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Abstract

Purpose of Review—The purpose of this review is to summarize the different roles of the 

transcription factor SP7 in regulating bone formation and remodeling, discuss current studies 

in investigating the causal relationship between SP7 mutations and human skeletal disease, and 

highlight potential therapeutic treatments that targeting SP7 and the gene networks that it controls.

Recent Findings—Cell-type and stage-specific functions of SP7 have been identified during 

bone formation and remodeling. Normal bone development regulated by SP7 is strongly 

associated with human bone health. Dysfunction of SP7 results in common or rare skeletal 

diseases, including osteoporosis and osteogenesis imperfecta with different inheritance patterns. 

SP7-associated signaling pathways, SP7-dependent target genes, and epigenetic regulations of SP7 

serve as new therapeutic targets in the treatment of skeletal disorders.

Summary—This review addresses the importance of SP7-regulated bone development in 

studying bone health and skeletal disease. Recent advances in whole genome and exome 

sequencing, GWAS, multi-omics, and CRISPR-mediated activation and inhibition have provided 

the approaches to investigate the gene-regulatory networks controlled by SP7 in bone and the 

therapeutic targets to treat skeletal disease.
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Introduction

Bones are formed through either endochondral or intramembranous ossification. During 

early embryogenesis, migration and condensation of mesenchymal cells initiate skeletal 

specification. Bone remodeling is a life-long process involving osteocytes (the main 
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orchestrator), bone-forming osteoblasts, and bone-resorbing osteoclasts [1]. As a highly 

dynamic tissue, both building the bone structure during embryonic development and 

maintaining bone homeostasis in adulthood require the regulation of transcription factors 

(TFs) [2]. TFs are proteins that recognize and bind to specific DNA sequences to regulate 

gene expression. Their activities are controlled at multiple levels, including epigenetic 

mechanisms, co-factor association, gene regulatory elements, and environmental cues [3, 

4]. Several master TFs are identified and examined with crucial roles in regulating the 

bone formation, resorption, and remodeling (reviewed in [5, 6], such as SOX9, RUNX2, 

OSX/SP7, ATF4, NF-kB, MITF, and NFATc1 [7–13].

Osterix/SP7 (encoded by the SP7 gene) is a zinc finger-containing transcription factor that 

contains three C2H2-type zinc fingers as other SP/XKLF family members [14]. The protein 

sequence of SP7 is highly conserved between humans and mice. The human SP7 gene is 

consist of 3 exons and 2 introns and generates 3 alternative splicing transcripts (Type I, II, 

and III) [15]. The expression of SP7 is detected in chondrocytes, hypertrophic chondrocytes, 

osteoblasts, and osteocytes [16]. For the past decade, SP7 had been thought as the essential 

regulator of osteoblast differentiation and bone formation [9]. Recent studies suggest novel 

roles of SP7 in chondrocyte and osteocyte development and function [17, 18]. In this review, 

we will first summarize the function of SP7 in bone formation and remodeling (reviewed 

in [19]), and then will focus on recent studies on SP7 in human skeletal disease and will 

discuss the future therapeutic potential of SP7 for bone health.

Role OF SP7 in Different Cell Types During Bone Formation and 

Remodeling

The expression of Sp7 is identified in several tissues, including bone, tooth, brain, and 

the reproductive tract [9, 20–22]. In brain, Sp7-positive cells were reported in the mitral 

and granule cell layers in the olfactory bulb [20]. In bone, Sp7 is expressed at multiple 

stages throughout the mesenchymal bone lineage including in osteoblasts, osteocytes, pre-

hypertrophic and hypertrophic chondrocytes. Since a unique suite of genes is required for 

the differentiation and function of each of these distinct cell types within the mesenchymal 

lineage, it is likely that this transcription factor utilizes unique, stage-specific mechanisms 

to control cell differentiation and function at each stage. Figure 1 summarizes distinct roles 

of Sp7 in different bone cells as evidenced by conditional deletion of this gene using Cre 

drivers active at different stages in mesenchymal differentiation.

Osteoblast

Runx2 and Sp7 are crucial regulators for osteoblast differentiation. Runx2-null mice 

completely lack ossification, which suggests that both endochondral and intramembranous 

ossification are blocked [8]. No bone formation and no bone matrix deposition occur in Sp7-
null mice [9], which suggests that osteoblast differentiation is blocked during embryogenesis 

in the absence of this transcription factor. Sp7 acts downstream of Runx2 since Runx2 

is expressed in the pre-osteoblasts of Sp7-null mice while Sp7 is not expressed in Runx2-
null mice. When Sp7 was conditionally deleted at different time points postnatally (CAG-
CreER), mutant mice showed reduced bone formation, severely altered bone structure, 
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and accumulation of calcified cartilage. This suggests that Sp7 is required for osteoblast 

differentiation and bone formation in the postnatal skeleton as well [23]. Several studies 

reported the osteoblast-specific role of Sp7 by applying different Cre/LoxP systems. 

Mice exhibited osteopenia, including reduced bone formation rate and short bones, when 

Sp7 was conditionally deleted in osteoblasts with Col1a1-Cre [24], suggesting that Sp7 

inactivation in growing bones delays osteoblast maturation. Further studies using Col1a1-
CreERT2 to delete Sp7 in formed bones [25] showed that inducible Sp7 deletion leads to 

decreased mineralized surface and bone formation rate. These data support a role for Sp7 in 

maintaining osteoblast function in adult bone remodeling.

Like other Sp family members, Sp7 was previously reported to be a transcription factor 

that binds GC-box DNA elements in osteoblasts [26]. However, de novo motif analysis 

revealed that osteoblast-specific Sp7-bound enhancer regions are significantly enriched in 

AT-rich motifs [19]. Interestingly, Sp7 does not directly bind to AT-rich DNA sequences but 

rather acts with Dlx factors (that directly bind AT-rich motifs) to regulate the expression 

of osteoblastic genes. This suggests that Sp7 forms transcriptional complexes with other 

co-factors to control cell-specific gene expression. Several osteoblast-related genes have 

Sp7-dependent expression and show direct regulation by Sp7. One group of genes are 

regulated via direct binding of Sp7 to GC-rich regions, such as Bsp, Sost, Col1a1, Col1a2, 

Mmp13, and Enpp1 [26–31]. The other group of genes are regulated via the complex 

formed by Sp7 and other factors, including Runx2 (Sp7-Dlx5-Msx2), Notch2 (Sp7-Dlx5), 

and Col1a1 (Sp7-NFATc1) [32–34].

Osteocyte and Osteoclast

Some osteoblasts become buried within mineralized bone matrix and become osteocytes 

[35]. We and others have shown that Sp7 plays an important role in osteocyte differentiation 

and maturation. Sp7 acts upstream and directly regulates the osteocyte-specific gene Sost. 
Both in vivo and in vitro models showed that Sp7 specifically binds and activates the Sost 
promoter [23, 28]. Sp7 is required for postnatal osteocyte development. Global postnatal 

inactivation of Sp7 (CAG-CreER, Sp7 fl/fl) leads to deformed osteocytes and reduced 

expression levels of Dmp1, Phex, and Sost [23]. We deleted Sp7 using Dmp1-Cre, which 

targets mature osteoblasts and osteocytes [36]; these mutant mice showed increased cortical 

porosity, abnormal intracortical bone remodeling, osteocyte dendrite defects, and increased 

osteocyte apoptosis [18]. Among osteocyte-specific Sp7 target genes, we identified osteocrin 

(encoded by the Ostn gene) as a secreted factor that promotes osteocyte dendrite formation 

and maintenance. Sp7 ChIP-seq followed by de novo motif binding analysis between 

osteocytes and osteoblasts revealed that the osteocyte-specific Sp7 binding sites are enriched 

for the TGA(G/T)TCA motif bound by activator protein 1 (AP-1) family members. 

Therefore, Sp7 may use distinct binding factors in osteocytes versus osteoblasts. Single-

cell RNA sequencing identified discrete populations of cells undergoing the osteoblast-to-

osteocyte transition, and dramatic osteocyte differentiation defects in this normal process in 

the absence of Sp7. In addition to loss-of-function studies, overexpression of Sp7 under the 

control of the 2.3 kb Col1a1 promoter [37•] led to porous cortical bone, decreased number 

of osteocyte dendrites, disrupted lacunar-canalicular network and increased Sost expression 
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upon skeletal unloading. Taken together, these findings raise the interesting hypothesis that 

proper expression level of Sp7 is required in osteocyte development.

Integrin β3 (encodes by the Itgb3 gene) associates with αV and is expressed in osteocyte 

dendrites where it plays an important role in mechano-transduction [38, 39]. Itgb3-null mice 

have significantly reduced femoral length and decreased cortical thickness [40]. Chromatin 

immunoprecipitation (ChIP) assays in osteoblastic MC3T3-E1 cells showed that Sp7 binds 

to the promoter of the Itgb3 gene (encodes integrin β3) [40]. Since both Sp7 and Itgb3 

are expressed in osteocytes and Sp7 plays a critical role in osteocyte dendrite development 

and maintenance, more studies are needed to explore the specific role of Sp7/Itgb3 axis in 

dendrite formation, osteocyte maturation and mechano-sensing.

Sp7 is not expressed in osteoclasts. However, several studies showed that Sp7 may 

affect osteoclast activity in vivo via indirect mechanisms. Conditional deletion of Sp7 in 

osteoblasts and osteocytes (Dmp1-Cre; Sp7 fl/fl) does not affect osteoclasts on trabecular 

bone. Dmp1-Cre; Sp7 fl/fl mice, on the other hand, have increased intracortical osteoclast 

activity confirmed by the elevated level of TRAP staining [18]. This increased osteoclast 

activity may be caused by increased Rankl expression triggered by apoptotic osteocytes 

[41•]. When Sp7 was ablated postnatally by CAG-CreER, primary spongiosa osteoclast 

density is reduced [23] while more osteoclasts are noted in porous cortical bone in Sp7 
mutant (CAG-CreER; Sp7 fl/fl) mice. It is possible that reduced hypertrophic chondrocyte 

Rankl expression drives osteoclast defects in the primary spongiosa in global/inducible Sp7 
mutant mice. Thus, Sp7 likely controls bone resorption indirectly through different cell 

type-specific mechanisms.

Chondrocyte

There is no cartilage phenotype identified in Sp7-null embryos [9]. However, when 

Sp7 expression was reduced in chondrocyte-like ATDC5 cells, the expression of several 

chondrocyte genes is down-regulated, including Sox9, Dlx5, Alpl, and Col10a1 [42]. 

Chondrocyte-specific deletion of Sp7 (Col2a1-Cre; Sp7 fl/+) in mice results in impaired 

endochondral bone formation including delayed chondrocyte differentiation, increased 

hypertrophic chondrocytes, reduced formation of trabecular bone, and reduced skeletal 

growth [43]. Another study used both Col2a1-Cre and Prx1-Cre to ablate Sp7 expression 

[44]. Both models showed arrested endochondral ossification with chondrocytes blocked 

at the hypertrophic stage. Col2a1-Cre; Sp7 fl/fl mice also show blocked calcification of 

cartilage matrices and reduced Mmp13 expression. ChIP assays suggest that Sp7 regulates 

Mmp13 during chondrocyte maturation. Conditional deletion of Sp7 during postnatal 

growth (Col2a1-CreERT2; Sp7 fl/fl) results in impaired secondary ossification by delaying 

chondrocyte hypertrophy and conversion to osteoblasts [17]. Importantly, more studies are 

needed to identify the direct targets of Sp7 during chondrocyte differentiation and what 

co-factors are involved in this process. Ultimately, detailed analysis of how Sp7 regulates 

key stage-specific factors in bone lineage cells will identify novel co-factors required for this 

transcription factor to exert multiple roles throughout the mesenchymal lineage.
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Odontoblast

Sp7 is expressed in many cell types during tooth development, including dental papilla, 

odontoblasts, alveolar bone osteoblasts, and dental follicle cells [45]. Sp7 plays an important 

role in tooth development including direct control of dentin sialophosphoprotein (Dspp), the 

key protein for postnatal odontogenesis [45]. Constitutive lineage tracing revealed that Sp7-

labeled cells actively contributes to dental development, especially tooth root formation [46]. 

Sp7 is strongly detected in the crown in early tooth development, but then down-regulated 

after root formation [47]. Tamoxifen-dependent lineage-tracing further showed that Sp7 

is expressed in dental mesenchymal progenitors and contributes to all relevant cell types 

during dental root morphogenesis. In Sp7-null embryos, mineralization was absent in the 

mandible, maxilla, and craniofacial bones [9, 48]. Though these mice died soon after birth, 

the examination of perinatal pups showed that both maxillary and mandibular incisors 

were smaller in Sp7 −/− mice compared to control littermates [48]. The alveolar bone 

that surrounds incisors was completely absent in Sp7-null mice. The formation of alveolar 

bone is not absolutely needed for tooth morphogenesis since initial tooth morphogenesis 

is normal in Sp7 −/− mice. Sp7 is crucial for the normal architecture and organization of 

dental tubules in the root. Sp7 −/− mice showed disorganized odontoblasts and ameloblasts 

around the pre-dentin-like layers in incisors, suggesting that Sp7 promotes the differentiation 

and maturation of odontoblasts and ameloblasts. The deletion of Sp7 specifically in 

odontoblasts (Col1-Cre; Sp7 fl/fl and OC-Cre; Sp7 fl/fl) showed short molar root, reduction 

of dentin, and malformed dentinal tubule of tooth roots [49–51]. Sp7 can also regulate 

cementum formation by promoting cementoblast differentiation and mineralization [51]. 

Overexpression of Sp7 (3.6 kb Col1a1-Sp7) accelerated the formation of cellular cementum, 

while deletion of Sp7 (Col1-Cre; Sp7 fl/fl and CAG-CreER; Sp7 fl/fl) dramatically reduced 

cementogenesis and mineralization rate. These studies stimulate much more interest in 

investigating the role and the mechanism of Sp7 in tooth formation and provide potential 

therapeutics for periodontal regeneration and alveolar bone healing.

SP7 and Human Skeletal Disease

A primary goal of human genetics is to identify DNA sequence variants that influence 

biomedical traits, particularly those related to the onset and progression of human disease, 

such as osteoporosis. Genetic discoveries have substantially improved our understanding of 

the molecular and genetic mechanisms responsible for many common and rare skeletal 

diseases and driven the development of novel preventative and therapeutic strategies 

[52–55]. SP7 plays fundamental roles in different cell types during bone formation and 

remodeling. Recently, many exciting studies have investigating connections between SP7 

and skeletal disease.

Common Skeletal Disease: Osteoporosis

Genome-wide association studies (GWAS) on skeletal polygenic disorders have made great 

achievements in the past two decades and identified hundreds of susceptibility genes/loci 

for the pathophysiology of common skeletal disease [56]. Osteoporosis is a common 

bone disease characterized by low bone mass, deteriorative microarchitecture, loss of bone 
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strength, and increased risk of bone fracture. Bone mineral density (BMD) is used as the 

diagnosis of osteoporosis and serves as a strong predictor of fracture risk [57].

Several studies demonstrated that SP7 is a locus associated with BMD at the GWS 

level (Table 1). GWAS analysis of BMD and related traits were performed in children 

(age 9) from the Avon Longitudinal Study of Parents and Children (ALSPAC) [58]. 4 

polymorphisms (rs2016266, rs4759021, rs6580842, and rs10876432) residing in a linkage 

disequilibrium block near the SP7 gene were identified with significant associations to total 

body BMD. The meta-analysis of two existing studies (a European women population and 

an Icelandic population) [59, 60] further suggested a strong association between these SNPs 

and adult lumbar spine BMD. Styrkarsdottir and colleagues performed extended GWAS 

analysis of BMD among the European descendent subjects and identified one significant 

locus near the SP7 gene (rs10876432) [61]. Within the Genetic Factors of Osteoporosis 

(GEFOS) consortium, a large-scale GWAS meta-analysis was performed on spine and 

femoral neck BMD in Northern European descent subjects [62]. This confirmed SP7 
(12q13, rs2016266) as a locus significantly associated with BMD. Another genome-wide 

meta-analysis was performed on the lumbar spine and femoral neck BMD in European 

and east Asian ancestry individuals [63]. SP7 (rs7108738) was further proved as a BMD-

associated locus which was also associated with fracture risk. Taken together, these findings 

clearly demonstrate that SP7 polymorphisms in humans are associated with BMD variation 

and subsequent fracture susceptibility. At present, the precise mechanisms connecting SP7 
polymorphisms with BMD variation remains underexplored. For example, it is possible 

that non-coding SP7 polymorphisms may regulate SP7 expression levels in bone cells, a 

possibility that requires exploration in large numbers of clinical bone biopsy samples from 

“genotyped” individuals and genome editing in human bone cell culture models to explore 

consequences of non-coding SP7 polymorphisms on SP7 mRNA levels.

Rare Skeletal Dysplasia: Osteogenesis Imperfecta

To date, five SP7 mutations have been reported that cause rare skeletal disease including 

osteogenesis imperfecta (OI) (Table 2). Although the majority of OI cases are caused by 

mutations in the COL1A1 and COL1A2 genes, a large number of genes that are crucial 

for osteoblast function, have been identified to cause skeletal fragility and a phenotype 

similar to collagen-mutated OI [64, 65]. Other clinical signs and symptoms may be found 

including dentinogenesis imperfecta (DI), blue sclera, hearing loss, growth deficiency, and 

joint laxity [66–68]. DI is a heredity disorder of dentin formation. DI type I, which is mostly 

linked to OI, is the oral symptom of inadequate collagen production [69]. In addition to DI, 

significant delay of tooth eruption can be found in young OI patients who had been treated 

with bisphosphonate [70, 71] since osteoclasts are crucial for tooth eruption and resorption 

of the primary teeth [72, 73].

The first SP7 mutation was reported in an 8-year-old Egyptian child [74] with recurrent 

fractures, below-normal height, bowing of upper and lower limbs, mild scoliosis, delayed 

tooth eruption, and normal hearing. Bone Densitometry (DEXA) results showed low BMD 

in the spine and hip. A homozygous single base pair deletion (c.1052delA) was identified in 

SP7 by a combination of homozygosity mapping and candidate gene approach. This deletion 
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causes a frameshift, introduces 18 novel residues at codon 351, and results in premature 

termination (p.E351GfsX19). The mutant transcript is translated into a truncated SP7 protein 

lacking the 3rd zinc-finger domain. The altered zinc-finger structure may affect the binding 

affinity of SP7 to target regions. Further studies are needed to examine the mechanisms 

that changes the binding affinity and identify the target genes that are affected by this 

frameshift mutation that eventually causes the OI-like phenotypes. This same rare deletion 

was also reported in a 17-year-old Chinese boy with recurrent long bone fractures, vertebral 

collapse, tooth eruption delay, and maxillary hypoplasia [75]. He had a dental manifestation 

of dentinogenesis imperfecta in both primary and permanent dentition. Enamel hypoplasia, 

discoloration, and severely worn primary dentition were reported. His permanent dentition 

phenotype included bulbous crown, short roots, and impacted dentition which necessitating 

combined surgical and orthodontic treatment.

A 32-year-old Pakistani man with recurrent fractures, short statue, lower limb bowing, 

craniofacial dysmorphism, and normal hearing was found to have a SP7 homozygous 

missense mutation (c.824G > A) [76]. This c.824G > A mutation is located within exon 

2 of SP7 and causes a cysteine to tyrosine amino acid change at position 275 (p.C275Y). At 

present, future studies are needed to understand how this mutation, outside the zinc finger 

domain of SP7, affects its function.

A 13-year-old child from Iraq with recessive pattern OI was found to have a homozygous 

SP7 (c.946C > T) mutation [77•]. The patient presented with short stature, low-trauma 

fracture, low BMD, mild scoliosis, hearing loss, facial dysmorphism, and delayed tooth 

eruption. The proband is from a family of eight siblings. One younger brother and one sister 

are homozygous for the same mutation. His younger brother was short, had low-trauma hip 

fracture and hearing loss. His sister had a history of low-trauma fractures, low bone density, 

normal height, and no hearing loss. A trans-iliac bone biopsy was obtained from the proband 

patient which showed high cortical porosity and high trabecular bone turnover. The c.946C 

> T mutation locates in exon 2 of SP7 gene and results in a substitution from arginine to 

cysteine (R316C). The arginine position 316 is located in the 1st zinc finger domain. The 

substitution of arginine with cysteine may change the affinity of SP7 to the genome or other 

co-factors by altering the zinc-finger cysteine-histidine ratio. More recently, we analyzed 

osteocyte morphology in non-decalcified iliac crest bone biopsies from two R316C patients 

(the proband and his younger brother) and two age- and sex-matched healthy patients. In 

this analysis, we noted reduced osteocyte dendrite length and number in patients versus 

healthy controls [18]. Sp7 binds an enhancer ~ 110 kB upstream of the Ostn transcription 

start site. The transcriptional activity of this putative Ostn enhancer was reduced when 

HEK293T cells were transfected with R316C mutated SP7 compared to wild-type SP7 

[18]. As discussed above, SP7 may utilize different DNA-binding cofactors in osteocytes 

compared to osteoblasts. Further studies are needed to investigate whether the SP7 R316C 
mutation affects the binding activity and the cofactor assembly of SP7 to osteocyte-specific 

target genes.

One heterozygous mutation of SP7 (c.1019A > C) was identified in young adult siblings 

of Haitian descent (20-year-old female and 17-year-old male) who presented with dominant-

pattern OI [78•]. One female patient had fractures, poor bone healing, severe scoliosis, 
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hearing loss, normal height, and reduced cortical BMD in long bones. Though most surface 

parameters were within the normal range on skeletal histomorphometry, she had low mineral 

apposition rate and low bone turnover. The male patient shared a similar OI phenotype as his 

sister, including fragility fractures, low cortical volumetric BMD, and high cortical porosity. 

The c.1019A > C mutation is located in exon 2 of the SP7 gene and causes a glutamic acid 

to alanine amino acid change (E340A). The E340A mutation may alter the 2nd zinc-finger 

domain of SP7. When HEK293T cells were co-transfected with DLX5- and SP7-expression 

plasmids, the luciferase activity of SP7 promoter was significantly reduced when transfected 

with mutant SP7 (E340A) compared to wild-type SP7.

Two unrelated individuals were identified with the same heterozygous de novo SP7 mutation 

(c.926C > G) [79, 80••]. Whyte and colleagues reported a 15-year-old girl with Juvenile 

Paget’s disease caused by c.926C > G mutation [79]. She had recurrent fractures in lower 

limbs, skull deformity, scoliosis, generalized osteosclerosis, hyperostosis, short roots with 

very thin or no pulp teeth, and hearing loss. DXA revealed high lumbar spine areal BMD 

and wrist total BMD. Her serum ALP and urinary total hydroxyproline levels were elevated. 

Lui and colleagues reported a 3-year-old boy bearing the same SP7 c.926C > G mutation 

with similar phenotypes, including recurring fractures, severe scoliosis, osteosclerosis, 

elevated alkaline phosphatase, increased lumbar BMD, and high bone turnover [80••]. The 

c.926C > G mutation locates in exon 3 of SP7 gene and results in a serine to tryptophan 

mutation (S309W) in the 1st zinc-finger domain. Notably, knock-in mice bearing the S309W 

mutation were generated. Both homozygous and heterozygous knock-in mice died shortly 

after birth with a complex skeletal phenotype that is dissimilar to Sp7 knockout mice. 

The human and mouse phenotypes shared similarities and showed some differences. For 

example, clavicles in the knock-in mice showed decreased length and increased thickness, 

which resembles the clavicle osteosclerosis in the patient. Cranial hyperostosis in the 

patient, however, was not observed in the knock-in mouse. Further mechanistic studies 

revealed that the mutation alters the binding specificity of SP7 from AT-rich motifs to a 

GC-consensus sequence (typical of other SP family members) [33] and produces an aberrant 

gene expression profile, including increased expression of Col1a1 and endogenous Sp7, but 

decreased expression of genes involved in matrix mineralization.

In summary, there is a strong correlation between SP7 mutations and rare skeletal dysplasia 

(mutation locations are summarized in Fig. 2). Abnormal skeletal developmental processes 

caused by dysfunction of SP7 result in skeletal disease. Thus, future directions should 

emphasize on the establishment of both in vivo and in vitro systems to characterize 

these disease-causing SP7 mutations, including generating mouse models that carry SP7 
mutations as well as introducing these mutations to organoids and cell lines by gene editing. 

These models will provide optimal systems to investigate the mechanism and the causal 

relationship between these mutations and the function of SP7 in bone.

Bone Caner: Osteosarcoma

SP7 is expressed in nearly all osteoblastic tumors but not expressed in giant cell tumor, 

chondroblastoma, and chondromyxoid fibroma [81]. Osteosarcoma is the most common 

bone sarcoma and the 3rd most common malignancy in children and adolescents [82]. Not 
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knowing the exact cause, osteosarcoma could be due to DNA mutations of oncogenes and 

tumor suppressor genes in the primitive mesenchymal bone-forming cells and produces 

malignant osteoid. SP7 expression is significantly reduced in both murine and human 

osteosarcoma cells (murine: K7, K7M2; human: HOS, Krib, MG) compared with its 

expression in normal murine and human osteoblastic cells (MC3T3 and HOB) [83]. 

Overexpression of SP7, on the other hand, can inhibit tumor cell growth, suppress osteolytic 

lesions, and suppress lung metastasis. SP7 down-regulates expression of the cytokine IL-1α 
and reduces lytic activity in osteosarcoma cells by targeting the GC-rich region of the IL-1α 
promoter [84]. Suppression of SP7 resulted in up-regulation of both IL-1α promoter activity 

and IL-1α protein level. Site-directed mutagenesis and chromatin immunoprecipitation 

showed that SP7 was unable to repress the IL-1α promoter activity in osteosarcoma 

cells after mutating the GC-rich SP1-binding site. p53 is a tumor suppressor regulating 

cell proliferation and apoptosis. Trp53 (encodes p53) knockout mice were characterized 

by a denser skeleton compared to the wild-type littermates and the Trp53-deficient bone 

marrow-derived mesenchymal progenitor cells had a higher capacity to differentiate towards 

the osteoblastic fate [85, 86]. p53 represses the osteogenic transcriptional network of 

SP7 by blocking SP7-DNA binding and SP7-DLX5 interaction [87]. In summary, SP7 

regulates the normal formation of mature osteoblasts and abnormal SP7 expression may 

trigger mesenchymal stem/stromal cells and/or osteoblastic precursors to form osteosarcoma 

microenvironment by producing excessive osteoid matrix. Future studies are necessary 

to examine the important roles of SP7 with oncogenes and tumor suppressor genes in 

osteosarcomas, and evaluate the correlation between SP7 to growth factors, cytokines, 

chemokines, and metalloproteinases in osteosarcoma microenvironment.

Bone Metastasis

Skeletal metastases are common in patients with advanced breast cancer. Interestingly, SP7 

expression is elevated in human breast cancer cell lines and tumors of some breast cancer 

patients [88, 89]. This finding suggests that epithelial breast cancer cells may adapt an 

osteogenic SP7-dependent gene expression program to promote skeletal metastasis. Patients 

with high SP7 expression had poorer survival rates and SP7 expression was significantly 

associated with lymph node metastasis. SP7 knockdown inhibited breast cancer invasion 

and osteolytic metastasis, whereas overexpression of SP7 promoted the invasiveness. SP7 

facilitates bone metastasis of breast cancer by upregulating the expression of genes (MMP9, 

MMP13, VEGF, IL-8, and PTHrP) that contribute to the metastatic cascade. Particularly, 

SP7 directly targets the GC-rich promoter of MMP9 and mediates the SP7-driven breast 

cancer invasion in the bone metastatic niche.

Cancer-associated fibroblasts (CAFs) are cells of the mesenchymal lineage involved in 

supporting tumorigenesis from growth to metastasis [90]. SP7 expression in CAFs with 

pro-tumorigenic characteristics was reported using Osx-Cre; TdTomato (TdTOsx) reporter 

mice [91•]. Most of these TdTomato-positive cells were positive for CD45 and had 

tumor-infiltrating immune cell-related genes expressed. SP7 is expressed in a subset of 

hematopoietic stem cells (HSC) that give rise to TdTOsx+;CD45+ tumor-infiltrating immune 

populations. This study supports that a subset of CAFs, derived from Osx + cells in the 

bone marrow, contributes to extracellular matrix (ECM) production at the tumor site, thereby 
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creating a tumor-supporting stroma. These findings emphasize the importance of SP7 in 

the tumor microenvironment and progression. Future studies are needed to identify the 

mechanisms that regulate Osx + mesenchymal cells during extracellular matrix remodeling 

and examine how SP7 contributes to this process.

Therapeutic Approaches

Targeting SP7-Dependent Genes: Ostn

Long-term glucocorticoid (GC) treatment is associated with skeletal side effects including 

bone loss, fracture, osteoporosis, and osteonecrosis [92]. GCs induce osteocyte apoptosis 

and cause loss of osteocyte dendrites [93]. Our previous work demonstrated that the 

Sp7 target gene osteocrin (Ostn) regulates osteocyte dendrite formation and maintenance 

[18]. Therefore, we tested whether Ostn overexpression might restore osteocyte defects in 

prednisolone-treated mice [94]. Though not able to rescue the reduced cortical thickness 

caused by prednisolone, Ostn treatment led to modest protection at the level of osteocyte 

morphology from the deleterious effects of GC treatment. These findings support a modest 

therapeutic potential for systemic osteocrin delivery in preserving osteocyte morphology 

during disease. Since SP7 level is reduced in the setting of GC treatment, it remains possible 

that other cell type-specific SP7 target genes may represent attractive therapeutic targets for 

bone loss due to GC excess.

Targeting Post-Transcriptional Modifications of SP7: Ubiquitination

Melatonin is a neurohormone mainly secreted by pinealocytes in the pineal gland and plays 

an important role in bone-related diseases by promoting bone formation and preventing 

bone destruction [95, 96]. Melatonin stabilized the SP7 protein production by blocking 

the ubiquitin–proteasome pathway and promoted osteoblast differentiation via the PKA 

and PKC signaling pathways [97]. The same group previously showed that the E3 ligases 

Cbl-b and c-Cbl induced SP7 ubiquitination and degradation [98]. Melatonin treatment 

partially prevented SP7 degradation by inhibiting these ubiquitin ligases. This suggests 

that melatonin may be a potent osteogenic agent targeting mature osteoblast differentiation 

and bone formation in the treatment of osteoporosis. Future research identifying targeted 

approaches to manipulate SP7 degradation may be beneficial in the setting of osteoporosis 

and metastatic bone diseases.

Targeting at the Transcriptional and Translational Level: lncRNAs

Recent study showed that inflammatory osteoclasts (iOCLs) exosomes specifically target 

osteoblasts via ephrinA2/EphA2 [99]. Exosomal lncRNA LIOCE enriched in iOCL 

exosomes promoted osteogenic activity by being incorporated into osteoblasts. lncRNA 

LIOCE directly binds and stabilizes SP7 protein and reduces its ubiquitination, and thus, 

exosomes bearing lncRNA LIOCE may be an effective strategy to increase bone formation 

in osteoporosis and other bone metabolic disorders [99]. The metastasis-associated lung 

adenocarcinoma transcript-1 (MALAT1) noncoding RNA is induced during osteoblast 

differentiation and is expressed at lower levels in cells from osteoporosis patients versus 

controls [100]. MALAT1 positively regulates the expression of SP7 by binding to miR-143 

and miR-196 and inhibiting the binding of these inhibitory miRNAs to the SP7 mRNA 
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[101]. Therefore, multiple non-coding RNAs (LIOCE, MALAT, miR-143, and miR-196) all 

control SP7 at the post-transcriptional level. These non-coding RNAs provide an additional 

opportunity for future diagnostics and therapeutics to modulate SP7 activity for diseases 

including osteoporosis and metastatic bone disease.

Future Directions and Conclusions

SP7 plays important regulatory roles in different mesenchymal lineage bone cell types 

during bone formation and remodeling, including osteoblasts, osteocytes, and chondrocytes. 

As discussed in this review, common SP7 polymorphisms are linked to BMD variation 

and fracture risk, rare SP7 mutations cause skeletal dysplasia, and SP7 may contribute to 

bone metastasis. Novel genomic and proteomic methods should enable the discovery of cell 

type-specific gene regulatory elements and cofactors for SP7 to help explain how this single 

transcription factor accomplishes so many important roles throughout the mesenchymal 

bone cell lineage. Improved understanding of the mechanisms underlying SP7-causing 

skeletal diseases will provide novel therapeutic targets for the treatment of skeletal disorders.
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Fig. 1. 
Schematic of SP7 functions in chondrocytes, osteoblasts, and osteocytes. SP7 regulates 

osteoblast differentiation and bone formation through osteoblast target genes by recognizing 

AT-rich region. In osteocytes, SP7 regulates osteocyte maturation and intracortical 

remodeling through osteocyte target genes by recognizing TGA(G/T) TCA motif. SP7 also 

regulates chondrocyte differentiation and endochondral ossification. CC, chondrocyte; OB, 

osteoblast; Ocy, osteocyte; OC, osteoclast. Part of the figure were drawn by using pictures 

from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative 

Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)
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Fig. 2. 
The sequence of human SP7 zinc finger domains. Four SP7 mutations located within zinc 

finger domains are marked. Green boxes: 3 zinc finger domains
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