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Abstract

Aims Transoesophageal echocardiography (TOE) is often performed before catheter ablation or cardioversion to rule out the 
presence of left atrial appendage thrombus (LAT) in patients on chronic oral anticoagulation (OAC), despite associated dis
comfort. A machine learning model [LAT-artificial intelligence (AI)] was developed to predict the presence of LAT based on 
clinical and transthoracic echocardiography (TTE) features.
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Methods 
and results

Data from a 13-site prospective registry of patients who underwent TOE before cardioversion or catheter ablation were 
used. LAT-AI was trained to predict LAT using data from 12 sites (n = 2827) and tested externally in patients on chronic 
OAC from two sites (n = 1284). Areas under the receiver operating characteristic curve (AUC) of LAT-AI were compared 
with that of left ventricular ejection fraction (LVEF) and CHA2DS2-VASc score. A decision threshold allowing for a 99% 
negative predictive value was defined in the development cohort. A protocol where TOE in patients on chronic OAC is 
performed depending on the LAT-AI score was validated in the external cohort.  In the external testing cohort, LAT 
was found in 5.5% of patients. LAT-AI achieved an AUC of 0.85 [95% confidence interval (CI): 0.82–0.89], outperforming 
LVEF (0.81, 95% CI 0.76–0.86, P < .0001) and CHA2DS2-VASc score (0.69, 95% CI: 0.63–0.7, P < .0001) in the entire ex
ternal cohort. Based on the proposed protocol, 40% of patients on chronic OAC from the external cohort would safely 
avoid TOE.

Conclusion LAT-AI allows accurate prediction of LAT. A LAT-AI-based protocol could be used to guide the decision to perform TOE 
despite chronic OAC.

Structured Graphical Abstract

Transoesophageal echocardiography is often performed to exclude left atrial appendage thrombus before catheter ablation or 
cardioversion in patients on chronic oral anticoagulation. Machine learning based on clinical data and transthoracic echocardiography may 
help in assessing the risk of left atrial appendage thrombus.

The model predicted the risk of left atrial appendage thrombus better than other known risk factors. Based on the threshold defined in 
the development cohort, the model would avoid transoesophageal echocardiography in 40% of patients without missing any thrombi.

Artificial intelligence (AI) accurately predicts left atrial appendage thrombus. An AI-based protocol may guide the decision to perform 
transoesophageal echocardiography in patients on chronic oral anticoagulation undergoing catheter ablation or cardioversion.
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Development and validation of an artificial intelligence model (LAT-AI) to detect left atrial appendage thrombus by transoesophageal echocardiog
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embolic risk.
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Introduction
Atrial fibrillation (AF) and atrial flutter promote the formation of left 
atrial appendage thrombus (LAT)1 and are associated with an increased 
risk of thrombo-embolic events.2 Although the mechanism of stroke is 
complex, a LAT has often been identified as the source of thrombus 
formation in patients who have recently experienced strokes.3 The res
toration of sinus rhythm is associated with an increased risk of 
thrombo-embolic events,4 and embolization of already existing thrombi 
present in the atrium is considered as one of the possible causes.5 For 
this reason, cardioversion and catheter ablation in the presence of LAT 
are contraindicated.6,7

Oral anticoagulation (OAC) reduces the risk of the formation of LAT 
but does not abolish this risk completely.1,8–10 Transoesophageal echo
cardiography (TOE) is therefore considered the modality of choice to 
detect LAT with high sensitivity and specificity and is currently recom
mended6,7,11 before cardioversion or catheter ablation as an alternative 
to a 3-week course of OAC. While not compulsory in chronically antic
oagulated patients,7,11 TOE is still performed routinely before catheter 
ablation or cardioversion in many centres.12 However, TOE is asso
ciated with significant discomfort for the patient and may lead to com
plications.13 It is a more complex procedure which is time-consuming, 
requires more expensive equipment, resulting in higher costs14 com
pared to transthoracic echocardiography (TTE). Therefore, there is 
an unmet clinical need for an improved assessment of the risk of LAT.

TTE is relatively much faster and easier to perform than TOE. 
Several registries identified features detectable by TTE that are asso
ciated with the presence of LAT,1,8–10 but none of the prior studies at
tempted to integrate the clinical and TTE data to provide a personalized 
assessment of the risk of LAT. This study aimed to develop and validate 
an accessible and practical for clinical use method to predict LAT with 
high sensitivity using readily available clinical features and TTE measure
ments. To achieve this, we utilized artificial intelligence (AI) and tested 
the method in an independent external cohort. Further, we sought to 
investigate the clinical applicability of such a tool through simulated can
cellation of TOE studies.

Methods
Study data
We used data from the multi-site prospective Left Atrial Thrombus on 
Transoesophageal Echocardiography (LATTEE) registry10,15 (ClinicalTrials.gov 
identifier: NCT03591627) that included 3227 patients undergoing TOE be
fore cardioversion or catheter ablation at 13 sites, as well as 1075 cases col
lected retrospectively across two sites, resulting in a total number of 4302 
cases and 14 sites in the study. The decision on whether to perform TOE 
before catheter ablation or cardioversion was done at the discretion of the 
attending physicians following site-specific procedures.10 All TOE studies 
were performed by echocardiographers certified in TOE by the Polish 
Society of Echocardiography and independently reviewed by a second 
echocardiographer at the study site. Data from 12 sites (n = 2827) served 
as the development cohort and were used for internal validation. Data from 
the single site that recruited the largest number of patients, as well as 
the two retrospective cohorts, were set aside as an external testing set 
(N = 1475, two different sites). Patients who did not receive OAC for at 
least 3 weeks before TOE were excluded from the external testing set 
(n = 191), resulting in a final size of 1284 patients. More details about the 
dataset are given in a consort diagram (see Supplementary data online, 
Figure S1). The CHA2DS2-VASc score (congestive heart failure, 

hypertension, age ≥75 years, diabetes mellitus, history of stroke or 
thrombo-embolism, vascular disease, age 65–74 years, female sex) was cal
culated using the standard definition.7

Compliance with the Declaration of Helsinki
This study complies with the Declaration of Helsinki. The institutional re
view boards at all participating sites approved the collection of data for 
the registry. This was an observational study, with no modification in patient 
management. Therefore, the requirement for written informed consent 
was waived.

Model and feature selection
As a first step, we performed a comprehensive model and feature selection 
using a large-scale AI evaluation framework (STREAMLINE16) to choose the 
best machine learning model type, model hyperparameters, and an optimal 
set of features. Using this tool, we evaluated 13 different models, including 
logistic regression (LR), tree-based models, and neural networks in the de
velopment cohort (see also Supplementary data online, Methods and 
Supplementary data online, Figure S2).

Training and internal testing
In the next step, we implemented the machine learning classifier for the pre
diction of LAT (LAT-AI) directly in Python programming language using the 
optimal hyperparameters established in the previous step. The full list of 
features (28 clinical, 7 blood test results, and 4 TTE features) used by 
LAT-AI is given in Supplementary data online, Table S1. We first trained 
and tested LAT-AI internally using a 10-fold cross-validation regimen, which 
is currently the technique of choice in data mining.17 We used average ab
solute Shapley Additive Explanations (SHAP values)18 as a measure of fea
ture importance in the development cohort.

Model with reduced number of features
In order to facilitate the practical application of our model, we developed a 
simplified model (LAT-AI-reduced) with a reduced number of features. 
We used a previously developed method19 to select a minimal set of fea
tures that retains 99% of the predictive performance of the full model, 
based on an internal 10-fold cross-validation. To demonstrate the potential 
clinical use of the developed approach, we show how the LAT-AI-reduced 
model could be used as an easy-to-use web application. This is described in 
greater detail in the Supplementary data online, Methods.

Final models
In the final step, we retrained the LAT-AI and LAT-AI-reduced models in 
the entire development cohort using the same settings as in the 10-fold 
cross-validation. Additionally, to demonstrate how our models compare 
to an optimal simple LR model, we selected two to four most contributing 
features as input parameters for the LR models and systematically evaluated 
multiple LR models using these sets of features with an optional addition of 
the CHA2DS2-VASc score in the development cohort using 10-fold cross- 
validation. Subsequently, the best-performing LR model was evaluated using 
the external testing set.

External testing
We applied the final LAT-AI and LAT-AI-reduced models, as well as two 
simple LR models, to the external testing cohort. For a given patient, 
LAT-AI and LAT-AI-reduced models generated their prediction as continu
ous score values. For external testing, missing values were not imputed but 
passed to the model ‘as is’.
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Simulated cancellation of TOE
We identified the decision thresholds for the simulated cancellation of TOE 
in patients on chronic OAC based on the results from the development co
hort. The thresholds were defined separately for the LAT-AI, LAT-AI re
duced, the best LR model, and left ventricular ejection fraction (LVEF) as 
the highest score value (or lowest LVEF value), allowing for at least 99% 
negative predictive value for LAT. We then applied these thresholds to 
the external dataset by assuming the cancellation of TOE in all patients 
who had predicted score lower than the threshold. Subsequently, we eval
uated the negative predictive value, sensitivity, and specificity in unseen data, 
as well as the number of TOE studies that could potentially be avoided using 
LAT-AI, LAT-AI-reduced, and LR models.

Patient-level explanation
At the time of inference in the external testing set, per-patient SHAP values 
were generated and visualized using waterfall plots that showcase the de
gree and direction of the contribution of each feature for an individual 
patient-level prediction.

Compliance with recommendations for 
machine learning-related research
This study was designed and conducted following recently published guid
ance papers on the use of AI-based predictive models in cardiovascular re
search.20,21 To improve the transparency of reporting and the 
reproducibility of machine learning algorithms, the Proposed 
Requirements for Cardiovascular Imaging-Related Machine Learning 
Evaluation checklist is included in Supplementary data online, Table S2.

Statistical analysis
Continuous variables were expressed by median and interquartile ranges 
(IQRs). Median values were compared with a two-sided Wilcoxon rank- 
sum test or a Kruskal–Wallis test. Categorical variables were compared 
using Fisher’s exact test.

We used area under receiver operating characteristic curves (AUCs) to 
compare the classification performance of LAT-AI and LAT-AI-reduced 
models and compare them against known predictors of LAT and against 
simple LR models as well as to compare the predictive performance de
pending on sex. The performance of the models, as well as the ability to can
cel TOE, was evaluated in patients who received chronic OAC. DeLong’s 
method22 was used for comparisons between AUC values as well as to ob
tain 95% confidence intervals (CIs) for AUC. Power of statistical compari
sons of AUC was assessed using pROC package.23 Specificity, sensitivity, 
and negative predictive value of LAT-AI and LAT-AI-reduced models 
were calculated for the decision threshold for the simulated cancellation 
of TOE, and 95% CIs were generated using the exact binomial method.24

Sensitivity of the models and individual predictors was compared using 
the McNemar test. Calibration of the models was assessed using plots of 
observed event rates vs. predicted scores and using calibration slopes 
with 95% CI in the external testing set. We used multivariable LR analysis 
to evaluate the independent diagnostic performance of LAT-AI and 
LAT-AI-reduced models after adjusting for other strong predictors of 
LAT (LVEF, left atrial dimension, and non-paroxysmal arrhythmia). We 
also used decision curves25 to evaluate the net benefit of the use of 
LAT-AI and LAT-AI-reduced models compared to non-paroxysmal ar
rhythmia and reduced LVEF. A P-value <.05 was considered significant.

All the machine learning operations were performed in Python 3.8.13, 
while statistical analysis was performed using R 4.1.2 and RStudio software. 
A detailed listing of all used packages and versions is given in Supplementary 
data online, Table S3.

Results
Development cohort characteristics
Detailed characteristics of the development cohort are presented in 
Table 1. The median age of patients was 67 (IQR: 59–73) years, and 
37% of them were female. On TOE, LAT was detected in 224 patients 
(7.9%); 85% of them (n = 209) had persistent arrhythmia and 77% 
(n = 173) received chronic OAC. Patients without chronic OAC had 
thrombus more frequently (12%) than patients on chronic OAC 
(7.2%, P < .001). Although half of the patients were planned for cath
eter ablation, the majority of LAT (82%) were detected in patients 
undergoing cardioversion.

External cohort characteristics
Detailed characteristics of the external testing cohort are presented in 
Table 2. The median age of patients was 67 (IQR: 59–73) years, 37% of 
them were female, and 495 (43%) had paroxysmal arrhythmia. LAT was 
found in TOE in 71 cases (5.5%), and 6.2% of patients with LAT had par
oxysmal arrhythmia. Cardioversion was planned in 50% of patients 
(n = 645), and LAT was found more frequently in patients planned 
for cardioversion than for catheter ablation (9.8% vs. 1.3%, P < .001). 
Counts of missing values for the development and external testing 
cohorts are given in the Supplementary data online, Table S4.

Training and internal testing
The Extreme Gradient Boosting model26 was proven to provide the 
best predictive performance in the STREAMLINE analysis (see 
Supplementary data online, Figure S2) and was therefore used for sub
sequent training of LAT-AI. The most important features driving the 
predictions of LAT-AI in the development cohort were left atrial mea
surements [especially left atrial volume index (LAVI)] and the presence 
of heart failure (Figure 1A).

Reduction of the number of features
The minimal number of features that allowed for 99% of the predictive 
performance of the full model in the internal, 10-fold cross-validation 
using the development cohort was 8: age, arrhythmia duration, rhythm 
at the time of TOE, heart failure, New York Heart Association func
tional class, LVEF, left atrial anteroposterior dimension, and LAVI 
(Figure 1B).

Definition of decision thresholds for TOE 
cancellation
The decision threshold for cancellation of TOE was 0.37 according to 
the LAT-AI model and had a 99% negative predictive value (95% CI: 
98–99), 38% specificity (95% CI: 36–40), and 93% sensitivity (95% CI: 
89–96) in patients from the development cohort who received chronic 
OAC. For the LAT-AI-reduced model, the decision threshold was 
found to be 0.34, allowing for 99% negative predictive value (95% CI: 
97–100), 26% specificity (95% CI: 24–28), and 97% sensitivity (95% 
CI: 95–100) in patients from the development cohort who received 
chronic OAC. For the best LR model, the decision threshold allowing 
for at least 99% negative predictive value (95% CI: 98–99) in the devel
opment cohort was found to be 0.05 and achieved 92% sensitivity (95% 
CI: 88–96) and 44% specificity (95% CI: 42–46). For LVEF, the threshold 
allowing for at least 99% negative predictive value in the development 
cohort was 65% and achieved 100% sensitivity (95% CI: 0.97–100) and 
3% specificity (95% CI: 2–4) in the development cohort.
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Table 1 Development cohort characteristics

Characteristic Overall, N = 2827 No LAT, 
N = 2603 (92.1%)

LAT 
N = 224 (7.9%)

P-value

Age, years 67 (59–73) 66 (59–73) 70 (63–78) <.001

Female sex 1048 (37%) 971 (37%) 77 (34%) .4

Cardioversion (vs. ablation) 1401 (50%) 1218 (48%) 183 (82%) <.001

Atrial fibrillation 2495 (88%) 2300 (88%) 195 (87%) .5

Atrial flutter 408 (14%) 375 (14%) 33 (15%) .9

Paroxysmal (vs. persistent) 1181 (42%) 1148 (44%) 33 (15%) <.001

BMI, kg/m2 29.0 (26.0–33.0) 29.2 (26.0–33.0) 29.0 (26.0–32.0) .13

NYHA class <.001

I–II 836 (30%) 747 (29%) 89 (40%)

III 252 (8.9%) 202 (7.8%) 50 (22%)

IV 34 (1.2%) 28 (1.1%) 6 (2.7%)

No HF 1705 (60%) 1626 (62%) 79 (35%)

Mitral stenosis <.001

Mild 13 (0.5%) 9 (0.3%) 4 (1.8%)

Moderate to severe 14 (0.5%) 9 (0.3%) 5 (2.2%)

History of stroke .048

Haemorrhagic stroke 14 (0.5%) 11 (0.4%) 3 (1.3%)

Ischaemic stroke 175 (6.2%) 156 (6.0%) 19 (8.5%)

No history of stroke 2638 (93%) 2436 (94%) 202 (90%)

Chronic kidney disease 370 (13%) 326 (13%) 44 (20%) .002

Hypertension 1862 (75%) 1705 (75%) 157 (76%) .7

Diabetes mellitus 702 (25%) 619 (24%) 83 (37%) <.001

Labile INR 68 (2.6%) 50 (2.1%) 18 (8.5%) <.001

Alcohol overuse 122 (4.4%) 100 (3.9%) 22 (10%) <.001

Smoking <.001

Currently 289 (10%) 259 (10.0%) 30 (13%)

In the past 682 (24%) 609 (23%) 73 (33%)

Non-smoker 1856 (66%) 1735 (67%) 121 (54%)

Creatinine 1.00 (0.90–1.20) 1.00 (0.90–1.20) 1.10 (0.90–1.21) .008

Left atrial AP dimension, mm 45 (41–50) 45 (41–49) 48 (44–52) <.001

LVEF, % 55 (45–60) 55 (46–60) 42 (30–51) <.001

Left atrial area, cm2 26 (22–30) 26 (22–30) 28 (25–33) <.001

Left atrial volume index, mL/m2 45 (36–56) 45 (36–55) 53 (43–63) <.001

Rhythm at the time of study <.001

Sinus rhythm 778 (28%) 766 (30%) 12 (5.4%)

Atrial fibrillation 1805 (64%) 1612 (62%) 193 (87%)

Atrial flutter 227 (8.1%) 211 (8.1%) 16 (7.2%)

On chronic OAC 2394 (85%) 2221 (86%) 173 (77%) <.001

Continued 
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External testing
In the external testing set of 1284 patients on chronic OAC undergoing 
cardioversion or catheter ablation, LAT-AI outperformed the 
CHA2DS2-VASc score as well as the most contributing feature, LVEF 
(Figure 2). Both LAT-AI (AUC 0.85, 95% CI: 0.82–0.89) and 
LAT-AI-reduced (AUC 0.84, 95% CI: 0.8–0.89) models performed 
also significantly better than other individual predictors of LAT such 
as LVEF (AUC 0.81, 95% CI: 0.76–0.86) or LAVI (AUC 0.81, 95% CI: 
0.76–0.87, P = 0. 001) or arrhythmia duration (0.67, 95% CI: 0.63– 
0.71, P < .0001). The best set of features for the LR model, as estab
lished in the development cohort, consisted of LVEF, LAVI, rhythm at 
the time of the study, and CHA2DS2-VASc score (comparison of all 
candidate feature sets is provided in Supplementary data online, 
Table S5). The LR model trained using these parameters achieved an 
AUC of 0.83 (95% CI: 0.79–0.88), which was significantly worse than 
the LAT-AI model (P = .007) but not significantly different from the 
LAT-AI-reduced model (P = .25). The comparison of the models and 
individual features is provided in Supplementary data online, Table S6. 
The statistical power of comparisons of the AUC of our models and 
LVEF was estimated as 93% and 83% for the LAT-AI and 
LAT-AI-reduced models, respectively.

The LAT-AI score remained the strongest predictor of LAT after ad
justing for the input parameters of the best LR model (LVEF, LAVI, 
rhythm at the time of study, and the CHA2DS2-VASc score) [odds ratio 
(OR): 12.2, 95% CI: 3.6–47.3]. Similarly, the LAT-AI-reduced score re
mained the only predictor significantly associated with LAT after adjust
ing for the same factors (OR 8, 95% CI: 2.8–25.4), as shown in 
Supplementary data online, Table S7.

The AUC of the LAT AI and LAT-AI-reduced models in men and wo
men did not differ significantly but were higher for women, as shown in 
Supplementary data online, Table S8. Both LAT-AI and LAT-AI-reduced 
models provided benefit over established predictors of LAT across a 
wide range of risk thresholds (see Supplementary data online, 
Figure S3). Calibration of the models is presented in Supplementary 
data online, Figure S4. Two examples of patient-level explanation of 
the model’s prediction in the external testing set are shown in 
Supplementary data online, Figure S5.

Simulated application of management 
based on LAT-AI
The application of LAT-AI to guide the decision on whether to perform 
TOE before cardioversion or ablation was performed in the external 
testing set (n = 1284). By not performing TOE in patients with 
LAT-AI score < 0.37, it would be possible to avoid 40% of routine 
TOE (n = 512) studies with 100% negative predictive value (95% CI: 
99–100), 100% sensitivity (95% CI: 95–100), and 42% specificity (95% 
CI: 39–45) in this group (Figure 3). Using the LAT-AI-reduced score 

and threshold of 0.34, it would be possible to avoid 26% of routine 
TOE (n = 328) studies with 100% negative predictive value (95% CI: 
98–100), 100% sensitivity (95% CI: 95–100), and 27% specificity (95% 
CI: 25–30). A screenshot of the prototype web application for the 
LAT-AI-reduced model is shown in Supplementary data online, 
Figure S6. The best LR model with the threshold of 0.05 would mandate 
the cancellation of 48% of studies (n = 620) but with five false negative 
predictions (resulting in significantly lower sensitivity of 93%, 95% CI: 
0.84–0.98) than that of LAT-AI models (P = .03). By cancelling TOE 
based on LVEF >65%, it would be possible to exclude all LAT in the ex
ternal testing set (sensitivity of 100%, 95% CI: 0.95–100), but such an 
approach would only allow avoiding 6.3% of TOE studies (n = 82).

Discussion
We developed and externally validated a novel approach for the predic
tion of LAT in patients with AF or atrial flutter. We demonstrate that 
through the integration of clinical and TTE features, it is possible to 
achieve a far superior predictive performance for the detection of 
LAT compared to any other marker of thrombo-embolic risk and 
that such a score could be used to select patients who should undergo 
TOE before cardioversion or catheter ablation. Our approach could al
low up to 40% of patients on chronic OAC to avoid the discomfort, 
potential risks, cost, and time associated with TOE. Finally, it could pre
vent serious thrombo-embolic complications by mandating TOE in 
high-risk patients (despite adequate chronic OAC), in whom, following 
the current guidelines,7 TOE would not be performed (Structured 
Graphical Abstract).

According to a European multi-centre registry, pre-ablation TOE 
was performed in up to 91.3% of patients undergoing catheter abla
tion,12 but a recent meta-analysis showed that the incidence of LAT 
is <2% in patients undergoing catheter ablation and 8.1% in patients 
undergoing cardioversion8 . Current guidelines leave room for individ
ual decisions regarding the necessity of performing a TOE before cath
eter ablation or cardioversion in patients on chronic OAC, but at the 
same time offer no tools for the assessment of the pre-test likelihood 
of LAT.7,27 Milhem et al.28 proposed an approach to exclude LAT using 
a simple four-feature score, but this method was not externally vali
dated. The Heart Rhythm Society’s recommendations for management 
before catheter ablation define TOE in patients on chronic OAC and 
in AF on presentation as reasonable (Class IIa recommendation),11

and in everyday clinical practice routine pre-ablation TOE is performed 
in many centres.12 Similarly, the guidelines of the European Heart 
Rhythm Association state that it remains an individualized decision 
whether to perform a pre-cardioversion TOE for thrombus exclusion, 
even when subjects are effectively anticoagulated.27 That leaves a vast 
majority of patients undergoing cardioversion or catheter ablation in 
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Table 1 Continued  

Characteristic Overall, N = 2827 No LAT, 
N = 2603 (92.1%)

LAT 
N = 224 (7.9%)

P-value

CHA2DS2-VASc score 3 (1–4) 3 (1–4) 4 (3–5) <.001

Statistics presented: median (interquartile range) and n (%). The bold values represent statistically significant (P < .05) comparisons. 
AP, anteroposterior; BMI, body mass index; HF, heart failure; INR, international normalized ratio; LA, left atrium; LVEF, left ventricular ejection fraction; NYHA, New York Heart 
Association; OAC, oral anticoagulation.
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Table 2 External cohort characteristics

Characteristics Overall, N = 1284 No LAT, 
N = 1213 (94.5%)

LAT, 
N = 71 (5.5%)

P-value

Age, years 67 (59–73) 67 (59–73) 71 (62–77) .004

Female sex 471 (37%) 450 (37%) 21 (30%) .2

Cardioversion (vs. ablation) 645 (50%) 582 (48%) 63 (89%) <.001

Atrial fibrillation 1112 (87%) 1050 (87%) 62 (87%) .9

Atrial flutter 182 (14%) 173 (14%) 9 (13%) .7

Paroxysmal (vs. persistent) 495 (43%) 491 (45%) 4 (6.2%) .001

BMI, kg/m2 29.0 (26.0–32.0) 29.0 (26.0–32.4) 27.8 (24.7–30.0) .011

NYHA class <.001

I–II 426 (33%) 394 (33%) 32 (45%)

III 177 (14%) 143 (12%) 34 (48%)

IV 7 (0.5%) 6 (0.5%) 1 (1.4%)

No HF 672 (52%) 668 (55%) 4 (5.6%)

Mitral stenosis .6

Mild 8 (0.7%) 7 (0.6%) 1 (1.4%)

Moderate to severe 8 (0.7%) 8 (0.7%) 0 (0%)

History of stroke .4

Ischaemic stroke 74 (6.1%) 68 (6.0%) 6 (8.6%)

No history of stroke 1138 (94%) 1074 (94%) 64 (91%)

Chronic kidney disease 358 (28%) 311 (26%) 47 (66%) <.001

Hypertension 988 (78%) 926 (77%) 62 (87%) .042

Diabetes mellitus 312 (24%) 287 (24%) 25 (35%) .030

Labile INR 8 (0.7%) 4 (0.4%) 4 (5.7%) <.001

Alcohol overuse 24 (2.0%) 18 (1.6%) 6 (8.6%) .002

Smoking <.001

Currently 125 (9.8%) 107 (8.9%) 18 (25%)

In the past 213 (17%) 196 (16%) 17 (24%)

Non-smoker 937 (73%) 901 (75%) 36 (51%)

Left atrial AP dimension, mm 45 (41–50) 45 (41–49) 50 (47–54) <.001

LVEF, % 56 (45–62) 57 (45–62) 33 (27–45) <.001

Left atrial area, cm2 27 (23–32) 27 (23–31) 33 (30–36) <.001

Left atrial volume index, mL/m2 43 (35–53) 42 (34–52) 60 (53–69) <.001

Rhythm at the time of study <.001

Sinus rhythm 362 (28%) 361 (30%) 1 (1.4%)

Atrial fibrillation 789 (61%) 726 (60%) 63 (89%)

Atrial flutter 133 (10%) 126 (10%) 7 (9.9%)

CHA2DS2-VASc score 3 (2–4) 3 (2–4) 4 (3–5) <.001

Statistics presented: median (inter quartile range) and n (%). The bold values represent statistically significant (P < .05) comparisons. 
AP, anteroposterior; BMI, body mass index; HF, heart failure; INR, international normalized ratio; LA, left atrium; LVEF, left ventricular ejection fraction; NYHA, New York Heart 
Association.
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a ‘grey zone’—meaning that either performing TOE to exclude LAT or 
proceeding without TOE would be an acceptable management. In this 
study, we target this ‘grey zone’ and provide a support tool for the 
physician to assess the risk of LAT and guide the decision to perform 
TOE.

Previous studies identified multiple highly informative features that 
would broadly stratify patients into groups of high and low risk of 
LAT.1,8,9,29,30 These include reduced LVEF9,31 or left atrial dilation31,32

that can be easily and quickly obtained with TTE. Melduni et al.9 showed 
in a large single centre cohort that LVEF is the best single predictor of 
the presence of LAT with AUC of 0.78, and the LVEF ≤ 40% had a sen
sitivity of 62% and specificity of 75% in the detection of LAT. Notably, 
our method is characterized by much higher sensitivity than reduced 
LVEF alone, and while our data confirm left ventricular systolic function 
as being the top predictor of LAT, 31% of patients who had thrombi in 
our external dataset had a LVEF > 40%. Another study suggested that 
increased left atrial volume could be the hallmark of an elevated risk of 
LAT.33 There is a growing body of evidence that the standard TTE as
sessment of both left ventricle and atrium contributes valuable informa
tion and allows for better stratification of the risk of LAT than clinical 
features alone. Our method, however, is the first to combine these 
multiple predictors with clinical data into a single, highly sensitive score, 
developed with state-of-the-art AI techniques and validated in multi- 
site external cohort.

Performing TOE routinely in all patients undergoing catheter abla
tion or cardioversion is not cost-effective14 and would put patients at 
an unnecessary risk of complications that include oropharyngeal injur
ies, gastro-oesophageal trauma that may result in perforation or 

A B

Figure 1 Average feature importance scores in the order of importance with 95% confidence intervals (whiskers) based on the internal 10-fold cross- 
validation in the development cohort. A, For the full LAT-AI model (top 20 features); B, for the LAT-AI-reduced model. AP, anteroposterior; INR, 
international normalized ratio; NYHA, New York Heart Association.

Figure 2 Receiver-operating characteristic curves for the prediction 
of left atrial thrombus in the external testing set. Significance for differ
ence in AUC (by DeLong test): *P < .001; **P < .01. AUC, area under 
the receiver-operating characteristic curve; LAT, left atrial appendage 
thrombus; LVEF, left ventricular ejection fraction; ML, machine learn
ing model; NS, non-significant.
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bleeding, respiratory complications, and dysphagia.13 On the other 
hand, two studies suggested that catheter ablation could be safely per
formed without prior TOE in patients on chronic non-vitamin K antag
onist OAC.34,35 However, these were single-site studies where the low 
risk of LAT might have been affected by a selection bias. These results 
might therefore only be applicable to this specific population, as a 
European registry revealed substantial differences between sites in terms 
of patient and procedural profiles.36 Moreover, as catheter ablation of 
AF is currently recommended to reverse severe left ventricular dysfunc
tion,7 which is also a risk factor for LAT,9 it can be expected that the inci
dence of LAT in populations of patients undergoing catheter ablation will 
increase. We address the heterogeneity of patients undergoing catheter 
ablation or cardioversion by a robust AI model that was developed in a di
verse multi-centre population and integrates a wide variety of information 
including patient history, heart failure status, and LVEF.

We observed that the LAT-AI and LAT-AI-reduced models had the 
highest AUC values among all the models and individual predictors eval
uated in external testing. While the AUC of the LAT-AI-reduced model 
was not significantly different from that of the best LR model, the sen
sitivity of the LAT-AI-reduced model was higher. Considering clinical 
safety, high sensitivity is a significant advantage. Notably, the best LR 
model utilized LVEF, LAVI, rhythm at the time of the study, and the 
CHA2DS2-VASc score (which aggregates 7 features). Therefore, the 
best LR model effectively requires 10 individual parameters—more 
than the LAT-AI-reduced model, which requires only eight (see 
Supplementary data online, Figure S6).

Moreover, the LAT-AI and LAT-AI-reduced models provide an inte
grated visual explanation of predictions generated at a patient level. 

Visual depiction of features contributing to the high (or low) risk of 
LAT (see Supplementary data online, Figure S5) may increase the trust 
in the model and facilitate its adoption.37–39 Furthermore, the individua
lized explanation may allow for a more comprehensive assessment of 
the patient’s condition and integrate the multitude of clinical data 
into a single visual summary.

Study limitations
Our study utilized conservative two-site external validation with 1284 
cases but for such rare events as LAT, even larger testing sets might be 
recommended.40 However, to our knowledge, this is the first study to 
develop and validate in a multi-site external cohort a prediction model 
for LAT. Future studies in different populations are needed to assess 
the performance of our models in various settings, as well as to evaluate 
performance in specific sub-groups based on sex or race.

The prevalence of LAT in both development and validation cohorts 
was higher in this study than in previous publications.8,41,42 The 
LATTEE registry was an observational study where patients were re
ferred for TOE following local, site-specific policies, which are subject 
to variability.43 Individuals assessed as having very low risk of LAT by 
the attending physician were not referred for pre-cardioversion and 
pre-ablation TOE, resulting in selection bias.

The full LAT-AI model requires multiple features, and considerable 
time is necessary to manually enter these features into the model. 
This limitation can, at least to some extent, be circumvented by taking 
advantage of data stored in electronic health records and integrating the 
LAT-AI model into the existing systems, so that data that are already 
present in a patient’s record do not require manual re-entering. In 

Figure 3 Simulated application of LAT-AI and LAT-AI-reduced models to guide the decision to perform TOE in the external cohort, based on the 
thresholds derived from the development cohort. LAT, left atrial appendage thrombus; TOE, transoesophageal echocardiography; OAC, oral 
anticoagulation.
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contrast, the LAT-AI-reduced model would not require blood test re
sults and could be implemented as a simple web application (as demon
strated by our prototype) that may facilitate rapid clinical adoption and 
could be used instantaneously at the patient’s bedside.

Importantly, the developed models are intended to offer a single de
cision threshold that allow for proceeding without TOE while maintain
ing a high sensitivity for event detection. However, they are not 
designed to provide an actual probability of LAT in the overall popula
tion of patients who undergo catheter ablation or cardioversion.

While TTE is significantly faster, safer, and easier to perform com
pared to TOE, it still requires expertise and dedicated time. 
Application of deep neural networks for AI-based analysis of TTE re
cordings might allow for a more automated assessment of the risk of 
LAT with echocardiographic results derived by the AI system, but the 
deployment of image-based solution may prove more difficult than of 
LAT-AI or LAT-AI-reduced models.

Conclusions
We propose a tool for personalized and explainable predictions of the 
risk of LAT, which can guide decisions on whether to perform TOE 
before catheter ablation or cardioversion. This tool can help reduce 
the number of pre-ablation and pre-cardioversion TOE performed in 
patients on chronic OAC.
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