–209 2.12 (0.97, 6.31) 84.4 (72.7, 96.0)
 Tau212–221 2.63 (1.07, 9.39) 81.7 (69.1, 94.3)
 P-tau199 2.03 (0.97, 5.65) 80.2 (66.4, 94.0)
 P-tau202 2.17 (0.91, 6.92) 81.1 (68.4, 93.7)
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CERAD 0 to 1 (FC = 2.3) and plateaued between scores 2 
and 3 (FC = 1). Plasma p-tau217 and the p-tau217/212–221 
ratio presented the highest fold-changes between CERAD 1 
and 2 (FCp-tau217 = 1.9 and FCp-tau217/tau212–221 = 2.0). Plasma 
p-tau205’s most pronounced increase was observed from 
CERAD 2 to 3 (FC = 1.6), but interestingly, this was not 
conserved for the p-tau205/tau195–209 ratio, which showed 
the largest change from stage 1 to 2 (FC = 1.39). Plasma 
p-tau199, p-tau202 and the non-phosphorylated tau195–209 
and tau212–221 presented moderate increases, but in all the 
cases, significant between CERAD 2 and 3.

Association between plasma tau variants 
and autopsy rating scales of tau pathology

Ordinal logistic regressions between Braak stages and the 
levels of the different tau peptides (Table 3) indicated that 
the effect sizes were strongest for p-tau217 (OR = 14.29, 
95% CI = 5.71–35.79)) followed by the ratio of p-tau217/
tau212–221 (OR = 8.88, 95% CI = 4.41–17.89), p-tau205 

(OR = 5.27, 95% CI = 2.54–10.94), the ratio of p-tau205/
tau195–209 (OR = 4.52, 95% CI = 2.52–8.11)) and then 
p-tau231 (OR = 4.02, 95% CI = 2.20–7.32). When brain 
donors were grouped by Braak stages (Fig. 3 and Supple-
mentary Fig. 5), p-tau231 presented the earliest significant 
changes at Braak III–IV. Plasma p-tau217 showed the earli-
est significant increases from Braak III–IV but had further 
higher levels in Braak V–VI; plasma p-tau205 changes were 
only significant in Braak V–VI. Similar to the findings with 
CERAD, p-tau199, p-tau202 and the non-phosphorylated 
peptides tau195–209 and tau212–221 presented moderate 
increases, but in all cases were significant at late stages of the 
disease, i.e., Braak V–VI. None of the plasma tau biomark-
ers were increased in primary age-related tauopathy (PART) 
(CERAD 0, Braak III–IV), compared to controls (CERAD 0, 
Braak 0–II) (Supplementary Fig. 6). The levels of p-tau217, 
p-tau231, and the ratio p-tau217/tau212–221 were increased 
in AD cases (CERAD ≥ 1) compared to PART with the same 
tau burden (Braak III–IV). All biomarkers were significantly 
higher in advanced AD (CERAD ≥ 1, Braak V–VI) com-
pared to PART.

Correlations with regional p-tau severity at autopsy (Sup-
plementary Table 4) showed that plasma p-tau217 and the 
ratio of p-tau217/tau212–221 consistently had the strong-
est associations with p-tau severity across many different 
cortical and subcortical brain regions (standardized betas 
p-tau217 = 0.49 [amygdala]–0.68 [frontal cortex]; standard-
ized betas p-tau217/tau212–221 = 0.58 [entorhinal cortex, 
locus coeruleus]–0.77 [frontal cortex]). Plasma p-tau205, 
the ratio of p-tau205/tau195–209, and p-tau231 also dem-
onstrated consistent and modest associations with p-tau 
severity ratings, followed by p-tau181 and p-tau199. Plasma 
p-tau202, tau195–209, and tau212–221 had weak associa-
tions with the p-tau severity ratings.

Discussion

A multitude of studies have demonstrated the association of 
plasma p-tau with amyloid and tau PET imaging, CSF bio-
markers, and cognition, but relatively few have described the 
relation to autopsy findings. Such studies report results from 
a single phosphorylation site, and rarely compare multiple 
p-taus. Here, we determine for the first time, the levels of 
six phosphorylated and two non-phosphorylated tau species 
simultaneously quantified by MS in ante-mortem plasma of 
brain donors. We found that the concentrations of all p-tau 
and non-phosphorylated tau peptides were increased in neu-
ropathologically confirmed AD, but p-tau217, p-tau205, 
and p-tau231 were the species with larger dynamic ranges. 
In particular, p-tau217 was the most accurate biomarker 
discriminating brain donors by AD and cognitive status 
and showed the highest associations with amyloid and tau 

Table 3   Associations between plasma tau species and Braak stage 
and CERAD neuritic amyloid plaque score

Multivariable ordinal logistic regression examined the association 
between plasma tau levels and Braak staging for NFTs (0, I/II, III/IV, 
V/VI) and CERAD neuritic amyloid plaque score. Models controlled 
for age at death, years between last blood draw and death, sex, and 
APOE ε4 carrier status. Presented in rank order of effect size
OR odds ratio, CI confidence interval, p-tau phosphorylated tau

OR (95% CI) P value

Braak staging for NFTs
 P-tau217 14.29 (5.71, 35.79)  < 0.01
 P-tau217/tau212–221 8.88 (4.41, 17.89)  < 0.01
 P-tau205 5.27 (2.54, 10.94)  < 0.01
 P-tau205/tau195–209 4.52 (2.52, 8.11)  < 0.01
 P-tau231 4.02 (2.20, 7.32)  < 0.01
 P-tau181 2.53 (1.56, 4.11)  < 0.01
 Tau195–209 1.98 (1.26, 3.10)  < 0.01
 P-tau199 1.76 (1.14, 2.70) 0.01
 Tau212–221 1.67 (1.11, 2.51) 0.01
 P-tau202 1.61 (1.04, 2.50) 0.03

CERAD neuritic amyloid plaque score
 P-tau217 15.24 (6.72, 34.53)  < 0.01
 P-tau217/tau212–221 7.62 (4.26, 13.65)  < 0.01
 P-tau205 5.05 (2.65, 9.62)  < 0.01
 P-tau231 3.86 (2.26, 6.62)  < 0.01
 P-tau205/tau195–209 3.17 (1.95, 5.17)  < 0.01
 P-tau181 2.52 (1.62, 3.91)  < 0.01
 Tau195–209 2.37 (1.51, 3.71)  < 0.01
 P-tau199 2.21 (1.42, 3.44)  < 0.01
 Tau212–221 1.97 (1.31, 2.96)  < 0.01
 P-tau202 1.94 (1.22, 3.07) 0.01
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neuropathological ratings. However, evaluation of the lev-
els of the tau peptides with CERAD and Braak classifica-
tions indicated that different phosphorylated tau species 

increase at different stages of the disease. Taken together, 
these results contribute to the existing literature by not only 
demonstrating the capability of plasma p-tau to detect AD 

Fig. 2   Box plots of the fold-changes of the tau peptide concentrations 
by CERAD neuritic amyloid plaque score. CERAD 0 was used as the 
reference group. Box plots include the median (bar) and interquartile 

range (whiskers) as well as the individual data points. Participants 
are color-coded based on the presence (red) or absence (blue) of AD 
brain pathology

Fig. 3   Box plots of the fold-changes of the tau peptide concentra-
tions by Braak staging for NFTs. Braak I–II was used as the refer-
ence group. Box plots include the median (bar) and interquartile 

range (whiskers) as well as the individual data points. Participants 
are color-coded based on the presence (red) or absence (blue) of AD 
brain pathology
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pathology but also revealing distinctions among p-tau spe-
cies. We postulate that these differences will be valuable for 
selecting the most suitable biomarker in different scenarios, 
i.e., diagnosis, prognosis, or treatment monitoring.

By directly comparing the levels of the tau biomarkers in 
plasma, we observed that p-tau217, followed by p-tau205 
and p-tau231, exhibited the highest fold-changes in AD 
cases compared with non-AD cases, greater than the other 
p-tau (181, 199, 202) and non-phosphorylated tau (195–209, 
212–221). Those peptides with the largest dynamic ranges 
also had the greatest capacity to discriminate between neu-
ropathologically confirmed AD and non-AD participants. 
Plasma p-tau217 was the biomarker with superior perfor-
mance, followed by p-tau231 and p-tau205, which had 
similar accuracies. Normalization of p-tau217 and p-tau205 
concentrations with their respective non-phosphorylated 
peptides (p-tau217/212–221 and p-tau205/195–209) ren-
dered a similar accuracy, in concordance [18] and con-
trast [3] to previous work. When we analyzed the perfor-
mance of the different tau species to detect AD when brain 
donors were stratified by dementia status at the time of the 
blood draw, all biomarkers showed a superior prediction in 
demented participants (CDR ≥ 1). This is probably due to 
higher tau levels in blood with more advanced disease. How-
ever, the accuracy in those with normal cognition or mild 
cognitive impairment (CDR < 1) remained high for most tau 
peptides. The same pattern as neuropathological examina-
tion was observed: p-tau217 was the biomarker with high-
est performance, followed by p-tau205 and p-tau231. These 
results are in line with previous studies showing that among 
the currently available plasma biomarkers, p-tau217 con-
centrations reflect underlying AD pathology with the great-
est fidelity as determined by neuropathology [14, 24], PET 
imaging [21], and CSF biomarkers [12]. Longitudinally, 
p-tau217 has been shown as the only available blood bio-
marker with marked amyloid-dependent changes and with 
increases associated with clinical deterioration and brain 
atrophy [1]. These studies encompass comparisons with 
other tau phopshorylations, such as p-tau181 or p-tau231, 
but not with p-tau205 due to the previous lack of an avail-
able assay.

Through the utilization of our MS method, we recently 
described that plasma p-tau231, p-tau217, and p-tau205 
exhibited stronger correlations with PET signals compared 
to other tau species, but their variations were associated 
differently with amyloid and tau PET [18]. P-tau231 was 
influenced more by amyloid, p-tau217 by both amyloid 
and tau, and p-tau205 primarily by tau. Here, we inves-
tigated associations between the plasma tau species and 
neuropathological scores of amyloid (CERAD) and tau 
(Braak) accumulation in the brain. We also observed that 
p-tau217, p-tau231, and p-tau205 displayed higher asso-
ciations with the neuropathological staging of amyloid 

and tau, as well as with p-tau severity ratings at autopsy. 
Interestingly, plasma p-tau231 exhibited the most signifi-
cant fold-changes with mild β-amyloid plaque density and 
reached a plateau between moderate and severe scores. 
Plasma p-tau217 showed the highest raise with moderate 
amyloid plaque density and at Braak III–IV, and continu-
ally increased thereafter. Meanwhile, plasma p-tau205 levels 
changed the most with severe amyloid plaque score and in 
Braak V–VI. The remaining peptides displayed their most 
pronounced changes—although moderate—in late disease 
stages (CERAD 3 and Braak V–VI). This observation sug-
gests a widespread increase in phosphorylation and overall 
tau levels as the disease advances significantly.

These findings emphasize that not all tau markers are 
equal or indicative of the same brain changes. Among them, 
p-tau217 emerges as the most promising biomarker, exhibit-
ing higher dynamic ranges and superior accuracy. However, 
other markers can provide valuable insights into different 
underlying processes. In the successful TRIALBLAZER-
ALZ 2 clinical trial, participants were recruited based on 
their tau PET burden [23], showing the best results in low-
medium tau PET population. The plasma p-tau profile char-
acterization of each patient with a method like the one pre-
sented herein could assist in defining the target participants 
for a specific AD treatment.

There are limitations to the current findings. First, we 
did not explore trends in plasma tau species levels longitu-
dinally. While plasma tau peptides accurately detect AD at 
autopsy, the clinical significance of a unit increase in raw 
values remains unclear. In addition, the findings are limited 
to participants from a single clinical cohort, which intro-
duces the potential for selection bias. The present sample 
is from a National Institute on Aging-funded ADRC and is 
most representative of individuals who present to a clinic 
with concerns regarding their cognitive functioning. This 
population allows for development and validation of bio-
markers, but inferences regarding risk and screening for AD 
in the general population cannot be made. Furthermore, the 
sample exhibited demographic homogeneity, with a major-
ity identifying as white. This homogeneity could limit the 
broader applicability of the results to more diverse popula-
tions. We did not include the examination of other potential 
clinical, genetic, demographic, and social determinants of 
health variables and how they relate to the studied plasma 
biomarkers. Prospective population-based studies are war-
ranted to address these knowledge gaps and identify cut-
off values that optimize sensitivity and specificity for the 
detection of AD in a wider range of individuals. The AUC 
values reported in the present work appear lower than stud-
ies analyzing blood-based biomarkers against imaging and 
fluid measures. In most investigations, PET and CSF mark-
ers demonstrate an accuracy of 90–95% when compared 
to post-mortem. Hence, in the context of in vivo research 
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where p-tau is shown to have an AUC > 0.95, this evalu-
ation is conducted against a “gold standard” that is not 
precise. Thus, the likely explanation for the AUC values 
being less than 0.90 in this study is rooted in the evaluation 
against actual neuropathology. In addition, we are compar-
ing blood biomarkers to end-stage disease—which is an 
unlikely scenario (e.g., it will be a preclinic or MCI stage). 
Future studies should address if the overlap cases between 
AD and non-AD groups would benefit from a two-step diag-
nostic workflow, as recently proposed [6]. In that case, blood 
tau biomarkers could serve as a first screening tool for AD 
pathology (step 1), followed by confirmatory testing with 
CSF Aβ42/Aβ40 or PET imaging (step 2) only in patients 
with intermediate risk at the first step. This would reduce 
the need for confirmatory testing while accurately classify-
ing patients, offering a viable option to centers that do not 
have access to specialized testing. Lastly, we recognize that 
while MS techniques provide the potential for multiplexing 
various phosphorylations, offering a distinct platform for AD 
staging, they demand more extensive efforts for scalability 
and implementation in clinical routine than other platforms.

In summary, our findings support plasma p-tau217 as the 
most promising p-tau species for detecting AD brain pathol-
ogy. Plasma p-tau231 and p-tau205 may additionally func-
tion as markers for different stages of the disease.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00401-​023-​02660-3.
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