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� Abstract: Human gene sequences are considered a primary source of comprehensive information 
about different body conditions. A wide variety of diseases including cancer, heart issues, brain is-
sues, genetic issues, etc. can be pre-empted via efficient analysis of genomic sequences. Research-
ers have proposed different configurations of machine learning models for processing genomic se-
quences, and each of these models varies in terms of their performance & applicability characteris-
tics. Models that use bioinspired optimizations are generally slower, but have superior incremental-
performance, while models that use one-shot learning achieve higher instantaneous accuracy but 
cannot be scaled for larger disease-sets. Due to such variations, it is difficult for genomic system 
designers to identify optimum models for their application-specific & performance-specific use cas-
es. To overcome this issue, a detailed survey of different genomic processing models in terms of 
their functional nuances, application-specific advantages, deployment-specific limitations, and con-
textual future scopes is discussed in this text. Based on this discussion, researchers will be able to 
identify optimal models for their functional use cases. This text also compares the reviewed models 
in terms of their quantitative parameter sets, which include, the accuracy of classification, delay 
needed to classify large-length sequences, precision levels, scalability levels, and deployment cost, 
which will assist readers in selecting deployment-specific models for their contextual clinical sce-
narios. This text also evaluates a novel Genome Processing Efficiency Rank (GPER) for each of 
these models, which will allow readers to identify models with higher performance and low over-
heads under real-time scenarios. 
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1. INTRODUCTION 

 Variables in both genetics and the environment have a 
role in the development of a number of common human 
diseases. These conditions include depression, schizophre-
nia, diabetes types 1 and 2, prostate cancer, and diabetes 
type 2. Discovering the genetic patterns that are connected 
with complicated diseases is of vital importance to the indi-
viduals who research and manage public health. It will assist 
us in gaining a deeper understanding of diseases and ail-
ments that involve the interaction of several genes. The re-
search into illness correlations has given conclusive evi-
dence that several gene abnormalities are the underlying 
cause of complex disorders [1, 2]. Nevertheless, until very 
recently, isolating the particular genetic variations that are 
accountable for complicated diseases was a difficult opera-
tion that needed to be accomplished. Since the conclusion of 
the Human Genome Project [3, 4] and the beginning of the 
International HapMap Project [5], there has been a rise in 
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the number of people interested in Genome-wide association 
studies (GWASs). The primary objective of this research is 
to identify Single-nucleotide polymorphisms (SNPs) that are 
associated with difficult diseases or characteristics such as 
diabetes. measurements (like a person's height) As of De-
cember 2014, it was shown that more than 15,000 SNPs 
have a genome-wide substantial connection with at least one 
illness or trait [6]. On the other hand, the majority of these 
studies merely give a sketchy outline of the genetic elements 
at play in complex disorders. Although research has discov-
ered 18 SNPs that may raise a person's risk of getting Type 
2 diabetes (T2D), these variations only account for around 
6% of an individual's inherent propensity to the illness [7]. 
There are still many mysteries surrounding the heritability 
of diseases and traits, even in this day and age of scientific 
advancement. There is a discrepancy between the expected 
heritability of many common diseases, as determined by 
family and twin studies, and the total additive heritability, 
which is produced by adding up the effects of all of the 
SNPs that have been shown to be significantly connected 
with these disorders [7, 8]. When the effects of all SNPs that 
have been demonstrated to be substantially associated with 
these illnesses are combined together, it is shown that the 
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overall additive heritability is considerably correlated with 
these diseases. Recent research [9] has shown that the bulk 
of heritability, which is not zero, may be accounted for by 
the combined effects of numerous genetic variations, each 
of which likely has only a little influence. This can be ob-
served in Fig. (1) and was proved to be the case by combin-
ing the impacts of several genetic variants.  
 This is due to the fact that it is conceivable that each 
variation adds a small amount to the overall influence. The 
traditional test, which is based on a single locus, is unable to 
detect these changes. Furthermore, the number of groups of 
multiple variants to be analyzed in GWAS is large, which 
makes it hard to determine the influence that these varia-
tions have. This is owing to the fact that the gold standard 
test is based on a single gene as its primary component. Fur-
thermore, due to the intrinsic randomness of GWAS set-
tings, even little changes may have enormous sample con-
nections. This is the case even when GWAS is used to ana-
lyze data. This is a shortcoming of the technique, and it has 
the potential to cause scientists to make incorrect conclu-
sions about their findings from GWAS. However, because 
of the time and resources required for sample recruitment, a 
large sample size is often not feasible for a single GWAS. 
 Similar genetic risk variants have been observed in a 
broad range of difficult disorders [10-13] showing that there 
is a genetic relationship between these ailments. This shows 
that, in order to reveal the latent heritability of complicated 
disorders, it may be possible to eliminate erroneous connec-
tions, identify risk genetic mutations with modest implica-
tions, and undertake an integrated evaluation of linked ge-
nomic data. Innovative computer techniques for processing 
enormous volumes of data are of the utmost relevance in the 
field of biomedical research since high-throughput data col-
lecting is rapidly becoming the industry standard. When 
doing an analysis of genetic information drawn from a large 
body of related research, it is helpful to have access to data 
on an individual level for all of the studies that were includ-
ed. However, since there are restrictions on the sharing of 
data at the individual level, this may be difficult to do. In 
actuality, it is more typical to provide summary statistics, 
which often come in the form of P-values or z-scores. Com-
bining P-values with Fisher's technique has become the 

most common approach to statistical analysis [14]. Re-
searchers are hoping that by using this strategy, they would 
be able to discover significant SNPs that were present in all 
of the research that they looked at. Fisher's method was ex-
tended [15] so that weights could be taken into considera-
tion. Additionally, P-values were included in the method. 
The inverse normal transformation was introduced [16], 
while Mosteller [17] improved upon Stouffer's method by 
taking into account weight when merging z-scores. Methods 
of statistical analysis that have been around for some time 
suffer from two significant drawbacks. To begin, it is im-
portant to note that despite the presence of numerous high 
P-values, a single P-value with a low probability might easi-
ly dominate the test statistic. In situations with a high num-
ber of dimensions and a limited sample size, statistical er-
rors are more likely to occur owing to the fact that a number 
of seemingly little deviations will have a significant impact 
due to the influence of chance. Second, when P-values are 
averaged, any information about the family links between 
SNPs that may have been there in the initial data is lost. 
This is because averaging the P-values makes it impossible 
to determine which SNPs are related to one another. As a 
result of the fact that the majority of complicated illnesses 
are linked to several genetic variants, having this infor-
mation is essential for comprehending the genetic architec-
ture of these ailments. Biclustering analyses of summary 
statistics matrices are one method that may be used to un-
cover similar genetic patterns across several investigations. 
In these matrices, the columns represent the studies, while 
the rows show the genetic variants. An analysis of a matrix 
is required for this operation. The matrix has a list of studies 
along its columns, and a list of genetic variations along its 
rows. The bi-clustering method has undergone several itera-
tions of refinement; for explanations of these refinements 
that are more in-depth [18-20]. Conventional bi-clustering 
methods do not perform particularly well on genomic data 
because of the enormous dimensionality of genomic data 
and the fact that the majority of the genetic variants con-
tained in it are of little consequence. By applying a l1 penal-
ty on the means of the bi-clusters, the recently developed 
statistical approach known as SparseBC [21] may produce 
bi-clusters that are both sparse and interpretable. The use of 
SparseBC in the processing of genomic data has many 

 
Fig. (1). Design of a typical genome classification process [1-3]. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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drawbacks, one of which is that it does not enable the crea-
tion of overlapping biclusters. This shortcoming may be 
directly attributed to the possible complexity of common 
genetic patterns found via GWAS. In addition to the overall 
genetic structure, the genomic data for each sickness or 
characteristic includes its own specific genetic variants. 
These variations are not shared with any other illness or 
feature. 
 A survey of such models along with their different inter-
nal characteristics is discussed in the next section of this 
text. Based on this detailed survey, readers will be able to 
identify optimal models for their application-specific use 
cases. Section 3 compares the reviewed models in terms of 
their quantitative measures, and also proposes evaluation of 
a new ranking metric, that can be used to identify models 
with overall higher performance under clinical scenarios. 
Finally, this text concludes with some contextual observa-
tions about the reviewed models, and also recommends 
methods to further improve this performance under real-
time use cases. 

2. DETAILED REVIEW OF EXISTING GENOME 
PROCESSING MODELS 

 A large number of genomic processing models for the 
identification of human body diseases are proposed by Re-
searchers, and each of them defines an efficient & unique 
approach for the identification of different disease types. In 
this section, a detailed review of these machine learning-
based models is discussed, along with their approximate 
performance levels. Disease conditions are said to cause 
shifts in gene dependence networks [1]. The study of ge-
nomics focuses mostly on how networks change in disease 
states. Differential network analysis (DNA) is a popular 
topic for computer algorithm development, although most of 
these methods have certain data requirements. High 
throughput technologies allow for several measurements of 
gene activity to be taken at once. There may be commonali-
ties and distinctions across these data formats. It is im-
portant to find new ways to compare networks while work-
ing with data in different forms. In this research, researchers 
combine information on gene expression and mutations to 
identify cases of gene network rewiring. When comparing 
two sets of data, a group bridge penalty function is used to 
determine what is the same and what is different. Their 
strategy has proven superior to competing approaches in 
simulated environments. Ovarian cancer patients who de-
velop resistance to platinum may have their mutations in the 
underlying gene networks detected using their technique. 
The data types that share an edge with each other are not 
always the same. Their technique allows us to infer hub 
genes in many networks that control therapeutic resistance 
in ovarian cancer. 
 The identification of shared molecular pathways across 
illnesses is crucial for improving disease prognoses and de-
veloping targeted treatments [2]. The common disease genes 
causing metabolic illnesses are elusive due to the complexi-
ty of metabolic pathways. Complex bioinformatics models 
that make use of both biological data and computational 
tools are needed for this purpose. To find the genes in com-
mon between metabolic syndrome (MS), (T2D), and coro-

nary artery disease (CAD), researchers used a network anal-
ysis technique. Also, Artificial intelligence methods work 
best for cardiovascular genetics [22]. Using a large amount 
of publicly available information on gene expression, pro-
tein-protein interactions, and gene ontology, Researchers 
constructed weighted gene co-expression networks. Using 
MCL, SPICi, and Link-comm graph clustering (GC) meth-
ods, Researchers were able to determine the relevant mod-
ules for 90 distinct disease network topologies. Researchers 
also evaluated illness modules to identify the most biologi-
cally sound approach. By superimposing disease modules, 
researchers were able to identify 22 genes that were shared 
by MS-CAD and T2D-CAD. In addition, earlier scientific 
studies found that 19 of these genes were connected to ma-
jor illnesses in some way. This work demonstrates the utility 
of combining data from diverse biological sources with 
computational methods for locating disease-causing muta-
tions, and it sheds light on the genetic pathways shared by a 
wide range of metabolic disorders. 
 Experts in genomics endorse research [3] that stresses 
the need to identify disease-causing genes in order to fully 
understand an illness and work toward a treatment. Several 
computational methods for identifying disease-causing 
genes have emerged in recent years. It is still difficult to 
improve disease gene prediction accuracy using disease and 
gene-related data like gene ontology and protein-protein 
interactions. Here, Researchers set up the HerGePred 
framework for utilizing Heterogeneous disease-related gene 
(HDGN) embedding representation in disease gene predic-
tion (called HerGePred). In this setting, researchers can 
build an LVR of HDGN nodes, which is a representation 
with a reduced number of dimensions. Researchers then 
propose two algorithms, an LVR-based similarity prediction 
and a random walk with restart on a reconstructed heteroge-
neous illness-gene network, to reliably identify disease 
genes (RWRDGN). Researchers begin by exploring the 
overlap distribution of illnesses based on their degrees of 
similarity, and then Researchers conduct an experiment to 
prove the framework's assumptions. According to the results 
of the study, the LVR of nodes successfully maintains the 
HDGN's local and global network topology. Researchers 
then compare the performance of their methods to that of 
established disease gene prediction algorithms by employ-
ing tenfold cross-validation and external validation. The 
experimental results show that the RW-RDGN performs 
better than the state-of-the-art techniques. In order to ana-
lyze molecular pathways and perform experimental valida-
tion, it is essential to have results from the prediction of 
disease candidate genes. 
 To perform medical research, understanding the molecu-
lar basis of diseases, and analyzing disease function, it is 
essential to construct a network of disease-disease similari-
ties [4]. Using a robust protein interaction network and nu-
merous pathway datasets, researchers build a Human Path-
way-based Disease Network (HPDN) to investigate the con-
nection between diseases and their underlying connections. 
Their analysis reveals a strong correlation between the 
number of overlapping gene sets, the degree of gene set 
overlap between two disorders, and the number of common 
functional pathways between them. Both HPDN and illness 
networks based on genes and symptoms coexist in the real 
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world. HPDN is able to foretell fresh disease-disease con-
nections by using a large scientific literature library and the 
CTD benchmark. Systems medicine has the potential to 
solve major problems, like drug redistribution, by focusing 
on routes. Their network's dense edge structure suggests that 
Prednisone and folic acid may have separate indications for 
serious illnesses. 
 Disease gene prediction is a challenging issue with ap-
plications in early diagnosis and the creation of therapies, as 
stated by genomic experts [5]. The vast majority of disease 
gene prediction algorithms do not use patient-specific clini-
cal data. Here, researchers provide a strategy for predicting 
disease genes (dgSeq) by combining information from Pro-
tein Protein Interaction (PPI) networks, clinical Ribonucleic 
Acid (RNA-Seq) Data, and Online Mendelian Inheritance in 
Man (OMIM) data. Using RNA-Seq rewiring data, their 
dgSeq creates differential networks. In order to create a dis-
ease-gene network using OMIM data, researchers must first 
filter out all of the healthy genes (negative samples). Lo-
gistic regression (LR) classifiers are then trained once dif-
ferential and PPI network analysis is completed. Their dgS-
eq has an AUC of 0.88 for detecting breast cancer genes, 
0.83 for detecting thyroid cancer genes, and 0.80 for detect-
ing Alzheimer's disease (AD) genes. Gene set enrichment 
and anticipated results suggest that dgSeq may be useful for 
finding new disease genes. Current machine learning meth-
ods rely on skewed data due to the imbalance between the 
number of known disease genes (positive samples) and un-
known genes (negative samples) [23]. 
 Measurement of disease correlations is crucial in modern 
biology and medicine, according [6] to the study. The dis-
covery of disease connections has the potential to enhance 
disease diagnosis, medication repositioning, and drug de-
velopment. Many methods for comparing illnesses have 
been developed during the last decade thanks to the availa-
bility of high-throughput biological data. Protein Protein 
interaction networks (PPIN) are seldom included in these 
methods. It has recently been shown that the PPIN region is 
a hub for interaction between genes and proteins that are 
linked to a certain illness. Here, researchers present Mod-
uleSim, an innovative approach to assessing illness associa-
tions using information from gene-disease association stud-
ies and the idea of disease modules. Disease Ontology(DO) 
classification is strongly correlated with ModuleSim's dis-
ease similarity, disease module linkages, and disease mod-
ule modularity. ModuleSim outperforms four popular meth-
ods by analyzing disease-gene and PPIN data to reveal 
causal links between diseases. ModuleSim's capacity to dis-
cover illness connections is highlighted by its disease simi-
larity network. 
 Researchers [7] who study the human genome assert that 
familiarity with the connections between phenotype and 
genetics is essential for comprehending the origins of ill-
ness. There has been a lot of work invested into creating 
reliable computational methods for predicting disease genes. 
Due to the quantity and complexity of medical data, it is 
challenging to build a deep neural network model to discov-
er disease genes. Researchers built a model that uses a deep 
neural network to combine symptoms and genotypes in or-
der to identify disease-causing genes (termed PDGNet). 

Their approach employed training samples and information 
from several perspectives on disease and genes to fine-tune 
the parameters of a deep neural network and produce a deep 
vector of disease and gene properties. Compared to the 
state-of-the-art method, PDGNet fared better during the 
course of extensive testing sets. A large number of links 
were found between candidate genes, and their functions 
were shown to be quite similar. Researchers used externally 
curated data and published medical literature to verify the 
top predicted genes for Parkinson's disease, showing that the 
candidate genes had a high probability of influencing the 
selection of causal genes in the "wet experiment." 
 Genomics Researchers report that ncRNAs are increas-
ingly being used as diagnostic tools [8]. Predictions of dis-
ease-associated ncRNAs are useful for biological screening. 
It is challenging to integrate data characteristics due to the 
wide variety of ncRNAs present in the human genome. Ex-
isting methods may have trouble getting going from a cold 
start. Using experimentally verified disease-gene correla-
tions, this work introduces a resource-allocation-based ap-
proach (RAA) for predicting disease-associated ncRNAs. 
Possible ncRNAs were ranked based on their relevance, as 
determined by the values of available resources. Previous 
leave-one-out cross-validation methods for 537 diseases 
were improved by their method. By showing that the ma-
jority of the best-predicted outcomes were validated by ex-
ternal sources, case studies on three serious diseases demon-
strated the efficacy of their method. The release of extensive 
data enables the biological identification of ncRNAs with a 
link to illness. Noncoding RNAs (ncRNAs), including mi-
croRNA (miRNA), long ncRNA (lncRNA), and circular 
RNA (circRNA) are important regulators, regulating the 
function of mRNAs directly or indirectly [24]. 
 Experts in genome processing have noted a recent uptick 
in cases of diabetes mellitus. Ninety percent of people with 
diabetes have type 2 diabetes [9]. Disease results from a 
complex interplay between genetic predisposition and envi-
ronmental influences. Determining the underlying genetic 
cause of a disease is critical for both diagnosis and treat-
ment. Complex diseases are examined in depth using com-
puter-based network techniques, such as the identification of 
likely disease genes. Researchers present a bioinformatics 
framework for ranking genes on bilayer biomolecular net-
works associated with T2D using a tweaked version of the 
PageRank algorithm. Differential mutual information 
(PRDM) is used to weight the networks in order to assess 
the contextual specificities between genes and proteins in 
transcriptomic and proteomic datasets. In order to establish 
a hierarchy in the bilayer network, Researchers prioritized 
the genes involved in diabetes relative to all other genes 
using an improved PageRank method. Researchers show 
that genes associated with established diseases consistently 
outperform those associated with healthy populations. These 
highly ranked genes have been linked to type 2 diabetes risk 
and malfunction via functional studies. 
 One new instance of Alzheimer's is identified every 3.2 
seconds, meaning that there are more than 10 million new 
cases of Alzheimer's each year [10]. AD is caused by both 
genetic and environmental factors; that affect the brain of a 
person over time. The combination of machine learning and 
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image processing might lead to the diagnosis of (AD) [25]. 
Here, researchers have used ML methods to classify AD 
using gene expression data and images. In the beginning, 
MRI pictures were put into categories using SpinalNet and 
CNN. Researchers categorized diseases with microarray 
gene expression data and the classifiers KNN, SVC, and 
Xboost. Previous methods relied either primarily on visuals 
or gene expression, but Researchers combined the two and 
provided an explanation. It was not apparent how disease 
and gene classification systems worked; the results of these 
classifiers should be well-supported. Researchers employed 
explainable AI (XAI) to build robust forecasting models. 
Researchers employed locally interpretable, model-
independent (LIME) explanations to build XAI. LIME also 
examines how genes were predicted and are responsible for 
AD patients. In the case of image data, the accuracy of CNN 
is 9.76% higher than that of SpinalNet. When evaluating 
gene expression data, SVC increases accuracy. The LIME 
diagram in Fig. (2) shows how genes were discovered for an 
individual with AD by analyzing gene expression data sam-
ples. 
 Increasing evidence suggests that long noncoding RNAs 
(lncRNAs) have a significant role in biological processes 
and the emergence of human diseases, as shown by a genet-
ic analysis published [11]. Understanding how to foresee 
correlations between lncRNAs and complex human illnesses 
is of paramount importance. These methods often focused 
on only two networks (lncRNA and disease) while ignoring 
the others. In this investigation, researchers built a multi-
layer network by connecting previously established 
lncRNA-disease, lncRNAs-gene, and disease-gene associa-
tion networks with lncRNA, disease, and gene similarity 
networks. Then, researchers built the MHRWR model to 
foresee possible lncRNA-disease connections using a ran-
dom walk with restart. The efficiency of MHRWR was 
evaluated based on experimentally shown lncRNA-disease 
associations. Previous methods could not compete with 
MHRWR's 0.91340 AUC. Researchers used MHRWR to 
validate related lncRNAs in case studies of colon, colorec-
tal, and lung adenocarcinomas to show that their results 
were reproducible. 
 Several risk loci for (AD) have been discovered by 
GWAS, but heredity and interpretability hurdles must be 
cleared before the causal genes in these risk loci can be 
identified and the mechanism of AD can be explained. This 
study [12] aimed to identify the underlying genetic causes 

(AD) by first identifying risk loci and then causal genes. 
Researchers combined the results of several different predic-
tion methods (DAPPLE, DEPICT, Prix Fixe, etc.) that make 
use of GWAS data, such as gene functions, protein-protein 
interaction networks, co-function networks, or expression 
QTL data. There are now 43 potential AD genes, 8 of which 
have a high degree of certainty (BIN1, CR1, CLU, HMHA1, 
MS4A4A, MS4A6A, PICALM and PVR). The final tally of 
mapped causal genes stands at 43. The importance of li-
pid/lipoprotein homeostasis in AD was recently highlighted 
by a Gene Ontology analysis that identified the underlying 
genes responsible for the illness as being heavily involved in 
complexes and processes linked to lipids and lipoproteins. 
These causal genes were shown to have distinct spatiotem-
poral expression patterns, indicating that they fulfilled a 
variety of functions across various cell types and develop-
mental stages. Patients with AD showed dysregulation of 
the top eight causal genes, indicating their involvement in 
the genesis of the illness compared to controls. Their re-
search results may provide some insight into the etiology of 
AD. Finding urgent treatment targets will help validate the 
role of the genes suspected of causing AD. 
 Genomic researchers [13] have shown that the causes of 
vitiligo are intricate. Understanding the cause of vitiligo is 
challenging. In the first step, researchers used gene ontology 
and protein interaction network keywords to identify pro-
teins that could have a role in illness. It has been shown that 
109 proteins have a role in either the onset or the develop-
ment of disease. Proteins associated with vitiligo illness 
were afterward prioritized by comparing their characteristics 
to conventional target identification criteria. A novel meth-
od for evaluating the targetability of disease-associated pro-
teins was offered, which combines historical data with effi-
cient techniques. 68 medication-related vitiligo goals were 
defined using digital resources and scripting. This list rec-
ommends potential new targets and is in line with the re-
search community's current focus on certain proteins; how-
ever, it may be tailored to a user's individual situation by 
changing the weights for the selected criterion (i.e., a quan-
titative approach) or the criteria under consideration (i.e., a 
qualitative approach). 
 Scientists who specialize in analyzing genomes state 
[14] that understanding a disease's genetic basis is essential. 
Genes and genetic diseases are a major cause for worry 
when it comes to human health. Experiments on several 
candidate genes are required for the finding and linking of 

 
Fig. (2). Analysis of alzheimer's patient using gene expression data [10]. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
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disease genes, but they are both time-consuming and expen-
sive. In order to find a disease's candidate gene quickly and 
cheaply, scientists might turn to computational approaches. 
Because the sequence or network properties of protein-
protein interactions of genes responsible for the same or 
related disorders are less varied, the majority of these tactics 
rely on phenotypic commonalities. These methods, which 
are exclusive to a particular gene-disease relationship, find 
links between genes and diseases by using basic network 
properties, topological aspects, gene sequence data, or bio-
logical parameters. In their research, Researchers develop 
and analyze cutting-edge computational methods for identi-
fying genes that are causal to illness. Researchers isolate 
putative genes while ignoring certain biological and topo-
logical constraints. DisGeNET proves a knowledge platform 
for disease genomics [26]. Researchers use DisGeNET's 
disease-gene association data to compare and contrast dif-
ferent computational methods using 10-fold cross-
validation. After being combined with improved feature 
sets, certain computational methods achieve higher accuracy 
(up to 93.8%), recall (up to 93.1%), and F-measure (up to 
92.2%) than state-of-the-art approaches. Researchers apply 
their methodologies to the study of thalassemia, diabetes, 
malaria, and asthma. The results of DELM's simulations 
show that it is more accurate than previous methods. 
 Experts in genomics have speculated [15] that T2D may 
increase the likelihood and severity of other illnesses, in-
cluding musculoskeletal issues. Comorbidity interactions 
cannot be thoroughly explored using traditional endocrino-
logical techniques. Researchers identified common disease 
pathways by analyzing tissue transcripts. Low peak bone 
density is an important predictor of osteoporosis, therefore 
researchers investigated RNAseq and microarray transcript 
datasets from T2D and chronic bone and joint illnesses such 
as JIA, OA, and RA. Subjects with and without the disease 
are included in these data sets. All condition’s Database of 
Essential Genes (DEG) are compared to T2D DEGs. Data 
from pathway studies and gene ontology techniques were 
used to look for associations between overlapping DEGs 
and diseases in the SNP-disease linkage (dbGaP) and gene-
disease association (OMIM) databases (those shared by T2D 
and a bone or joint problem). To learn more about DEG-
Transcription factors (TF) and DEG-microRNA (mi-RNA) 
interactions, researchers analyzed gene targets of TF and 
miRNAs. SYK, UCP3, ROR1, PPARG, BUB1, AKT2, 
ADCY2, and CCR5 were all plausible candidates in com-
monly used pathways. DEG-TF and DEG-miRNA interac-
tions networks identified TFs (GATA2, FOXC1, USF1, 
YY1, E2F1, JUN, RELA, CREB1, TFAP2A, NFB1) and 
miRNAs (mir-335-5 p, mir-16-5 p, mir-124-3 p, mir-218-5 
p, mir-98-5 p, mir-29b-3 p, mir-3135 b, mir-29). Using a 
data-driven approach, researchers were able to pinpoint in-
novative methods for counteracting pathogenic processes by 
identifying and confirming regulatory components and cel-
lular pathways via which T2D may affect bone and joint 
disorders. 
 Geneticists agree that determining the relationships be-
tween illnesses is essential for understanding their genesis, 
pathophysiology, and clinical manifestations [16]. Many 
methods for comparing diseases rely on gene interactions or 
ontological disease notions. These methods are heavily reli-

ant on the availability of certain datasets and ontologies. 
Diseases from a single data source are compared using a 
single parameter in several methods, which might result in 
misleading inferences. To achieve this goal, researchers 
presented an ontology-free method, namely RADAR, for 
discovering shared disease representations using machine 
learning. A network for disease similarity was built by es-
tablishing links between biological entities associated with 
different diseases. The creation of a multi-layer disease sim-
ilarity network was accomplished by combining existing 
disease similarity networks from different data sources, and 
representation learning was utilized to conduct an analysis 
of disease similarities. One hundred randomly selected dis-
ease sets were used with a reference sickness set to assess 
RADAR's efficacy. Clinical trials suggest that RADAR can 
detect illnesses with similar symptoms effectively. 
 Understanding cell differentiation, drug discovery, and 
disease etiology all rely on the identification of important 
genes in comparative states (EGS). In this article [17], re-
searchers suggested a method called Prediction of Essential 
Genes in Comparison states (PreEGS). PreEGS compiles 
topological and expression features of each gene to facilitate 
comparisons across network states. PreEGS uses a strategy 
of expanding positive samples to level out the distribution of 
positive and negative samples. For best results on synthetic 
data, researchers settled on a PreEGS variant based on the 
random forests model (PreEGSRF). Three additional meth-
ods that relied on machine learning were compared to 
PreEGSRF and the other six methods aim to predict EGS. A 
gene regulatory network (GRN) describes the hierarchical 
relationship between transcription factors, associated pro-
teins, and their target genes [27]. PreEGSRF analyzed four 
gene regulatory networks and identified five key Leukemia 
genes along with five enriched KEGG pathways. Leukemia 
is associated with the four major genes found and with all 
the predicted pathways. Identifying disease-causing genes, 
driver genes for cell fate decisions, and other indications of 
complex biological systems is possible using PreEGSRF. 
 Clinical decision support, medication, comparing data 
across time, and evaluating diagnoses are only some of the 
applications for disease ontologies that have been curated by 
humans [18]. These ontologies assume commonalities in the 
anatomy or histology of various diseases in order to classify 
them. Despite advances in molecular biology, disease ontol-
ogies have maintained a "reductionist" approach. Disease 
diagnosis, the identification of illnesses with similar patho-
biology levels, and the creation of new medicines all benefit 
from the proximity connections of disease modules (DMs) 
in the human interactome network. Inadequate disease-gene 
correlations and the inability to depend on clinical studies to 
test the validity of the similarity linkages produced by the 
structural similarity of DMs are only two of the drawbacks. 
In order to shed light on disease similarities, this study in-
vestigates the correlation between the closeness of illnesses 
in human-curated ontologies and the structural proximity of 
related DMs in the interactome. In this paper, Researchers 
provide a method (and associated algorithms) for automati-
cally constructing a hierarchical structure from DM prox-
imity contacts and evaluate it in light of a disease taxonomy 
chosen by humans. Researchers provide examples of how 
the proposed method could be used to enhance and broaden 
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existing classifications of human illnesses, identify promis-
ing network regions for the identification of new disease-
gene relationships, and investigate the structural and pheno-
typic similarities between various medical conditions. 
 Molecular networks [19] encompass a wide variety of 
biological and functional linkages between genes and gene 
products, which may contribute to the identification of novel 
genes and pathways for a certain disease phenotype. Alt-
hough there have been significant advancements in high 
throughput interactome mapping, dense Gene Networks 
remain elusive due to insufficient gene connections (GNs). 
By bringing together six genome networks: STRING, Con-
sensusPathDB, HumanNet, GeneMANIA, GIANT, and Bi-
oGRID, researchers proposed a framework called Neural 
integration of heterogeneous data (NIHO) which improves 
and rounds out GNs. Using neural networks and matrix 
completion, NIHO compiles gene features from disparate 
data sources. Next, the acquired low-dimensional represen-
tations are used to estimate the spatial closeness between 
genes. For the purpose of inferring gene associations, NIHO 
calculates proximity scores and appends them to GNs. Im-
provements in GNs' capacity to retrieve disease gene sets 
after NIHO processing. To add, researchers discovered that 
NIHO functions best in highly diverse networks. 
 Genomic Researchers claim that prioritizing disease 
genes is essential for network medicine [20]. In theory, in-
teractome modules categorize disease-related genes. In this 
paper, researchers offer DIAMOnD Background Local Ex-
pansion (DiaBLE), an improved variant of the connectivity-
based method DIAMOnD. DiaBLE's gene universe is the 
minimal local extension of the current seeds at each iteration 
step. DiaBLE enhances the DIAMOnD gene prioritization 
scores by increasing their biological consistency and cross-
validation. However, comparing different methods of gene 
prioritization is not the focus of this study. Finally, re-
searchers examine DiaBLE's effect on two distinct cancers 
(head and neck squamous cell carcinoma and kidney renal 
clear cell carcinoma). 
 According to genomics specialists, the solution to the 
drug development and discovery bottleneck is drug reposi-
tioning or finding new uses for existing medications [21]. In 
silico methods have been developed to anticipate medica-
tion-disease connections, which may help in drug reposi-
tioning. In theory, a meta-paths-based strategy may reach 
the same level of performance as more traditional methods 
while using far less data. As it stands, current meta-path-
based approaches just count retrieved routes and leave out 
intermediate node information like proteins linked to diseas-
es and treatments. Here, Researchers provide an ensemble 
learning strategy for predicting drug-disease association 
(DDA) using Meta-path Gene ontology Profiles (MGP). 
Gene ontology (GO) terminology is used to draw connec-
tions between medications and illnesses and the activities 
they affect in a drug-GO-disease network. Each drug-
disease combination in MGP-DDA comes with a corre-
sponding GO profile based on meta-paths. Classifiers based 
on bagging and boosting are developed to separate positive 
(already established) drug-disease connections from nega-
tive (yet-to-be-discovered) ones. With an accuracy of 88.6 
percentage points higher, MGP-DDA dominates state-of-

the-art methods. Their drug repositioning method has broad 
applicability, as shown by the MGP-finding DDA's of 
37.7% more unique medication-disease linkages when uti-
lizing ClinicalTrials.gov data. 
 Deep learning algorithms say genomics experts [28], 
need a large number of training samples to successfully re-
veal hidden patterns in data and give better outputs. Fewer 
patient samples are represented in the omics data generated 
by high-throughput sequencing for brain illnesses (tens to 
hundreds of samples). The small sample size precludes us-
ing convergent gene sets in statistical or machine learning 
biomarker selection methods. Mathematical approaches for 
detecting biomarkers have variable levels of success de-
pending on the data collection. To get around this problem, 
Generative adversarial network (GAN) architecture might 
be used. The discriminator's accuracy and stability may be 
enhanced if the generator supplies samples with distribu-
tions that are consistent with those in the training set. A 
unique adversarial network model was developed in this 
study by combining a denoising auto-encoder (DAE) gener-
ator with a multilayer perceptron (MLP) discriminator. The 
probability distribution was modified as a result of the re-
sidual prediction error being backpropagated to the DAE 
decoder. Researchers used this method to build a platform 
for using RNA-seq data to predict disease-causing genes. 
When compared to conventional methods, deep learning is 
much more effective in locating disease genes. Insight into 
the genetic basis of illness symptoms was gained by an 
analysis of experimental data that uncovered novel disease-
related genes and brain circuits. 
 According to [29], temporal patterns of gene expression 
have garnered a lot of interest in the quest to understand 
cancer's genesis and development. Insufficient sample sizes 
and improper data processing were common in analyses of 
gene expression patterns. Because of these methods, tracing 
the origins of cancer is more difficult than ever. The gene 
expression profiles of 556 and 566 colorectal cancer tissues 
were analyzed in this research. The linear mixed-effects 
regression model (LMER) was used to identify differential 
gene expression according to cancer staging. The identifica-
tion of two distinct patterns of gene expression that shift as 
cancer develops. The cell cycle and metabolism are regulat-
ed by certain genes, while the nervous system and develop-
ment are influenced by others. Furthermore, Researchers 
analyzed gene networks. To better understand the develop-
ment and progression of cancer, researchers recommend 
using gene expression profile analysis. By using this meth-
od, researchers can learn more about the development of 
cancer. 
 The biomedical community's attention remains fixed on 
the investigation of human disease-pathway interactions 
[30]. Possible insights into disease mechanisms or interac-
tions may be gained by examining the connections between 
diseases and the channels via which they spread. Disease 
diagnosis remains imprecise after decades of research. A 
computational model of disease-pathway associations is 
presented in this research paper. The presented model incor-
porates PageRank (PR) and Random Walk with Restart on 
heterogeneous network (RWRH). The disease-pathway 
connection model developed by RWRH allows for the pre-



214    Current Genomics, 2023, Vol. 24, No. 4 Ahuja et al. 

diction of such relationships. Pathologists may benefit from 
using the model because it may help them make sense of the 
connections between diseases, treatments, and patient out-
comes. Researchers used a pathway-based strategy to inves-
tigate genetic alterations and illness variance. A biological 
network was built to better understand illness etiology by 
using the shared gene connections of disease pathways. The 
process of building the network was split in half. First, re-
searchers determined how similar the networks were. Sec-
ondly, researchers constructed and correlated a network of 
similarities between disease-disease (DD). Researchers 
looked into the role that high-PR nodes play in spreading 
disease and establishing new routes. Researchers looked for 
links between diseases and analyzed them. Researchers used 
a disease-pathway bipartite network based on pair-wise sim-
ilarity of sequence expression weights to integrate biological 
data. Disease-pathway prediction scores were calculated 
using these weights and the multilayer resource allocation 
method. Researchers looked at a 210-by-1855 matrix, where 
the pathways were in the 1855 columns and the pathologies 
were in the 210 rows, using a leave-one-out cross-validation 
method. The matrix contained 13,838 disease-pathway 
links. The best predictors were a precision-recall curve for 
the two classes with an area under the curve (AUC) of 
0.8218. These outcomes demonstrate the method's superior 
performance. Researchers used prior connections and litera-
ture searches to hypothesize links between pathogens, DDs, 
and disease pathways. 
 Genome Researchers [31] found that state-of-the-art 
selection approaches fail to detect subtle but cumulative 
effects in high-dimensional omics datasets. In certain disor-
ders, these elements play a role. In a three-stage process, 
Netboost decreases dimensions. The network's critical edges 
are first identified using a topological overlap measure and 
boosting-based filter. First principal components are utilized 
to aggregate module data after the use of sparse hierarchical 
clustering (PCA SHC) to find modules. Using cross-
validated prediction error curve estimates, researchers show 
that using Netboost in conjunction with CoxBoost improves 
prediction performance over variable selection and a differ-
ent clustering method when analyzing DNA methylation 
and gene expression data from 180 patients with acute mye-
loid leukemia (AML). The signature of chromatin-
modifying enzymes was also found in the unrelated dataset 
AMLSG 12-09. In a second use case, the classification of 
Huntington's disease-related RNA-sequencing data is boost-
ed when Netboost is used with Random Forest classifica-
tion. Use of the Bioconductor package in R as a dimension-
ality reduction and hypothesis generation tool, Netboost is 
particularly useful in omics-related applications. 
 A number of time-varying differential networks covering 
many cancer stages are recommended by the study [32]. 
Gene mutations may cause a restructuring of these net-
works, which might lead to the sharing of hub nodes. Dif-
ferent methods have been devised to estimate differential 
networks from gene expression data, but most of them fail 
to account for commonalities across such networks. Re-
searchers provide an efficient & unique Gaussian-based 
graphical model (GGM) for estimating several time-varying 
differential networks for cancer network rewiring simulta-
neously. D-trace loss must be used when computing differ-

ential networks. Having a form similar to a tree the lasso 
penalty finds nodes that are hubs in several networks and 
those that are hubs in just one. Their solution consistently 
outperforms state-of-the-art approaches in simulated envi-
ronments. Their study uses data from The Cancer Genome 
Atlas to investigate how breast cancer-related gene networks 
change over time. Using predicted differential networks, 
researchers find previously identified genes that have a role 
in breast cancer. For breast cancer disease artificial intelli-
gent tools work best for its genetic data [33].  
 During and after transcription, small noncoding RNA 
molecules called miRNAs affect the stability of genes and 
the rate at which they are translated [34]. Disease in humans 
has been linked to dysregulation of miRNA targets. Correct-
ly predicting where miRNAs will be used is a key step to-
ward developing treatments for human diseases. There have 
been recent presentations of computational methods for pre-
dicting miRNA targets. The intricate relationship between 
miRNAs and their targets makes these methods vulnerable 
to false positives. High-precision data processing is now 
possible thanks to the growing number of experimentally 
confirmed miRNA targets. In this article, a novel recom-
mendation system model for miRNA target prediction is 
built using a new matrix completion technique (miRTMC). 
The miRNA-gene interaction network, gene similarity net-
work, and miRNA similarity network are all brought togeth-
er in the miRTMC. The latent determinants of whether a 
gene is a miRNA target are assumed to be highly intercon-
nected, leading to a low-rank adjacency matrix in the heter-
ogeneous network. Their next step is to employ a linear least 
squares model with nonnegative constraints that make use 
of the nuclear norm regularization. The alternating direction 
method of multipliers (ADMM) provides a quantitative so-
lution to the problem of incomplete matrices. Their findings 
show that MiRTMC outperforms competing methods across 
a range of metrics. 
 Genetic experts assert [35] that COVID-19 is a highly 
contagious illness caused by severe acute respiratory syn-
drome (SARS-CoV-2). Both the elderly and those with con-
ditions like diabetes, cancer, or cardiovascular disease had a 
higher case-fatality rate. SARS-CoV-2 proteins communi-
cate with their human counterparts, including ACE2, 
TMPRSS2, and BSG. Researchers created a virus detection 
capable protein-protein interaction sub-network using these 
three proteins as seed nodes. Diabetes, cancer, and cardio-
vascular disease were linked to insulin resistance, AGE-
RAGE signaling in diabetic complications, and adipocyto-
kine signaling. The underlying molecular mechanism of 
COVID-19's lethality is linked to aging and associated dis-
eases. Gene expression investigations have led to the dis-
covery of drugs that interfere with certain pro-
teins/pathways. Researchers zeroed attention on drugs that 
significantly inhibit key proteins like ACE2. Entinostat and 
mocetinostat were tested for non-small-cell lung cancer, 
however, COL-3 was effective for treating acute lung injury 
and respiratory distress. Researchers suggest that recycling 
these medications can be helpful for COVID-19 therapy. 
 According to studies [36], circular RNA (circRNA) is a 
kind of non-coding RNA that is produced naturally inside 
the body. CircRNAs seem to have an important role in a 
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wide variety of biological activities, as shown by the litera-
ture. More circRNAs can be uncovered using high-
throughput sequencing methods, but doing so is time-
consuming and costly. Here, researchers detail a computa-
tional strategy for predicting circRNA-disease connections 
from a variety of data sources by utilizing metapath2vec++ 
and matrix factorization (called PCD MVMF). Building 
reliable networks calls for attention to a number of different 
issues. Disease-related genes and semantics are used to gen-
erate semantic and functional similarity networks once 
circRNA annotation, sequencing, and similarity networks 
have been built. Metapath2vec++ is used on a combined 
heterogeneous network to learn embedded characteristics 
and an initial prediction score. Researchers apply similarity-
constrained matrix factorization to get the final forecasts. 
The leave-one-out, five-fold, and f-measure tests are used to 
assess PCD MVMF. The higher prediction power of PCD 
MVMF is shown by these assessment indicators. Common 
health problems have been used to prove PCD MVMF's 
effectiveness in research. PCD MVMF might be used to 
predict circRNA-disease associations. 
 Scientists confirmed [37] that decades of study have 
shown that disease-associated genes are to blame for the 
malfunctioning of biological systems, which leads to com-
plex disorders. Over the last two decades, there have been 
several efforts to examine various interaction networks in an 
effort to find disease-related gene modules. Numerous exist-
ing approaches ignore disease-specific sample features, 
making it difficult to locate a sizable disease-related mod-
ule. For the goal of isolating disease subsystems, this re-
search proposes an Evolutionary optimization technique 
(EOT) with many objectives. For each disease sample, the 
proposed technique applies a multi-objective genetic algo-
rithm to optimize the module's correlation with the disease 
and its intra-link density. Gene expression data for asthma 
show that the suggested strategy is superior to other meth-

ods for identifying disease modules. The selected disease 
module is then used to classify illness and control samples, 
hence decreasing the rate of misclassification for real-time 
scenarios. 
 According to [38] studies, it is still challenging to deter-
mine a patient's clinical prognosis on genetic information 
alone, especially when it comes to diseases like AD and 
heart disease. Pattern recognition algorithms may be able to 
reliably forecast disease when GWAS finds strong associa-
tions between genetic predictors (such as SNPs) and health 
outcomes. It is possible to employ latent multivariate inter-
actions of genetic predictors in signal processing. Predicting 
clinical outcomes using genetic patterns is the focus of this 
essay. Researchers show that genomic data may be im-
proved upon using multiresolution transformations by iden-
tifying multivariate interactions and, in some cases, even 
surpassing the performance of standard clinical outcome 
prediction algorithms. While comparing with training lo-
gistic regression on raw SNP data, training logistic regres-
sion on multiresolution spaces (LRMS) may result in a 6-
percentage point improvement in area under the ROC curve 
as it incorporates a multiresolution analysis block as a pre-
processing step as shown in Fig. (3) for predicting late-onset 
Alzheimer’s disease(LOAD). 
 According to a study [39], predicting genetic aberrations 
is a difficult problem in the field of biology. Malignant dis-
eases such as cancer, diabetes, cystic fibrosis, dementia, and 
leigh syndrome all have their roots in chromosomal anoma-
lies. Many explanations and ideas have been proposed for 
why genetic abnormalities could occur. The scope of genetic 
data expanded to encompass the protein sequence, and ad-
vances in AI have allowed for the application of machine 
learning and deep learning to predict genomic anomalies. 
The advent of deep learning coincided with the advent of 
machine learning. In the past, researchers have used super-

Fig. (3). Top Panel: Typical pattern recognition workflow for predicting clinical outcomes from genomic data. Bottom Panel: Pattern 
recognition workflow proposed to work with genomic data, using a multiresolution analysis block as a pre-processing step [38]. (A higher 
resolution / colour version of this figure is available in the electronic copy of the article). 
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vised, unsupervised, and semi-supervised learning methods 
to make predictions about genetic illnesses. The vast bulk of 
research that used genetic sequence data expected binary 
difficulties. The predictions made by these methodologies 
were questionable because of their low levels of accuracy 
and their reliance on binary class prediction techniques. 
Most approaches relied on RNA gene sequences, which 
made data organization challenging. This study proposes the 
creation of an Advance genome disorder prediction model 
(AGDPM) for predicting genomic multiclass disorder by 
using a vast quantity of data and AlexNet as an effective 
convolutional neural network architecture. When compared 
to AlexNet, AGDPM achieves higher accuracy in both train-
ing and testing (90.89% vs. 81.25%). The state-of-the-art 
genome disorder prediction model uses multiclass predic-
tion to reliably foretell cases of genetic disease and evaluate 
voluminous patient datasets. Single-gene, mitochondrial, 
and multifactor gene inheritance problems may all be pre-
dicted using AGDPM. In biomedical studies, AGDPM will 
improve mortality rate management and genetic condition 
prediction. 
 Researchers [40] claim that molecular biology has un-
covered the causes of human illness, however, this is not the 
case. To better prevent, diagnose, and treat disease, it is 
helpful to have a better understanding of its molecular basis. 
Over the last two decades, techniques like positional cloning 
and GWAS analysis have been used to learn more about the 
connections between genes and diseases. Diseases have 
been shown to be linked to coincidental clinical conditions. 

There is hope that the identification of disease-related genes 
that are commonly held among humans would facilitate the 
assessment of disease similarities, the identification of ge-
netic links, and the development of a network of human 
diseases. Despite the availability of a number of approaches 
to illness similarity measurement, these approaches only 
consider genes or functions that are independently related to 
diseases, ignoring gene-function connections. A conse-
quence of this is a change in how illnesses are categorized. 
Researchers utilized a network-based sickness module 
(NBS) to investigate possible gene-activity connections 
among human disorders. In this article, the 299 illnesses are 
sorted into 15 categories according to their separation score. 
Disease-related gene annotations, GO terms, and KEGG 
pathways were used to determine the most effective cluster-
ing method. Fig. (4) shows the entire analysis procedure. 
Differentiating between groups of diseases was made easier 
with the help of the found signals. This research also pro-
vides a novel approach to foreseeing network and function 
characteristics.  
 The potential impact that machine learning will have on 
medical diagnosis is discussed by genomics experts [41]. 
SNPs are a major contributor to the genetic diversity of hu-
mans and have been linked to a variety of illnesses. Using 
SNPs, researchers can separate diseased samples from 
healthy ones. Excellent classification accuracy in a high-
dimensional space is essential for diagnosis and therapy. In 
this study, the authors provide a precise hybrid feature se-
lection strategy for determining the best SNP subset. The 

 
Fig. (4). Derived gene vector from PPI network, GO, and KEGG enrichment. Feature selection method K-Means is incorporated to extract 
essential GO terms and KEGG pathways. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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suggested technique uses recursive feature removal from 
Conditional Mutual Information Maximization (CMIM) and 
Support Vector Machine (SVM). Comparisons of the pro-
posed method's performance with that of four state-of-the-
art feature selection strategies-minimum redundancy maxi-
mum relevancy, fast correlation-based feature selection, 
CMIM, and ReliefF-were conducted on five SNP data sets 
from the gene expression omnibus genomics data repository 
at the National Center for Biotechnology Information. The 
experimental results show that the selected feature selection 
process beats all other strategies tested, resulting in a 96% 
accuracy rate in classification on the provided data. These 
results demonstrate the potential use of whole-genome SNPs 
for discriminating between individuals with and without 
complicated illnesses. 
 Complex network theory [42] may be used to study the 
massive human protein interaction network (HPIN) after the 
human genome project is finished. Proteins are the products 
of genes. Genes that are alive and well, disease-resistant, 
low-maintenance, housekeeping (HK), and enriched in tis-
sues (TE) are essential. Through networks, these genes are 
able to interact with one another. Two large-scale HPINs 
and six smaller subnetworks are compiled using databases 
and other sources of available information. In general, 
HPINs and their constituent subnetworks are modular, 
sparse, small-world, scale-free, and have assortative differ-
ence levels. In Hong Kong, the Hong Kong sickness sub-
network, and the significant illness subnetwork are the most 
linked groups of nodes. Statistical analysis of the HPIN's 
topological structures revealed visual differences across HK, 
TE, lethal, and conserved genes. Receiver operating charac-
teristic (ROC) curves can distinguish between necessary and 
non-necessary genes 70% of the time. Closeness, semi-
locality, and eigenvector centralities can distinguish HK 
from TE genes with 82 percent precision. Cancer genes, HK 
disease genes, and TE disease genes all have distinctive 
visual characteristics, as shown by disease gene classifica-
tions, cluster dendrograms, and Venn diagrams. The find-
ings are useful for finding functional genes by using topo-
logical structures. Competitive interactome features were 
uncovered, which may have implications for networked 
medicine and the management of biological networks. 
 Disease susceptibility can be determined in the human 
genome, but only via the discovery of epistasis [43]. In or-
der to identify epistasis, Multifactor Dimensionality Reduc-
tion (MDR) is a useful tool. The high-risk (H) and low-risk 
(L) categories have not been thoroughly investigated in 
MDR operations. In order to enhance binary classification, 
the authors of this study suggest using a fuzzy c-means-
based entropy (FCME) approach. An FCMEMDR member-
ship was used in this tactic. The discrimination of multifac-
tor genotypes with possible epistasis was enhanced by link-
ing FCME and MDR. Researchers used MDR measures of 
classification rate and Likelihood Ratio (LR). Two 
FCMEMDR measures were shown to have higher detection 
rates than prior MDR-based approaches across a number of 
synthetic data sets. Binary and fuzzy classifications may 
shed light on H/L classification ambiguity in MDR process-
es. Epistasis in populations of the Wellcome Trust Case 
Control Consortium was linked to coronary artery disease 
using two FCMEMDR assays. 

 Genomic researchers [44] claim that subtyping viruses is 
a serious challenge for the fields of virology and epidemiol-
ogy. Subtyping viruses have received a lot of interest in the 
previous decade. Many viral subtyping methods narrow 
down to a certain virus family. There is a lot of confusion 
about how to define HIV and influenza, even among profes-
sionals. Convolutional Neural network-based (CNN) viral 
subtyping automation is possible with the viral genome deep 
classifier (VGDC). The approach may subtype any virus, as 
shown by testing on dengue, hepatitis B and C, HIV-1, and 
influenza A datasets. Each of the investigated virus types 
had an F1-score value between 0.85 and 1.00, with the exact 
range dependent on the virus type and the number of sub-
types. In terms of HIV-1 and influenza A, VGDC is superior 
to CASTOR and COMET.  
 GWAS are used in case-control studies to find genetic 
variations associated with an observed association [45]. 
Phenotypic effects-carrying SNPs are being actively ex-
plored (i.e., disease traits). High-scoring SNPs in GWAS are 
typically those with low p-value sets. The approach is useful 
for discovering SNPs linked to illness susceptibility, despite 
the presence of some false positives. There is a lack of con-
sensus on the optimal measures to prove genome-wide sig-
nificance. Many people believe that studying SNP epistatic 
interactions and phenotypic expression will become feasible 
as p-values decline. Multifactor dimensionality reduction 
(MDR) uses this technique to isolate SNP combinations that 
have an effect on a given result. Higher-order combinations 
significantly increase processing complexity, making MDR 
more difficult. Understanding epistatic interactions in com-
plex disorders is essential for precise genotype-phenotype 
mapping. Now, researchers detail a unique approach to 
GWAS case-control classification tasks through the extrac-
tion of higher-order SNP interactions from complex geno-
typed data. Stacking autoencoders, logistic regression, and 
quality control for GWAS are used to accomplish this. Re-
searchers focus on defining subtypes of preterm birth, which 
have an unexplained heritability of 20 - 40% and are partly 
determined by genetics. Researchers use the dbGap GWAS 
dataset, which includes normal and preterm births to Afri-
can-American women from low-income backgrounds. The 
epistatic interactions between SNP sequences were discov-
ered using a stacked autoencoder model and then used to 
further develop a classifier for term and preterm deliveries. 
Each model is put through the standard battery of tests used 
to evaluate binary classifiers. Results show that a Fischer 
Linear Discriminant Analysis (FLDA) classifier model built 
from 4,666 raw SNPs obtained using logistic regression can 
achieve a 98.28% accuracy rate when applied to a variety of 
genomic data sets. 
 Genetic variations (GVs), as shown by research [46], 
may be useful for discerning illness-prone groups, determin-
ing populations at risk, and explaining disease propensity 
and response to therapy. Mainstream use of machine learn-
ing techniques for identifying GVs' nuanced phenotypic 
characteristics. It is possible that deep neural networks 
(DNNs) may learn non-linear mappings that transform GVs 
data into representations that are more amenable to grouping 
and classification than human feature selection. A learning 
algorithm's efficacy is influenced by a number of factors, 
including the quantity and quality of the data available and 
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the accuracy of the representation used. To categorize peo-
ple and estimate regional ethnicity from GVs, this research 
offers convolutional embedding networks (CEN) which 
combines two DNN architectures named Convolutional em-
bedded clustering (CEC) and Convolutional autoencoder 
(CAE). Approximately 95 million GVs were utilized for 
CAE-based representation learning, with 2,504 individuals 
across 26 ethnicities represented in the "1000 genomes" 
dataset, and 279 people across 130 ethnicities represented in 
the "Simon’s genome diversity" dataset. In comparisons of 
quantitative and qualitative accuracy and scalability, their 
technique excels above VariantSpark and ADMIXTURE. In 
only 22 hours, CEC is able to cluster populations according 
to predetermined criteria with a clustering accuracy (ACC) 
of 89%, a normalized mutual information (NMI) of 0.92, 
and an adjusted rand index (ARI) of 0.91. The CAE classifi-
er can correctly identify samples of unknown origin with an 
F1 score of 0.9004 and a Mathews correlation coefficient 
(MCC) score of 0.8245. Significant biomarkers are discov-
ered using gradient-boosted trees (GBT) and Shapley Addi-
tive explanations (SHAP). Their approach is public, fast, 
and extensible from 5 to 100% of human genome sets. 
 BD-I and BD-II are different in terms of symptoms, di-
agnosis, and treatment, as reported by genomics Researchers 
[47]. Many people incorrectly believe that BD-II is only a 
subtype of BD-I. This study uses data science to identify 
SNPs that contribute to BD-I and BD-II categorizations. 
One hundred thirty-six Affymetrix Axiom Genome-Wide 
TWB Array Plates were used to conduct a screening and 
genotyping of Han Chinese. The AUC for the classifier cre-
ated with 23 SNPs was 0.939, whereas the AUC for the 
classifier created with 42 SNPs was 0.9574, an increase of 
1.8%. The percentage of correct classifications rose by 
3.4%. The authors conduct a functional analysis of GO and 
Pathway, uncovering important factors like calcium ion 

binding, GABA-A receptor activity, the Rap1 signaling 
network, extracellular matrix proteoglycans, IL12-mediated 
signaling events, nicotine addiction, and the PI3K-Akt sig-
naling pathway. SNP-SNP interactions may also be ex-
plored in addition to the standard SNP-finding process. 

 Genomic data sequences are capable of representing a 
wide variety of information about the underlying species. 
For instance, in human beings, the genomic sequences assist 
in the presence of cancer, diabetes, heart and stroke issues, 
and other diseases [48]. Genetic specialists claim that the 
SARS-CoV-2 virus, which was first detected in Wuhan, 
China, has already infected millions of people throughout 
the world [49]. It is important to determine whether a well-
known virus or a novel virus is to blame whenever a new 
viral pandemic emerges. Researchers provide a deep learn-
ing method that employs CNN in conjunction with a bidi-
rectional long short-term memory network (Bi-LSTM) as 
shown in Fig. (5) to categorize SARS CoV-2 among the 
Coronaviruses. In this article, they have categorized the reg-
ulatory characteristics of genomic sequences. Transcription 
factors are the mediators of gene expression. After extensive 
testing, it was determined that the proposed CNN-Bi-LSTM 
model successfully distinguished SARS CoV-2 from other 
Coronaviruses with an accuracy of 99.95%, an area under 
the receiver operating characteristic curve (AUC) of 
100.00%, a specificity of 99.97%, a sensitivity of 99.97%, a 
Cohen's Kappa of 0.9978, and MCC of 0.9978. At its peak 
performance, CNN-Bi-LSTM can accurately identify puta-
tive regulatory motifs or binding sites 99.76% of the time 
with an ROC AUC of 100.00%, a specificity and sensitivity 
of 99.76%, a mean correlation coefficient (MCC) of 0.9980, 
and a Cohen's Kappa of 0.9970. These results support the 
use of deep learning strategies for the detection of SARS-
CoV-2 and its regulatory motifs. 

Fig. (5). Schematic representation of the CNN-Bi-LSTM [49]. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 



A Study and Analysis of Disease Identification using Genomic Sequence Processing Models Current Genomics, 2023, Vol. 24, No. 4    219 

 Copy number variations in human diseases like cancer 
may now be detected using cutting-edge methods like array 
comparative genomic hybridization (aCGH) [50]. DNA 
CNVs are useful for prognosis and monitoring because of 
the correlation between the illness they are associated with 
and the copy number variation. Machine learning models for 
classifying tissue types. The categorizing process is made 
more difficult by the fact that many biological characteris-
tics have little to no bearing on diseases. Numerous feature 
selection algorithms have been developed for use in catego-
rization domains. Researchers present a new feature selec-
tion approach based on structured sparsity-inducing norms 
to help find aCGH biomarkers that may be utilized to estab-
lish illness subtypes. The suggested method was tested using 
data from four openly available aCGH datasets. On a con-
sistent basis, sparse learning-based feature selection 
achieves better results than other approaches. Researchers 
conduct an in-depth analysis of the aCGH biomarkers cho-
sen using their method, and the data researchers find backs 
up their claims. Geneticists [51] believe that the 2019 
SARS-CoV-2 was the spark that set off the COVID-19 epi-
demic. 
 Different methods of genomic analysis are required to 
fully understand this one-of-a-kind pathogen and how it 
interacts with others. In this study, the genetic fingerprints 
of SARS-CoV-2 and seven other viruses were studied by 
looking at their intrinsic dinucleotide sequences. Genome 
sequences were converted to dinucleotide relative frequen-
cies using XGBoost, which allowed for their classification. 
Different SARS-CoV-2 sequences and data on all eight spe-
cies were used to teach the classifiers how to distinguish 
between them. The eight-species classification was a com-
plete success thanks to their method. SARS-CoV-2 and 
MERS-CoV have similar patterns of dinucleotides in their 
genomes, therefore the models achieved 86% balanced ac-
curacy in classifying SARS-CoV-2 sequences into six con-
tinental zones, and 67% balanced accuracy in determining 
whether SARS-CoV-2 samples were from Asia. If you 
compare Oceania to other continents, you will see that it has 
a disproportionate number of TT dinucleotides and an ab-
normally low number of CG dinucleotides. Despite the large 
variation in other dinucleotide signatures, the vast majority 
of genomes showed similarities in the dinucleotide signa-
tures of AC, AG, CA, CT, GA, GT, TC, and TG. Using 
relative dinucleotide frequencies, this study demonstrates 
how to differentiate between closely related species. 
 In order to get a deeper understanding of the dynamic 
rules that control proteins, cell biology, and disease process-
es, research into subcellular localization (SCL) of proteins 
and proteome variation in many human tissues and organs 
[52] is essential. There has been a lot of development in 
these two fields, but the question of how proteins are dis-
tributed throughout the body's organs remains unanswered. 
Physical PPIs and tissue-specific functional linkages were 
utilized to predict protein SCL on tissue specificity. Among 
the nine types of tissue-specific protein-protein interaction 
networks, researchers focused on eight using Bayesian col-
lective Markov random fields (BCMRFs). The results prove 
the efficacy of their approach to identifying SCL in different 
tissues. Over a thousand and fourteen SCL-reliant proteins 

were found. Some of the 549 projected tissue-specific can-
didate proteins were verified using text mining. 
 This phenomenon, known as epistasis, sheds insight into 
the potential for connected networks of genetic variations to 
drive phenotypic manifestation, thereby expanding on the 
"common illness, common variation" notion. Pairwise and 
infinite-arity epistasis analyses are common when using 
variant networks, such as variant against variant or high-
order interactions. Standard approaches, such as GWAS, 
increase the number of pre-tests when a false discovery rate 
(FDR) is already an issue. The FDR increases as the number 
of tests increases by a factorial rate. Epistasis may increase 
the computational load by a factor of O(n!); however, this 
mostly depends on the nature of the inquiry. This research 
[53] recommends a novel strategy for finding epistasis, one 
that makes use of linear classification (LC) methods and 
filtering best practices to emphasize interactions. The regu-
larization of the significance and dependability of SNPs is 
accomplished by the use of random sampling, which divides 
and forms sample sets at random. Initial findings show that 
interaction detection may be performed rapidly. Through the 
finding of epistasis, researchers were able to identify eight 
risk candidate interactions between five variations and one 
protective variable in the classification of breast cancer pa-
tients. 
 According to a study [54], one of the trickiest parts of 
evaluating high-throughput genomic data is creating effi-
cient computer techniques to find statistically significant 
SNPs. Single-locus analysis is used by GWAS to explore 
the association between SNPs and phenotypes. Unfortunate-
ly, genetic diversity in complex disorders is not considered 
by this strategy. A new set of methods is required for mod-
elling SNP relationships. In order to discover epistatic SNP 
interactions, their method expands on GWAS by integrating 
stack autoencoders (SAEs) with association rule mining 
(ARM). For epistasis analysis, the most important SNPs are 
selected after quality control and association analysis of 
GWAS data. By modifying the level of backing and confi-
dence it has in each rule, SAERMA affects the final multi-
layer perceptron neural network (MLPNN's) ability to clas-
sify data. Most successfully, researchers were able to de-
crease the 204 SNPs to 100 units with 90% accuracy using 
50 hidden units. 
 Epistatic interactions, or the nonlinear interacting effects 
of SNPs are argued to be an essential step in identifying the 
genetic roots of complex disorders by genome researchers 
[55]. Even though several techniques have been devised, the 
methodological and computational challenges are well-
known. The detection strength of algorithms based on Ant 
Colony Optimization (ACOs) is higher, their temporal com-
plexity is managed, and they use a heuristic positive feed-
back search. There is not yet a complete overview available. 
Twenty-five different ACO-based epistasis methods are 
investigated here. Epistatic interactions, as well as the ACO 
method for detecting them, are first presented. Next, Re-
searchers take a look at four different perspectives on ACO-
based methods for detecting epistatic interactions: route 
selection techniques, pheromone update suggestions, fitness 
functions, and two-stage designs. This research examines 
potential future directions in epistasis detection and evalu-
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ates the strengths and weaknesses of the technologies al-
ready available. 
 Recent advances in genome sequencing [56] have made 
it feasible to investigate the correlation between genetic 
variation in humans and illness for the first time. The cost of 
comprehensively genotyping a large cohort is substantial. 
Particularly in GWA research, imputation methods see ex-
tensive application. Genome Imputation makes use of ad-
vanced statistical methods. It is becoming more common to 
outsource imputation because of its data and computing 
requirements, however, this raises privacy concerns. Re-
searchers take a look at how Machine learning (ML) and the 
Homomorphic encryption scheme (HES) may be used for 
fast, scalable, and private genotype imputation. For single-
output multi-class classification, when nonlinear functions 
are computationally costly, ML-based privacy-preserving 
inference is the best option. Multiple types of outputs are 
produced from each genome, requiring optimization and/or 
approximation. By using HES, researchers modify linear 
models for genotyping imputation into confidential variants. 
Their privacy-preserving genotype imputation method ob-
tains a micro area under curve score of up to 99.9% on real-
world, large-scale datasets with as many as 80,000 targets. 
 Scientists who study genomes [57] say that Genome 
Wide Association (GWA) case-control data of complex ill-
nesses with high dimensions renders many SNPs inappro-
priate. In Random Forest, a basic random sampling method 
will choose a large number of subspaces that have no statis-
tically significant single nucleotide polymorphisms. There 
are times when a thorough search for the optimum m-try is 
required to ensure that relevant and informative SNPs are 
included while irrelevant ones are left out. GWA is very 
sluggish for multidimensional data. In this work, Research-
ers propose using a stratified sampling technique inside a 
random forest to pick out feature subspaces for high-
dimensional GWA data. Developing a workable equal-width 
discretization strategy for SNPs is their primary focus. A 
subspace for a decision tree is created by randomly selecting 
a number of SNPs, with that number being the same for 
both groups. Using stratified sampling, Researchers can 
guarantee that each subspace has a significant number of 
informative SNPs without the astronomical processing costs 
associated with keeping a random forest and carefully look-
ing for the best model. Researchers demonstrate the effec-
tiveness of the proposed stratified sampling strategy by ap-
plying it to two sets of genome-wide SNP data, resulting in 
random forests with improved accuracy and a lower error 
limit than those generated using Breiman's approach (Par-
kinson case-control data with 408 803 SNPs and Alzheimer 
case-control data with 380 157 SNPs). With regard to Park-
inson's information, researchers provide numerous fascinat-
ing genes that may be linked to neurological disorders. 
 Geneticists attest to Dengue's importance as an arthro-
pod-borne disease [58]. The detection of dengue phenotypes 
by laboratory and patient testing is inconsistent. Researchers 
provide a machine-learning method for estimating the sever-
ity of dengue sickness using data from human genetics. 
Their study of 102 Brazilian dengue patients and controls 
included genotyping 322 SNPs associated with innate im-
munity. An ANN and SVM are used in their strategy to de-

termine which subset of loci is most useful for classifying 
patients with dengue fever or severe dengue. The ANN was 
able to achieve 86% accuracy, 98% sensitivity, and 51% 
specificity after being trained on 13 important immunologi-
cal SNPs using dominant or recessive models. The proposed 
categorization method based only on genetic markers may 
be able to identify those at high risk of obtaining a severe 
dengue phenotype even in uninfected locations. Their find-
ings highlight the significance of genetic background in the 
emergence of the dengue phenotype. In fact, the suggested 
method may be used to treat a wide range of Mendelian and 
genetic disorders. 
 Human DNA encodes growth, physiological equilibri-
um, and the inheritance of features [59]. Every individual is 
unique because of our genetic variety. Individual differences 
may be investigated in terms of disease biology and phar-
maceutical efforts to restore balance using genetic technolo-
gy, among other possible therapeutic uses. A rare pathogen-
ic mutation in a genome might provide a molecular diagno-
sis for patient management and family healthcare. Despite 
the increasing clinical use of unbiased genomic tests such as 
whole genome sequencing (WGS), clinical exome sequenc-
ing (cES), chromosome microarray analysis (CMA) with 
array comparative genomic hybridization (aCGH), or SNP 
arrays, molecular diagnoses will continue to necessitate 
clinical expertise and knowledge of each testing type. In-
creasing case-solving rates, functionally annotating a large 
portion of the human genome, and comprehending the ge-
netic contributions to sickness will all benefit clinical ge-
nomics and precision medicine. 
 NGS has influenced how uncommon diseases are detect-
ed and treated, according to a study [60]. More genetic ill-
nesses may now be detected and identified thanks to the 
development of new diagnostic technologies. Despite the 
availability of whole exome and whole genome sequencing, 
diagnostic success rates remain low. In 30% of cases, a mo-
lecular diagnosis is made. Because of the convergence of 
research and clinical diagnostic testing in national sequenc-
ing initiatives developed in the past five years, the range of 
genetic illnesses is growing. Clinical research for genetic 
sickness diagnosis is therefore often integrated with efforts 
to uncover candidate variants for new disease genes. At the 
molecular level, scientists examine the key obstacles con-
fronting gene-disease diagnosis. Researchers examine the 
possible advantages of a gene-to-patient technique for 
speeding up the discovery of new genes, taking into consid-
eration the impact of incomplete penetrance, non-coding 
variation, and structural alterations. The impact of incom-
plete penetrance, non-coding variation, and structural 
changes on the frequency of accurate diagnoses are being 
studied by researchers. 

 According to researchers [61], studies in genomics have 
revealed that the explosion of data is related to the huge 
decline in the price of sequencing. It is actually challenging 
to identify the particular mutations that generate phenotypes 
and diseases. Because of the National Institutes of Health 
(NIH's) Undiagnosed Diseases Network (UDN), progress 
has been made. 6,000-13,000 illnesses still have undeter-
mined genes. Genetic research not only aids the over 400 
million people worldwide who suffer from rare diseases, but 
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it also advances our understanding of more prevalent disor-
ders. Model organism platforms are valuable for revealing 
the pathogenicity of variation, uncovering new gene-disease 
connections, and obtaining an understanding of the underly-
ing pathophysiological mechanisms that might lead to the 
development of novel therapies. To aid in the diagnosis, the 
UDN Model Organism Screening Center (MOSC) employs 
information technology and functional research in worms 
(Caenorhabditis elegans), flies (Drosophila melanogaster), 
and zebrafish (Danio rerio). The MOSC has shown benefits 
in identifying difficult situations, such as those with multi-
ple organ dysfunction. Furthermore, the MOSC encourages 
diagnostic collaboration between fundamental scientists and 
medical practitioners. When creating tailored experimental 
approaches, aspects such as model organism appropriate-
ness, gene and variation analysis, and patient presentation 
must all be addressed. MOSC also creates bioinformatics-
related experimental reagents and tools. Many individuals 
from many backgrounds collaborated to make the MOSC a 
success. These individuals are knowledgeable in human and 
model organism genetics, and variant bioinformatics, and 
maintain continuing relationships with clinical teams. The 
NIH, rare illness family groups, charitable organizations, 
business partnerships, and other funding sources urge 
MOSCs to preserve and build their MOSC-like research 
institutes (MON). 

 Despite the fact that GWAS have revealed the genomic 
architecture of complex human features and illnesses [62], 
understanding the pathways that link genetic variation to 
pathophysiology remains challenging for many applications. 
To bridge this gap and put ideas to the test in practice, we 
must build techniques for doing so. Researchers used cross-
phenotype links to collect common SNPs and calculate en-
richment in order to discover traits with a similar genetic 
architecture. The same genetic structure has been studied 
clinically, cellularly, and molecularly. Researchers created a 
dynamic online database (Interactive Cross-phenotype 
Analysis of GWAS database (iCPAGdb)) that allows users 
to quickly examine and analyze GWAS summary infor-
mation that they input. The database produced innovative 
insights for understanding sickness causation while also 
highlighting well-known phenotypic connections. The 
GWAS signals from severe COVID-19 overlapped signifi-
cantly with clinical illnesses such as idiopathic pulmonary 
fibrosis caused by the DPP9 gene. DPP9 levels were higher 
in the transcriptomes of COVID-19 patients infected with 
SARS-CoV-2 compared to healthy controls and bacterial 
infections. Cross-phenotype SNPs connected to severe 
COVID-19 and other characteristics revealed that the 
GWAS signal at the ABO gene interacted with plasma pro-
tein levels of the SARS-CoV-2 receptor CD209 in people. 
This suggests that the degree to which COVID-19 sickness 
shows itself may be affected by ABO glycosylation of 
CD209. 

 The 100,000 Genomes Project in the United Kingdom 
delivered the first clinical genome sequencing service 
(100KGP). For statistical analysis, only gene panels custom-
ized to each individual patient were used [63]. Panels often 
rely on specific traits and may exclude alternative diagnoses 

that do not meet those criteria. The Researchers' technique 
enables the rapid identification of hazardous aberrations 
such as 100KGP misses. Low LOEUF (Loss-of-function 
Observed/Expected Upper-bound Fraction) readings indi-
cate haploinsufficiency. DeNovoLOEUF searches for rare, 
de novo loss-of-function mutations with a LOEUF score of 
0 in the sequencing data of 13,949 unusual disease trios in 
the 100KGP. According to patient diagnostic reports, 
DeNovoLOEUF discovered changes that were either diag-
nostic or partially diagnostic in 98% of instances (whereby 
the variant was responsible for some of the phenotype). In 
other words, 100KGP's routine analysis "omitted" 39 diag-
noses that are now being offered to patients. 
 The ability of medical research to grasp the nature, 
course, and interaction of illness has been enhanced by ge-
nomic technologies [64]. Because of advances in quicker, 
cheaper sequencing technology, pathogen diversity can now 
be quantified with unparalleled precision and resolution. 
The 2019 coronavirus pandemic and modeling advance-
ments that enable swift assessments of nascent epidemics to 
guide monitoring, coordination, and resource deployment 
demonstrate the growing use of models that can predict the 
development and extent of infectious disease outbreaks. 
Genetic research is mostly done in hindsight. These models 
are useful for studying disease variety and evolution, but 
they are not necessarily favorable to the development of 
successful therapeutics. Because they are at the heart of the 
most serious infectious public health challenges, interven-
tions must address both virulence mechanisms and pathogen 
diversity. This perspective examines the intersection of the-
se fields, discusses the challenges that surveillance special-
ists and modelers face, and provides recommendations for 
how to proceed with combining longitudinal genetic data 
with statistical learning and interpretable modeling to make 
accurate forecasts. 
 Rare diseases afflict 30 million Americans and 300-400 
million people worldwide and may result in long-term ill-
ness and damage. To get to heuristic diagnoses, traditional 
diagnostic approaches that integrate in-person experience 
with published research are applied. Patients with difficult-
to-diagnose diseases often die. Exome sequencing, microar-
rays, and gene panels have been used to find previously un-
known disorders [65]. Because of these technologies, 25% 
to 35% of previously unidentified patients have received 
conclusive diagnoses. Many of these patients are undiag-
nosed. Scientists highlight numerous alternatives to standard 
exome sequencing in this review. Researchers underline the 
benefits of whole-genome sequencing, long-read technolo-
gies, methyl profiling, transcriptomics, metabolomics, pro-
teomics, and pan-genome reference. Researchers stress 
computer-based technologies in order to identify people 
who have a genetic defect or a collection of desirable char-
acteristics. This article also presented some advice to assist 
medical practitioners and researchers dealing with non-
diagnostic exomes. 
 Next-generation sequencing has helped our understand-
ing of mosaicism in genetic diseases, according to a ge-
nomics study reported [66]. PHACTR1, SCN8A, KCNT1, 
CDKL5, NEXMIF, CUX1, TSC2, GABRB2, and 
SMARCB1 all have variants. The authors discuss 11 cases 
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in which mosaic changes revealed by genome sequencing 
(GS) and/or targeted gene panels (TGPs) were responsible 
for the proband's phenotype, and two cases in which mosai-
cism seemed to be inherited from both parents. There were 
three large duplications and three major deletions (UBE3A, 
GABRB3, and MAGEL2) (ARFGAP1, EEF1A2, CHRNA4, 
and KCNQ2). Everyone who participates in the NYCKid-
Seq project (a research program studying the communica-
tion of genomic information in clinical care) will help re-
searchers learn more about the therapeutic usefulness and 
diagnostic yield of GS for children with suspected genetic 
diseases in New York City. Despite finding a link between 
the number of variant alleles and the intensity of symptoms, 
researchers were unable to detect mosaicism in tissues with 
significant clinical significance. Despite this, researchers 
saw an increase in GS identification. We were unable to 
compare the efficiency of GS and TGP in identifying mosa-
icism due to the limitations of our experiment. This case 
series provides recommendations for laboratory and clinical 
interpretation, providing support to the hypothesis that mo-
saicism plays a role in pediatric genetic disorders. 
 Outside of India, the Beak and feather disease virus 
(BFDV) has been recorded in Oceania, Africa, Asia, and 
Europe [67]. BFDV was discovered in the Trichoglossus 
haematodus rainbow lorikeet by Indian researchers. Phylo-
genetic analysis indicated that the Indian BFDV genome, 
Rep, and Cap sequences were most similar to those of T. 
haematodus, the pathogen that infected the BFDV in Aus-
tralia. While the rainbow lorikeets were sick, the Indian and 
exotic Psittaciformes kept with the BFDV-infected lorikeets 
remained healthy and tested negative for the virus after four 
months. This discovery indicated that BFDV may transmit 
host-specific diseases. Researchers used phylogenetic analy-
sis to divide the 361 BFDV genome sequences from various 
bird species into separate groups. The BFDV entire genome 
sequences found in T. haematodus have a lot of diversity, 
for example, in the Rep origin, the intergenic region be-
tween the 3′ ends of the Rep and Cap genes. According to 
the BFDV-host coevolution research, coevolution of the 
BFDV entire genome, Rep gene, Rep protein, Cap gene, and 
Cap protein sequences with their host avian species has re-
sulted in the TimeTree of diverse Psittaciformes bird spe-
cies. To the best of our knowledge, no research has shown 
that the BFDVs found in Trichoglossus sp. may infect other 
bird species. The BFDVs discovered in a foreign bird in 
India are unlikely to propagate to local Psittaciformes. Con-
tinuous BFDV monitoring in Indian birds may aid in the 
identification of the virus's DNA and the development of 
preventative strategies. 
 Machine learning and data mining are two approaches 
that have gained popularity in recent years for application in 
medical diagnostics, particularly in the context of human 
genome research [68]. SNPs have been related to a broad 
range of human disorders. There are many possible ways to 
distinguish sick SNP samples from healthy SNP samples. 
This study used Conditional mutual information maximiza-
tion (CMIM) to identify the optimal SNPs for identifying 
hypertension illness. Linear Discriminant Analysis (LDA), 
Naive Bayes (NB), K-Nearest Neighbors (KNN), (ANN), 
and (SVM) were all investigated. The proposed approach 
was experimentally evaluated using supervised classifica-

tion experiments, and the results showed that the ensemble 
approach using the SVM, 5-NN, and NB classifiers 
achieved the highest classification accuracy (93.21%) and 
F1 score (91.72%) overall, demonstrating that the approach 
was well-suited for detecting hypertension disease from 
SNPs data sets. 
 AD, the most common type of dementia, has no viable 
treatments or therapies at the moment [69]. Several re-
searches have been conducted to investigate the various 
processes and causes of AD. Many researchers use gene 
expression data to investigate the genetics of illness and 
identify risk genes. Here, the researchers proposed a ma-
chine-learning strategy for discovering possible biomarker 
genes. Some of the 14 genes we discovered have been vali-
dated in scientific investigations. Several machine learning 
algorithms have been tested using the GSE5281 gene data. 
 Early illness detection is crucial since there are not 
enough hospitals [70]. Cancer survival rates are heavily in-
fluenced by how fast it is identified. Cancer is caused by 
thousands of distinct DNA mutations. Cancer tumor muta-
tions are complicated and need much investigation. A mo-
lecular pathologist examines genetic variations manually. 
There are nine main types of clinical indication strips that 
we are aware of. This approach includes a multiclass classi-
fier for categorizing genetic changes based on clinical 
symptoms. Texts are analyzed using Natural language pro-
cessing (NLP) to look for signs of gene mutation. To char-
acterize gene mutations, many machine learning approach-
es, including NB, LR, Linear SVM, and RF Classifier, were 
used to a dataset comprising of genetic alterations and clini-
cal evidence given by pathologists or specialists. Methods 
are evaluated to determine which provides the best results. 
Machine learning models may be built using gene, variance, 
and text features. Variations in gene mutations may help to 
predict cancer risk and provide therapy recommendations. 
 AD has been connected to genome analysis [71]. The 
symptoms of AD are not malignant initially, but over time 
they become more severe. It is actually progressive, which 
means that the disease will deteriorate with time. According 
to GWAS, apolipoprotein E (APOE) has been related to an 
increased risk of acquiring AD. SNPs account for the over-
whelming majority of DNA differences. SNPs are one of the 
disease's biomarkers. SNPs assist clinicians in learning 
about and diagnosing illnesses at an early stage. The goal of 
this project is to identify SNP biomarkers for AD that will 
allow for early diagnosis and prognosis. In this case, re-
searchers employ machine learning methods to look for AD 
biomarkers. The learning methods NB, RF, LR, and SVM 
were used to evaluate all AD genetic data of neuroimaging 
initiative phase 1 (ADNI-1)/Whole-genome sequencing 
(WGS) datasets. In ADNI-1, the learning techniques NB, 
RF, SVM, and LR attained accuracies of 98.1%, 97.97%, 
95.88%, and 83.0%, respectively. The findings suggest that 
categorization approaches might be utilized to aid in the 
early detection of AD. 
 According to a recent study [72], researchers face tough 
circumstances because of SARS-CoV-2's fast proliferation. 
A unique learning system that can learn a vast pattern with 
fewer input (coronavirus genome sequences) is needed im-
mediately. When there is not enough sequencing data at the 
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start of a pandemic, learning from limited training samples 
is crucial. To stop the virus's transmission, patients must be 
appropriately identified and quarantined. Machine learning 
and deep learning algorithms require a lot of training data to 
recognize the target infection among similar ones. Neuro-
chaos Learning (NL) is a technique for categorizing corona-
virus genomic sequences. Chaos and nonlinearity in biolog-
ical brain networks inspired the NL paradigm. Leave one 
out cross-validation gives NL a 0.998 sensitivity, 0.999 
specificity, and 0.998 accuracy for multiclass classification 
(SARS-CoV-2, Coronaviridae, Metapneumovirus, Rhinovi-
rus, and Influenza). We can identify SARS-CoV-2 from 
SARS-CoV-1 with a 0.99 or higher macro F1-score. Using 
one training sample per class, 1,000 randomly generated 
training sessions were created. NL's effectiveness is com-
pared to LR, RF, SVM, and NB classifiers. Combining cha-
otic feature engineering with other machine learning ap-
proaches should lead to innovative uses of NL in genome 
categorization scenarios. 
 A patient's treatment plan will soon be based on their 
unique genetic composition, ushering in the era of personal-
ized medicine [73]. Understanding the genes that put indi-
viduals at risk, the uncommon genetic variants that play a 
role, and so on is critical for treating and avoiding common 
diseases. Our research aims to educate scientists, clinicians, 
and pharmacists about the genetic variants that contribute to 
sickness risk. Researchers describe a novel gene-SNP-
disease-drug mobile database that may be accessed through 
a smartphone app. We seek to aggregate data from world-
wide clinical and genomics databases such as Ensemble, 
GenCode, ClinVar, GeneCards, DISEASES, HGMD, 
OMIM, GTR, CNVD, and Novos into a single, mobile-
friendly resource. Over 59,000 protein-coding and non-
coding genes are represented in the database, as are over 
67,000 germline SNPs, over a million somatic mutations 
reported for over 19,000 protein-coding genes spanning 
over 1,000 regions, over 80,000 International Classification 
of Disease (ICDs) codes, over 123,000 National Drug Code 
(NDCs), and over 100,000 gene-SNP-disease correlations. 
The Researchers propose a strategy for integrating genomic 
and phenotypic data for gene-based designer medicines, 
precise targeting of tumor molecular markers, appropriate 
drug therapy, disease susceptibility prediction, detection of 
uncommon conditions, and therapies.  
 A majority voting ensemble method has been explained 
[74] where they proposed machine learning methods to pre-
dict the possible presence of heart disease in humans. Here 
the models were trained using the real-life data of healthy 
and ill patients. The model classifies the patient based on the 
majority vote of several machine learning models. The 
learning methods and their respective accuracies are Sto-
chastic Gradient Descent (SGD) Classifier 88%, KNN Clas-
sifier 87%, RF Classifier 87%, LR Classifier 87%, and Hard 
Voting Ensemble Method (HVEM) 90%. Hence HVEM 
provides high accuracy of heart disease detection.  
 Another approach is a deep learning method to identify 
the genetic variants in the classification of AD [75], this 
approach uses nonlinear transformations to extract features 
from high-dimensional data. Here a novel three-step ap-
proach called the Sliding Window Association Test 

(SWAT-CNN) is used for the identification of genetic vari-
ants that identify phenotype-related SNPs that can be ap-
plied to develop accurate disease classification models. 
SWAT-CNN, a novel deep learning–based genome-wide 
approach achieved an accuracy of 75% to identify AD-
associated SNPs and a classification model for AD.  

 Deep learning methods have also been used to identify 
the T2D using the nucleotide signals [76], here the five-
stage approach is used where the T2D-associated DNA se-
quences are digitized using the entropy-based technique. 
The further stages are to extract and select the features and 
classify them using the SVM and KNN methods. A combi-
nation model of the proposed Entropy-based technique, Re-
sidual Neural network (ResNet), and SVM achieved the 
highest accuracy rate of 99.09%. 

 The machine learning method combined with linear pre-
dictive coding (LPC) is used for the identification and clas-
sification of Covid-19 viruses [77, 78]. The LPC and signal 
processing techniques were used for data compression after 
which pattern recognition models were used for the detec-
tion and separation of covid samples from other virus case 
studies. The SVM classifier was used for the classification 
of the datasets that were obtained from different countries. 
This model was performed with an accuracy of 98%, this 
high accuracy can be used in the future for quantifying and 
digitizing medical big data information. 

 Thus, it can be observed that a wide variety of models 
are proposed for genome processing, and each of them var-
ies in terms of their performance characteristics. Successful 
integration of these genomic processing models into clinical 
workflows and real-world applications requires a multidis-
ciplinary approach, collaboration between researchers and 
healthcare providers, data accessibility and sharing adher-
ence to ethical and legal standards, clinician training, and 
careful planning to address the challenges and barriers spe-
cific to each healthcare system or settings. A comparison of 
these models is discussed in the next section, which will 
assist readers in identifying optimal models for their per-
formance-specific use cases. 

3. EMPIRICAL ANALYSIS OF THE REVIEWED 
GENOME PROCESSING TECHNIQUES 

 From the elaborative discussion about existing genomic 
processing models, it can be observed that these techniques 
vary extensively in terms of their applicability, quantitative 
characteristics, and other performance measures. Thus, in 
this section, these models are compared in terms of their 
absolute Accuracy (A), Recall (R), Delay (D), Scalability 
(S), Computational Complexity (CC), and Suggested Appli-
cation (SA) levels. This will assist readers in selecting opti-
mal models for their performance-specific use cases. The 
absolute values of accuracy & recall are available in the 
respective research papers, and values for delay, scalability 
& computational complexity can be referred to from this 
section. These values are converted in the fuzzy ranges of 
Low Quantization (L=1), Medium Quantization (M=2), 
High Quantization (H=3), and Very High Quantization 
(VH=4) levels. 
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3.1. Accuracy for Various Diseases with their Suggested 
Applications 

 As per the strategy discussed above, the accuracy and 
suggested applications for various diseases can be observed 
in Table 1. 
 Based on this evaluation in Table 1 and Fig. (6), it can 
be observed that the diseases have been classified according 
to their specifications. For Neurological disorders, it is ob-
served that NB [71] is highly suited to identify AD. Similar-
ly, for Parkinson's disease, PDG-NET [7] has more accuracy 
than others. For various cancer types, it is perceived that 
LMER [29] outperforms better than other models that work 
on the identification of different cancer types, Also Netboost 
(PCA SHC) [31] has achieved good accuracy for identifying 
Leukemia disease. 
 For identifying the COVID-19 virus, CNN-Bi-LSTM 
[49] has achieved the highest accuracy whereas VGDC 
CNN [44] also gives good accuracy for identifying multiple 
virus types. To study the relationship between multiple dis-
eases, it is observed that GC [2] gives the best results which 
identifies the relationship between Diabetes and CAD. 
 It is observed from Table 1 that the Ensemble model 
works well for the classification of general diseases, an En-
semble model comprises of ResNet and SVM [76] gives the 
best results for diabetes, whereas an Ensemble model con-
sisting of SVM,5-NN and NB [68] works best for Hyperten-
sion disorder. It is also noticed that CIMM SVM [41] has 
attained higher accuracy for the classification of complex 
diseases. There have been various research conducted on 
GWAS where ML-HES [56] gives the best results for pre-
dicting disease genes, NBS [40] gives the highest accuracy 
in identifying the relation between diseases and NIHO [19] 
and miRTMC [34] outperforms others in inspecting the 
Gene-network and RNA-Gene network respectively. 

3.2. Recall, Delay, Scalability, and Computational  
Complexity of Genomic Models 

 Similarly, the performance of these models in terms of 
recall, delay, scalability, and computational complexity can 
be observed from Table 2 as follows, 
 From this evaluation, it can be observed that DST [47], 
GAN [28], VGDC CNN [44], CNN Bi-LSTM [49], 
XGBoost [51], DLLR [45], SIN [50], CEN [46], and NBS 
[40] showcase higher recall levels. Thus, they can be used 
for highly consistent classification use cases.  
 Similarly, it can be observed that DgSeq [5], Ensemble 
[12], PreEGS RF [17], and ML-HES [56] showcase lower 
delay levels, and thus can be used for high-speed genome 
processing use cases.  
 In terms of scalability levels, ModuleSim [6], NIHO 
[19], GAN [28], Netboost (PCA SHC) [31], AGDPM [39], 
VGDC CNN [44], CEN [46], CNN Bi-LSTM [49], and ML-
HES [56] outperform others, thus can be used for large-
scale dataset processing applications.  
 In terms of complexity, RAA [8] outperforms other 
models, and thus can be used for low-complexity processing 
use cases. Based on these observations, researchers can 

identify optimal models for their performance-specific use 
cases.  

3.3. Genome Processing Efficiency Rank (GPER) of  
Genomic Models 

 Genome Processing Efficiency Rank (GPER) is a metric 
used to evaluate how efficiently a system or method pro-
cesses genetic data, such as DNA sequences. It is calculated 
using a specific formula, which takes into account several 
important factors: 
(i). Accuracy (A): Accuracy measures how close the re-

sults are to the true values. In the context of genetic da-
ta processing, this would indicate how well the system 
correctly identifies and interprets genetic information. 

(ii). Recall (R): Recall is a measure of how well the system 
identifies all relevant data points. In genomics, this 
could refer to how effectively the system captures all 
important genetic information without missing any-
thing significant. 

(iii). Computational Complexity (CC): This factor reflects 
the computational resources required to process the 
genetic data samples. Higher computational complexi-
ty might indicate that the system needs more powerful 
computers or takes a longer time to complete its tasks. 

(iv). Delay (D): Delay represents any time delay in pro-
cessing genetic data samples. A lower delay suggests 
that the system processes data quickly, which can be 
crucial in time-sensitive applications like medical di-
agnostics. 

(v). Scalability (S): Scalability measures how well the 
system can handle increasing amounts of genetic data 
samples. Systems with good scalability can efficiently 
process both small and large data samples. 

 A novel Genome Processing Efficiency Rank (GPER) is 
evaluated via Eqn. (1), 
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 Based on this metric evaluation and Fig. (7), it can be 
observed that ML-HES [56], CEN [46], Netboost (PCA 
SHC) [31], ModuleSim [6], VGDC CNN [44], NIHO [19], 
AGDPM [39], PreEGS RF [17], CNN Bi-LSTM [49], DgS-
eq [5] outperform others in terms of accuracy, recall, scala-
bility, computational complexity and delay levels, thus can 
be used for large-scale genome processing scenarios. Thus, 
researchers can select these models, and modify them as per 
their clinical use cases (Table 3). 
 Researchers should also take into account some key eth-
ical considerations and strategies for the genomic processing 
models such as Privacy and Data Security, Informed Con-
sent, Data Bias and Fairness, Accountability and Transpar-
ency, and Clinical Validation. Addressing these ethical con-
siderations and biases in genomic processing models re-
quires a multi-faceted approach that involves technological, 
organizational, and regulatory measures. By prioritizing 
ethical principles, transparency, and fairness, the responsible 
integration of these models into clinical practice can be 
achieved while protecting patient rights and ensuring the 
highest standards of healthcare ethics. 
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Table 1. Accuracy comparison of genomic processing models along with their suggested disease type. 

Sr. No. Disease Type Disease Sub-Type Model Accuracy (%) References 

1 Neurological disorders 

Alzheimer's Disease (AD) DgSeq 80 [5] 

- SVC 82.4 [10] 

- Ensemble 85.4 [12] 

- LRMS 91.4 [38] 

- Linear SVM 93.8 [69] 

- NB 98.1 [71] 

- SWAT-CNN 75 [75] 

Parkinson PDG-Net 91.8 [7] 

- SST-RF 85.9 [57] 

Huntington’s disease GAN 96.4 [28] 

Bipolar DST 95.7 [47] 

2 Cancer 

Ovarian DNA 93.5 [1] 

Head, neck & kidney cell DiaBLE 91.4 [20] 

Colorectal cancer LMER 96.5 [29] 

Multiple cancer types CEN 91 [46] 

- SIN 90.9 [50] 

Breast DgSeq 88 [5] 

- GGM 90.8 [32] 

- RSR 70.8 [61] 

Cancer tumor and its variants SVM-OHC 85.5 [70] 

Leukemia PreEGS RF 90.2 [17] 

- Netboost (PCA-SHC) 90.5 [31] 

3 Viruses 

Covid-19 NBA 90.9 [35] 

- CNN-Bi-LSTM 99.9 [49] 

- XGBoost 96.5 [51] 

- NL 91.5 [72] 

- LPC-SVM 98 [78] 

Multiple virus types VGDC CNN 93.5 [44] 

Dengue ANN 86 [58] 

Beak and feather BFDV 90.2 [67] 

4 Relationship of multiple diseases 

Diabetes, CAD GC 91.4 [2] 

Brain, lung, asthma RAA 83.5 [8] 

Thalassemia, diabetes, malaria, asthma DELM 90 [14] 

Diabetes, bone, joint dbGaP ensemble 86.5 [15] 

(Table 1) contd…. 
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Sr. No. Disease Type Disease Sub-Type Model Accuracy (%) References 

5 Other diseases 

Diabetes PRBN 85.5 [9] 

- ResNet, SVM 99.09 [76] 

Lung diseases MHRWR 91.3 [11] 

Vitiligo PPIN 75.4 [13] 

Asthma EMODMI 86.02 [37] 

Complex disease CIMM SVM 96 [41] 

Pre-term birth classification DLLR 98.2 [45] 

Diagnosis of disease CMA 83.5 [59] 

Rare disease NGS 84.2 [60] 

Hypertension disorder SVM, 5-NN, NB 93.2 [68] 

Heart disease HEVM 90 [74] 

6 Genome-wide association studies 

Disease gene prediction HDGN 86 [3] 

- PCD-MVMF 89.4 [36] 

- AGDPM 89.8 [39] 

- ML-HES 99.5 [56] 

- SNP 90.5 [73] 

Disease-disease relation HPDN 88.5 [4] 

- ModuleSim 89.4 [6] 

- Radar 79.4 [16] 

- PR-RWRH 82.2 [30] 

- NBS 90.4 [40] 

Gene-Network analysis DM 90.63 [18] 

- NIHO 93.4 [19] 

- HPIN TE 82 [42] 

RNA-gene network analysis miRTMC 89.4 [34] 

 
Table 2. Recall, delay, scalability, and computational complexity levels for different genome processing techniques. 

Sr. No. Disease Sub Type Method Recall (%) Delay Scalability Computational Complexity References 

1 Ovarian DNA 92.5 H M H [1] 

2 Diabetes, CAD GC 88.7 H M H [2] 

3 Disease gene prediction HDGN 87.25 H H H [3] 

4 Disease-disease relation HPDN 88.25 H H VH [4] 

5 AD DgSeq 88.70 M H H [5] 

6 Disease-disease relation ModuleSim 90.60 H VH H [6] 

7 Parkinson PDG-Net 87.7 VH H H [7] 

8 Brain, lung, asthma RAA 84.5 H H M [8] 

(Table 2) contd…. 
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Sr. No. Disease Sub Type Method Recall (%) Delay Scalability Computational Complexity References 

9 Diabetes PRBN 87.95 H M H [9] 

10 AD SVC 90.85 VH M H [10] 

11 Lung diseases MHRWR 88.4 H H H [11] 

12 AD Ensemble 80.40 M H H [12] 

13 Thalassemia, diabetes, malaria, asthma DELM 90.2 VH H VH [14] 

14 Diabetes, bone, joint 
dbGaP 

Ensemble 
83.0 VH H VH [15] 

15 Leukaemia PreEGS RF 90.40 M H H [17] 

16 Gene-network analysis DM 92.00 H H H [18] 

17 Gene-network analysis NIHO 92.4 H VH VH [19] 

18 Head, neck and kidney cell DiaBLE 89.0 VH H H [20] 

19 Huntington’s disease GAN 96.5 VH VH VH [28] 

20 Colorectal cancer LMER 89.4 H H H [29] 

21 Disease-disease relation PR-RWRH 86.35 H H H [30] 

22 Leukemia 
Netboost 

(PCA-SHC) 
90.7 H VH H [31] 

23 Breast GGM 90.1 H H H [32] 

24 RNA-gene network analysis miRTMC 90.2 VH H VH [34] 

25 Disease gene prediction 
PCD-

MVMF 
87.35 H H H [36] 

26 Asthma EMODMI 88.4 H H VH [37] 

27 AD LRMS 91.15 H H H [38] 

28 Disease gene prediction AGDPM 90.65 H VH VH [39] 

29 Disease-disease relation NBS 93.2 H M H [40] 

30 Complex disease 
CIMM 
SVM 

89.0 H H H [41] 

31 Gene-network analysis HPIN TE 73.70 H H H [42] 

32 Multiple virus types 
VGDC 
CNN 

95.9 VH VH H [44] 

33 Pre-term birth classification` DLLR 94.6 H H H [45] 

34 Multiple cancer types CEN 93.4 H VH H [46] 

35 Bipolar DST 97.7 H M H [47] 

36 Covid-19 
CNN-Bi-

LSTM 
95.3 VH VH VH [49] 

37 Multiple cancer types SIN 93.70 H H H [50] 

38 Covid-19 XGBoost 94.8 VH H H [51] 

39 Disease gene prediction ML-HES 92.7 M VH H [56] 

40 Parkinson SST-RF 86.0 H H H [57] 

41 Dengue ANN 81.5 VH H H [58] 

(Table 2) contd…. 
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Sr. No. Disease Sub Type Method Recall (%) Delay Scalability Computational Complexity References 

42 Diagnosis of disease CMA 75.4 H M H [59] 

43 Rare disease NGS 70.5 H L H [60] 

44 Beak and feather BFDV 85.5 VH L H [67] 

45 Hypertension disorder 
SVM,5-
NN, NB 

90.2 H M H [68] 

46 AD 
Linear 
SVM 

90.2 H M H [69] 

47 Cancer tumor SVM-OHC 80.5 H L VH [70] 

48 AD NB 75.4 H M H [71] 

49 Disease gene prediction SNP 85.4 H H H [73] 

 
 
 

 
Fig. (6). Accuracy of different genome processing techniques for various diseases. (A higher resolution / colour version of this figure is availa-
ble in the electronic copy of the article). 
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Table 3. Genome Processing Efficiency Rank (GPER) for different genomic processing models. 

Sr. No. Genomic Processing Model GPER References 

1 DNA 2.10 [1] 

2 GC 2.07 [2] 

3 HDGN 2.28 [3] 

4 HPDN 2.22 [4] 

5 DgSeq 2.47 [5] 

6 ModuleSim 2.57 [6] 

7 PDG-Net 2.23 [7] 

8 RAA 2.42 [8] 

9 PRBN 2.03 [9] 

10 SVC 1.99 [10] 

11 MHRWR 2.31 [11] 

12 Ensemble 2.41 [12] 

13 DELM 2.17 [14] 

14 PreEGS RF 2.49 [17] 

15 DM 2.33 [18] 

16 NIHO 2.51 [19] 

17 DiaBLE 2.24 [20] 

18 GAN 2.46 [28] 

19 LMER 2.35 [29] 

20 PR-RWRH 2.26 [30] 

21 Netboost (PCA-SHC) 2.57 [31] 

22 GGM 2.32 [32] 

23 LRMS 2.33 [38] 

24 AGDPM 2.49 [39] 

25 CIMM SVM 2.34 [41] 

26 HPIN TE 2.20 [42] 

27 VGDC CNN 2.53 [44] 

28 DLLR 2.38 [45] 

29 CEN 2.59 [46] 

30 CNN-Bi-LSTM 2.48 [49] 

31 SIN 2.34 [50] 

32 XGBoost 2.29 [51] 

33 ML-HES 2.79 [56] 

34 SST-RF 2.28 [57] 

35 ANN 2.17 [58] 

36 CMA 1.96 [59] 

37 NGS 1.69 [60] 

38 BFDV 1.71 [67] 

39 SVM,5-NN, NB 2.08 [68] 

40 SNP 2.29 [73] 



230    Current Genomics, 2023, Vol. 24, No. 4 Ahuja et al. 

 
Fig. (7). Top 20 genomic processing models that outperform in 
terms of accuracy, recall, scalability, computational complexity 
and delay levels. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

CONCLUSION AND FUTURE SCOPE 

 It is evident from the in-depth discussion of current ge-
nomic processing models that these methods differ greatly 
in terms of their applicability, quantitative features, and oth-
er performance metrics. Based on accuracy evaluation, it 
can be seen that PDG Net [7] achieves the highest accuracy 
for the identification of Parkinson's disease, NB [71] for AD 
types, and LMER [29] for different cancer types whereas 
Netboost (PCA SHC) [31] is best for identifying Leukemia 
disease. CNN-Bi-LSTM [49] is highly suited for identifying 
the COVID-19 virus, while GC [2] gives the best results for 
identifying the relationship between multiple diseases. An 
Ensemble model of ResNet and SVM [76] attained the 
highest accuracy for the identification of diabetes, whereas 
an Ensemble model of SVM,5-NN, and NB [68] is highly 
suited for identifying Hypertension disorder. CIMM SVM 
[41] is best suited for the classification of complex diseases.  
 DST [47], GAN [28], VGDC CNN [44], CNN Bi-LSTM 
[49], XGBoost [51], DLLR [45], SIN, GBT [46], and NBS 
[40] exhibit higher recall levels, according to recall evalua-
tion. They can therefore be applied to use cases requiring 
highly consistent classification. Similar findings show that 
DgSeq [5], Ensemble [12], PreEGS RF [17], and ML-HES 
[56] exhibit lower delay levels and are suitable for use in 
high-speed genome processing use cases. 

 ModuleSim [6], NIHO [19], GAN [28], Netboost (PCA 
SHC) [31], AGDPM [39], VGDC CNN [44], CEN [46], 
CNN Bi-LSTM [49], MLPNN [54], and ML-HES [56] out-
perform others in terms of scalability levels and can be used 
for applications requiring the processing of large datasets. 
While RAA [8] outperforms other models in terms of com-
plexity, making it suitable for use in low-complexity pro-
cessing use cases. Researchers can choose the best models 
for their performance-specific use cases based on these ob-
servations. A novel Genome Processing Efficiency Rank 
(GPER) was evaluated to further streamline this model se-
lection process. It was found that the following models out-
perform others in terms of accuracy, recall, scalability, 
complexity, and delay levels: ML-HES [56], GBT [46], 
Netboost (PCA SHC) [31], ModuleSim [6], VGDC CNN 
[44], NIHO [19], AGDPM [39], PreEGS RF [17], CNN Bi-
LSTM [49], MLPNN [54]. 
 The specific research gaps, challenges, limitations, and 
areas for improvement identified for genomic processing 
models are based on the analysis of Data Availability and 
Quality, Interpretable Models, Cross-Disease Predictions, 
Real-World Clinical Validation, as well as, Ethical and Pri-
vacy Concerns. Also, these can lead to the development of 
more robust and practical models for disease prediction and 
genomic analysis, ultimately benefiting both the research 
community and healthcare practitioners. In the future, re-
searchers can also modify the identified models via the inte-
gration of bioinspired models like Genetic Algorithm (GA), 
Elephant Herding Optimization (EHO), Whale Optimization 
(WO), Grey Wolf Optimization (GWO), etc. This perfor-
mance must be validated on larger datasets and can be im-
proved via integration of transformer models like Auto En-
coders, Q-Learning, etc. that will allow them to improve 
their accuracy incrementally w.r.t. real-time changes in da-
tasets for clinical use cases. 
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LIST OF ABBREVIATIONS 

ACC = Clustering Accuracy  
aCGH  = Array Comparative Genomic Hybridiza-

tion  
ACOs = Ant Colony Optimization  
AD = Alzheimer's Disease  
ADMM  = Alternating Direction Method of Multipliers  
ADNI-1 = AD Genetic Data of Neuroimaging Initia-

tive Phase 1  
AGDPM = Advance Genome Disorder Prediction 

Model  
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AML = Acute Myeloid Leukaemia  
ANN = Artificial Neural Network 
APOE = Apolipoprotein E  
ARI = Adjusted Rand Index  
ARM = Association Rule Mining  
AUC = Area Under the Curve  
BCMRFs = Bayesian Collective Markov Random Fields  
BD = Bipolar Disorder 
BFDV = Beak and Feather Disease Virus  
Bi-LSTM = Bidirectional Long Short-term Memory 

Network  
CAD = Coronary Artery Disease  
CAE = Convolutional Autoencoder  
CEC = Convolutional Embedded Clustering  
CEN = Convolutional Embedding Networks  
cES = Clinical Exome Sequencing 
CIMM = Conditional Mutual Information Maximi-

zation  
circRNA = Circular RNA  
CMA = Chromosome Microarray Analysis  
CMIM  = Conditional Mutual Information Maximi-

zation  
CNN = Convolutional Neural Network  
CNN  = Convolutional Neural network 
DAE = Denoising Auto-encoder 
dbGaP  = Database of Genotypes and Phenotypes 
DDA = Drug Disease Association 
DEG = Database of Essential Genes 
DELM = Deep Extreme Learning Machine  
DiaBLE = DIAMOnD Background Local Expansion  
DMs = Disease Modules  
DNA = Differential Network Analysis  
DNNs = Deep neural Networks  
EOT = Evolutionary Optimization Technique  
FCME  = fuzzy c-means-Based Entropy 
FDR = False Discovery Rate  
FLDA = Fischer Linear Discriminant Analysis  
GAN = Generative Adversarial Network  
GBT = Gradient Boosted Trees  
GC = Graph Clustering  
GGM = Gaussian-based Graphical Model 
GNs = Gene Connections  
GO  = Gene Ontology  
GPER = Genome Processing Efficiency Rank  

GRN = Gene Regulatory Network   
GS = Genome Sequencing  
GVs = Genetic Variations  
GWA = Genome Wide Association  
GWAS = Genome-wide Association Studies  
HDGN = Heterogeneous Disease Related Gene            
HES = Homomorphic Encryption Scheme 
HK  = Housekeeping   
HPDN = Human Pathway-based Disease Network  
HPIN  = Human Protein Interaction Network  
HVEM = Hard Voting Ensemble Method  
iCPAGdb = Interactive Cross-phenotype Analysis of 

GWAS Database  
KEGG = Kyoto Encyclopedia of Genes and Ge-

nomes 
KNN = k-Nearest Neighbour 
LC = Linear Classification 
LDA = Linear Discriminant Analysis 
LIME = Locally Interpretable, Model-independent 

Explanations 
LMER = Linear Mixed-effects Regression Model  
lncRNAs = Long Noncoding RNAs  
LOAD = Late-onset Alzheimer’s Disease 
LOEUF  = Loss-of-function Observed/Expected Up-

per-bound Fraction 
LPC  = Linear Predictive Coding  
LR = Likelihood Ratio  
LR = Logistic Regression  
LRMS = Logistic Regression on Multiresolution 

Spaces  
MCC = Mean Correlation Coefficient  
MCC  = Mathews Correlation Coefficient  
MDR = Multifactor Dimensionality Reduction  
MDR = Multifactor Dimensionality Reduction 
MGP = Meta-path Gene Ontology Profiles 
mi-RNA = MicroRNA  
miRTMC = miRNA Target Prediction Using Matrix 

Completion 
ML = Machine Learning  
MLP = Multilayer Perceptron  
MLPNN's = Multi-layer Perceptron Neural Network  
MOSC = Model Organism Screening Center  
MS = Metabolic Syndrome  
MVMF = Metapath2vec++ and Matrix Factorization 
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NB = Naive Bayes  
NBS = Network-based Sickness Module  
ncRNAs = Non-coding RNA’s  
NIH's  = National Institutes of Health  
NIHO = Neural Integration of Heterogeneous Data  
NL  = Neurochaos Learning  
NLP = Natural Language Processing  
NMI = Normalized Mutual Information  
OMIM  = Online Mendelian Inheritance in Man 
PCA = Principal Components Aggregation  
PCD = Predicting circRNA-disease Connections 
PDGNet = Predicting Disease Genes Using a Deep 

Neural Network with Multi-View Fea-
tures 

PPIN = Protein-protein Interactions Network  
PR  = Page Rank 
PreEGS = Prediction of Essential Genes in Compari-

son States  
PreEGSRF = PreEGS variant based on the Random 

Forests Model  
RAA = Resource Allocation-based Approach  
ResNet = Residual Neural Network  
RF = Random Forest 
RNA = Ribonucleic Acid 
ROC = Receiver Operating Characteristic 
RWRDGN = Random Walk with Restart on a Recon-

structed Heterogeneous Disease-gene Net-
work 

RWRH = Random Walk with Restart on Heteroge-
neous Network 

SAEs = Stack Autoencoders  
SCL = Subcellular Localization  
SGD = Stochastic Gradient Descent  
SHAP = SHapley Additive Explanations  
SHC = Sparse Hierarchical Clustering  
SNP = Single-nucleotide Polymorphism 
SVC = Support Vector Classifier 
SVM = Support Vector Machine 
SWAT = Sliding Window Association Test  
T2D = Type 2 Diabetes  
TE = Enriched in Tissues  
TF = Transcription Factors  
TGPs = Targeted Gene Panels  
UDN = Undiagnosed Diseases Network  
VGDC = Viral Genome Deep Classifier  

WGS = Whole Genome Sequencing   
WGS = Whole-genome Sequencing  
XAI  = Explainable Artificial Intelligence  
XGboost = Extreme Gradient Boosting  
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