The NADP-Dependent Methylene Tetrahydromethanopterin Dehydrogenase in *Methylobacterium extorquens* AM1

JULIA A. VORHOLT,^{1*} LUDMILA CHISTOSERDOVA,² MARY E. LIDSTROM,² and RUDOLF K. THAUER¹

Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität, 35043 Marburg, Germany,¹ and Department of Chemical Engineering, University of Washington, Seattle, Washington 98195²

Received 9 June 1998/Accepted 12 August 1998

An NADP-dependent methylene tetrahydromethanopterin (H_4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO_2 in *Methylobacterium extorquens* AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid sequence, it was identified to be the *mtdA* gene product. The purified enzyme catalyzed the dehydrogenation of methylene H_4MPT with NADP⁺ rather than with NAD⁺, with a specific activity of approximately 400 U/mg of protein. It also catalyzed the dehydrogenation of methylene tetrahydrofolate (methylene H_4F) with NADP⁺. With methylene H_4F as the substrate, however, the specific activity (26 U/mg) and the catalytic efficiency (V_{max}/K_m) were approximately 20-fold lower than with methylene H_4MPT . Whereas the dehydrogenation of methylene H_4MPT ($E_0 = -390$ mV) with NADP⁺ ($E_0 = -320$ mV) proceeded essentially irreversibly, the dehydrogenation of methylene H_4F ($E_0 = -300$ mV) was fully reversible. Comparison of the primary structure of the NADP-dependent dehydrogenase from *M. extorquens* AM1 with those of methylene H_4F dehydrogenases from other bacteria and eucarya and with those of methylene H_4MPT dehydrogenases from methanogenic archaea revealed only marginally significant similarity (<15%).

Methylobacterium extorquens AM1 is an aerobic methylotrophic bacterium which belongs to the α -subgroup of the proteobacteria (22, 30). In this organism methanol has been proposed to be metabolized to CO₂ via formaldehyde, N^5 , N^{10} methylene tetrahydrofolate (methylene H₄F), N^5 , N^{10} -methenyl tetrahydrofolate (methenyl H₄F), N^{10} -formyl tetrahydrofolate (formyl H₄F), and formate as intermediates in reactions involving pyrroloquinolinequinone-dependent methanol dehydrogenase, NADP-dependent methylene H₄F dehydrogenase, methenyl H₄F cyclohydrolase, formyl H₄F synthetase, and NAD-dependent formate dehydrogenase (7, 19, 21).

Recently, *M. extorquens* AM1 was shown to contain genes thought to be unique for methanogenic archaea, namely, genes predicted to encode methenyl tetrahydromethanopterin (H₄MPT) cyclohydrolase, formylmethanofuran:H₄MPT formyltransferase, and formylmethanofuran dehydrogenase (6). These enzymes catalyze the first three steps of methanogenesis during the growth of methanogens on CO₂ and H₂ and the last three steps of CO₂ formation during the growth of methanogens on methanol (15, 28). The genes in *M. extorquens* AM1 encoding the three methanogenic enzymes were shown by mutagenesis to be required for growth on C₁ compounds, suggesting an involvement of the corresponding enzymes in formaldehyde oxidation to CO₂ via N^5 , N^{10} -methylene H₄MPT (methylene H₄MPT), N^5 , N^{10} -methenyl H₄MPT (methenyl H₄MPT), N^5 -formyl H₄MPT (formyl H₄MPT), and formylmethanofuran as intermediates (6).

The genetic evidence for this novel metabolic pathway was substantiated by the finding that cell extracts of methanolgrown *M. extorquens* AM1 exhibit methenyl H_4MPT cyclohydrolase activity and formylmethanofuran:H₄MPT formyltransferase activity and contain dephospho-H₄MPT (6). H₄MPT is an H₄F analogue previously found only in methanogenic and sulfate-reducing archaea. Its properties are significantly different from those of H₄F (Fig. 1). Thus, the redox potential of the N^5 , N^{10} -methenyl H₄MPT- N^5 , N^{10} -methylene H₄MPT couple (-390 mV) is 90 mV more negative than that of the N^5 , N^{10} methenyl H₄F- N^5 , N^{10} -methylene H₄F couple (-300 mV) (13, 29, 37).

Further support for the novel metabolic pathway came from the finding that cell extracts of *M. extorquens* AM1 contain an NADP-dependent methylene H₄MPT dehydrogenase activity catalyzing the formation of methenyl H₄MPT from methylene H_4 MPT (6). The presence of an NADP-dependent methylene H_4MPT dehydrogenase in *M. extorquens* AM1 is of special interest because the methylene H₄MPT dehydrogenases in methanogenic and sulfate-reducing archaea are specific for coenzyme F_{420} , which is a 5' deazaflavin derivative (8). The redox potential of the F_{420} - F_{420} H₂ couple (-360 mV) is 40 mV more negative than that of the NAD(P)⁺-NAD(P)H couple (-320 mV) (12, 34). Apparently, M. extorquens AM1 contains a novel enzyme combining features of both the F420-dependent methylene H₄MPT dehydrogenase from methanogens and the NAD(P)-dependent methylene H_4F dehydrogenase found in bacteria and eucarya. We report here on the purification and the characterization of the novel enzyme.

MATERIALS AND METHODS

Coenzymes. H_4MPT , methenyl H_4MPT , and coenzyme F_{420} were purified from *Methanobacterium thermoautotrophicum* Marburg (DSM 2133) (5). H_4F was purchased from Sigma. Anoxic stock solutions of H_4MPT and H_4F were prepared in 50 mM Tricine-KOH (pH 7.0) containing 2 mM dithiothreitol. In giving concentrations of H_4F , it was considered that less than 50% of the commercially available H_4F was biologically active as determined enzymatically, due to the presence of the biologically inactive *R* isomer and dihydrofolate (36). Methenyl H_4F was generated from methylene H_4F by dehydrogenation via

^{*} Corresponding author. Mailing address: Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, 35043 Marburg, Germany. Phone: 49-6421-178331. Fax: 49-6421-178299. E-mail: vorholt @mailer.uni-marburg.de.

H₄MPT:

FIG. 1. Structures of H_4MPT (25, 32, 33) and H_4F . Functionally, the most important difference between H_4MPT and H_4F is that H_4MPT has an electrondonating methylene group in conjugation to N^{10} via the aromatic ring, whereas H_4F has an electron-withdrawing carbonyl group in this position. One consequence is that the redox potential of the N^5, N^{10} -methenyl H_4MPT-N^5, N^{10} -methylene H₄MPT couple ($^{-390}$ mV) is almost 100 mV more negative than that of the N^5, N^{10} -methenyl H₄F- N^5, N^{10} -methylene H₄F couple ($^{-300}$ mV) (29). The H_4MPT derivative found in *M. extorquens* AM1 lacks the α -hydroxyglutaryl phosphate unit (6). The dephospho-H₄MPT is also present in methanogenic archaea (35).

NADP-dependent methylene H4MPT dehydrogenase from M. extorquens AM1 and was purified by high-performance liquid chromatography (HPLC). Methylene H4F was generated from H4F and formaldehyde by spontaneous reaction. Methylene H4F was not purified prior to the enzymatic conversion to methenyl H₄F

Growth of bacteria. M. extorquens AM1 was grown on methanol (100 mM) at 30°C in minimal medium as described previously (11). The cultures were harvested in the late-exponential phase at a cell concentration of 3 g (wet mass)/liter. Cells were pelleted by centrifugation at 5,000 \times g and stored at -20° C

Preparation of cell extracts. Frozen cells (9 g) were suspended in 18 ml of 50 mM morpholinepropanesulfonic acid (MOPS)-KOH (pH 7.0) at 4°C and passed three times through a French pressure cell at 1.2×10^8 Pa. Cell debris and unbroken cells were removed by centrifugation at 27,000 \times g for 30 min. The resulting supernatant is referred to as cell extract.

Protein concentration was determined by the Bradford assay (4) by using the Bio-Rad reagent with bovine serum albumin as the standard.

Determination of methylene H₄MPT dehydrogenase activity. The assays were performed routinely at 30°C in 1-ml cuvettes (depth, 1 cm) in a total volume of 0.7 ml. The reactions were monitored photometrically by measuring the increase or decrease in absorbance at 340 nm. For the calculations, ε_{340} values of 6.2 mM⁻¹ cm⁻¹ for NADPH, 20.8 mM⁻¹ cm⁻¹ for methenyl H₄MPT (10), and 21.7 $mM^{-1}\ cm^{-1}$ for methenyl H_4F (18) were used. Units of enzyme activities are defined as 1 µmol/min at 30°C

Methylene H4MPT dehydrogenation with NADP+ was routinely measured in 120 mM potassium phosphate (pH 6.0) at a methylene H₄MPT concentration of 35 μ M and an NADP⁺ concentration of 0.2 mM. The methylene H₄MPT was generated in the cuvette by a spontaneous reaction of H_4MPT (35 μM) with formaldehyde (3 mM). The excess of formaldehyde did not adversely affect the enzyme activity

Methylene H4F dehydrogenation with NADP+ was measured in 120 mM potassium phosphate (pH 6.0) at a methylene H₄F concentration of 70 µM and an NADP⁺ concentration of 0.2 mM. The methylene H₄F was generated in the cuvette by a spontaneous reaction of H_4F (70 μ M) with formaldehyde (3 mM). The excess of formaldehyde did not adversely affect the enzyme activity.

Methenyl H4MPT reduction with NADPH was measured in 120 mM potassium phosphate (pH 7.0) at a methenyl H_4MPT concentration of 30 μM and an NADPH concentration of 50 µM. The NADPH was regenerated with glucose-6-phosphate (2 mM) and glucose-6-phosphate dehydrogenase (10 U).

Methenyl H4F reduction with NADPH was measured in 120 mM potassium phosphate (pH 7.0) at a methenyl H₄F concentration of 30 µM and an NADPH concentration of 50 µM.

Purification of methylene H₄MPT dehydrogenase. All purification steps were performed at 4°C under aerobic conditions. To 23 ml of cell extract stirred on ice, 34.5 ml of saturated ammonium sulfate in 50 mM Tris-HCl (pH 7.0) was added to a final concentration of 60% saturation. After 20 min of stirring, the precipitated protein was removed by 30 min of centrifugation at $20,000 \times g$. The supernatant was applied to a phenyl Sepharose (High Performance 26/10; Phar-

macia Biotech) column equilibrated with 2 M ammonium sulfate in 50 mM Tris-HCl (pH 7.0). With a linear gradient decreasing from 2 to 0 M (NH₄)₂SO₄ (600 ml), the dehydrogenase activity eluted at about 0.25 M (NH₄)₂SO₄. Combined active fractions were concentrated with Centricon 30 microconcentrators (Millipore), washed with 50 mM MOPS-KOH (pH 7.0) (1:5), and subjected to anion-exchange chromatography on a Q Sepharose column (High Performance 16/10; Pharmacia Biotech). The enzyme activity was recovered in the flowthrough of the column (50 mM MOPS-KOH [pH 7.0]). Active fractions were pooled, washed, and concentrated by using Centricon 30 microconcentrators and 50 mM morpholineethanesulfonic acid (MES)-NaOH (pH 5.5). The enzyme was further purified by cation-exchange chromatography on a Mono S column (5/5; Pharmacia Biotech) via a linear gradient from 0 to 0.2 M NaCl in 50 mM MES-NaOH (pH 5.5) (57 ml). Methylene H₄MPT dehydrogenase was recovered at 0.16 M NaCl, diluted (1:3) with 50 mM MES-NaOH (pH 5.5), and rechro-

matographed on a Mono S column by using the same gradient. Determination of the N-terminal amino acid sequence. Purified enzyme was electrophoresed in the presence of sodium dodecyl sulfate (SDS), and the 32kDa band was electroblotted onto a poly(vinyl trifluoride) membrane (Applied Biosystems). Sequence determination was performed on a 477 protein/peptide sequencer from Applied Biosystems by D. Linder, Giessen, Germany.

Determination of dephospho-H₄MPT and H₄F concentrations. A cell extract (3 ml) of M. extorquens AM1 was ultrafiltrated with Centricon 3 microconcentrators. The filtrate, containing the low-molecular-mass compounds, was then supplemented with 15 mM formaldehyde, 2 mM NADP⁺, and 2 U of purified methylene H4MPT dehydrogenase in order to convert dephospho-H4MPT and H₄F into dephospho-methenyl H₄MPT and methenyl H₄F, respectively. Up to this point, all steps were performed under strictly anaerobic conditions. Subsequently, the filtrate was subjected to HPLC with a LiChrospher RP-18 column (14 mm by 125 mm) (Merck). Absorbed compounds were eluted (1 ml/min) with a linear gradient (30 ml) of 0 to 50% methanol in 25 mM sodium formate (pH 3.0). The eluate was continuously monitored for absorbance at 335, 356, and 274 nm, and UV-visible spectra were recorded by using a Hewlett-Packard 1050 diode array detector. The retention times were 20.0 min for dephospho-methenyl H₄MPT, 18.8 min for methenyl H₄MPT, and 17.9 min for methenyl H₄F. The methenyl H4MPT had been added to the filtrate for calibration. The methenyl derivatives were analyzed by matrix-assisted laser desorption ionization time-offlight (MALDI/TOF) mass spectrometry by J. Kahnt, Marburg, Germany, using Voyager-DE RP (PerSeptive Biosystems).

RESULTS

Cell extracts of M. extorquens AM1 grown on methanol catalyzed the reduction of NADP⁺ with methylene H_4MPT (2.6 U/mg), the reduction of NADP⁺ with methylene H_4F (0.2 U/mg), and the reduction of NAD⁺ with methylene H_4MPT (0.6 U/mg) rather than with methylene H_4F (<0.01 U/mg). The activities were associated with the soluble cell fraction. The two NADP-dependent activities were found to copurify and to be separated from the NAD-dependent activity upon ammonium sulfate precipitation. Purification was possible under aerobic conditions.

Cell extracts of M. extorquens AM1 did not catalyze the reduction of coenzyme F420 with methylene H4MPT or methylene H_4F . They also appeared not to contain coenzyme F_{420} , as determined spectrofluorometrically.

Purification and molecular properties. The two NADP-dependent activities were purified by hydrophobic chromatography on a phenyl Sepharose column, by anion-exchange chromatography on a Q Sepharose column, and by cation-exchange chromatography on a Mono S column. In each step a complete copurification of NADP-dependent methylene H₄MPT dehydrogenase and NADP-dependent methylene H₄F dehydrogenase was observed. Purification of both activities was approximately 130-fold with 24% yields (Table 1).

After the second chromatography on Mono S, the preparation contained only one polypeptide, with an apparent molecular mass of 32 kDa, as revealed by SDS-polyacrylamide gel electrophoresis (PAGE) (Fig. 2). The N-terminal amino acid sequence (SKKLLFQFDTDATPSVFDVV) determined by Edman degradation and the apparent molecular mass conformed with those predicted for the mtdA product (7).

The purified enzyme eluted from Superdex 200, a gel filtration column, with an apparent molecular mass of 93 kDa (data

TABLE 1. Copurification of NADP-dependent methylene H_4F
dehydrogenase and NADP-dependent methylene H ₄ MPT
dehydrogenase activities from <i>M. extorquens</i>
AM1 grown on methanol

Purification step	Protein (mg)	Activity (U) ^{<i>a</i>} with:		Fold purifi-	Yield
		H_4F	H ₄ MPT	cation ^b	(%)
Cell extract	642	127	1,652	1	100
$(NH_4)_2SO_4$ supernatant	129	107	1,408	4	85
Phenyl Sepharose	28	88	1,278	18	77
Q Sepharose	3.4	61	1,020	115	62
Mono S I ^c	2.5	55	812	125	49
Mono S II	1.2	31	495	128	24

^a Determined at 30°C under standard assay conditions.

^b Calculated for activities determined with methylene H₄MPT.

^c Mono S I and Mono S II, first and second chromatographies, respectively, on a Mono S column.

not shown), suggesting that the dehydrogenase has a homotrimeric structure.

The UV-visible spectrum of the enzyme was that of a protein lacking a chromophoric prosthetic group (data not shown). The ε_{280} determined and the ε_{280} calculated from the tyrosine, phenylalanine, and tryptophan contents of the enzyme coincided within a 5% range.

The calculated pI for MtdA is 7.2, conforming with the property of the enzyme to bind to cation-exchange resins at pHs below 7.

The enzyme could be stored at -20° C under aerobic conditions for several weeks without loss of activity.

Catalytic properties. The purified enzyme was found to be similarly active with the H_4MPT and the dephospho- H_4MPT derivatives, allowing for determination of the catalytic properties by using the more readily available H_4MPT . Apparently, the modification in the side chain (Fig. 1) has little effect on the enzyme activity, a phenomenon also observed for the various H_4MPT -dependent enzymes in methanogenic archaea (14, 23, 26, 27).

Under the standard assay conditions described in Materials and Methods, the purified enzyme catalyzed the dehydrogenation of methylene H_4MPT with NADP⁺ with a specific activity of 413 U/mg and the dehydrogenation of methylene H_4F with NADP⁺ with a specific activity of 26 U/mg. It also catalyzed

FIG. 2. SDS-PAGE analysis of purified methylene H₄MPT dehydrogenase from *M. extorquens* AM1. Protein was separated on a 16% polyacrylamide gel and subsequently stained with Coomassie brilliant blue (17). Lane A, low-molecular-mass standards (Pharmacia Biotech); lane B, 5 μ g of purified MtdA.

FIG. 3. Kinetics of methylene H₄MPT dehydrogenation with NADP⁺ as catalyzed by NADP⁺-dependent methylene H₄MPT dehydrogenase from *M. extorquens* AM1. (A and C) Plots of 1/ ν versus 1/[S], where velocity (ν) is given as micromoles of substrate converted per minute. (B and D) Replots of 1/apparent (app.) $V_{\rm max}$ versus 1/[S]. Assay conditions were as follows: temperature, 30°C; pH 6.0; NADP⁺ and methylene H₄MPT concentrations as indicated; 50 ng of purified methylene H₄MPT dehydrogenase.

the reverse reactions, the reduction of methenyl H_4MPT to methylene H_4MPT (9 U/mg) and of methenyl H_4F to methylene H_4F (15 U/mg) using NADPH. For thermodynamic reasons (see below), the reduction of methenyl H_4MPT to methylene H_4MPT could be monitored only when an NADPHregenerating system was employed.

The dependence of the rate of methylene H₄MPT dehydrogenation with NADP⁺ on the concentrations of the substrates was determined. Reciprocal plots of the initial rates versus the concentration of one substrate at different fixed concentrations of the second substrate yielded straight lines (Fig. 3A and C). From reciprocal plots of 1/apparent V_{max} versus 1/[S], where [S] is the concentration of the substrate, a V_{max} of 600 U/mg, a K_m for methylene H₄MPT of approximately 20 μ M, and a K_m for NADP⁺ of approximately 30 μ M were obtained (Fig. 3B and D). With methylene H₄F as the substrate, the V_{max} was approximately 30 U/mg, the K_m for methylene H₄F was approximately 30 μ M, and the K_m for NADP⁺ was approximately 10 μ M (data not shown). Thus, the enzyme catalyzed the dehydrogenation of methylene H₄MPT with an approximately 20-fold-higher cat-

alytic efficiency (V_{max}/K_m) than the dehydrogenation of methylene H_4F .

Due to the relatively low K_m values for both substrates, it was not possible to accurately measure the rate dependence on the substrate concentration at concentrations much lower than the K_m . Such measurements would be required to ascertain whether the lines in the double reciprocal plots shown in Fig. 3A and C really converge or are parallel, which would indicate a ternary complex (sequential) or a ping-pong catalytic mechanism, respectively. The absence of a chromophoric prosthetic group argues for a ternary complex (sequential) catalytic mechanism.

The optimum pH for methylene H₄MPT dehydrogenation was near 6.0, and the optimum temperature was near 45°C. The activity was slightly stimulated by salts, and maximal activity was reached at a potassium phosphate concentration of 120 mM (pH 6.0). NaCl concentrations higher than 100 mM were inhibitory.

The purified enzyme did not catalyze the reduction of NAD⁺, flavin adenine dinucleotide, flavin mononucleotide, coenzyme F420, or dyes such as methylene blue or benzyl viologen using either methylene H₄MPT or methylene H₄F. It also did not exhibit methenyl H₄MPT cyclohydrolase or methenyl H₄F cyclohydrolase activity.

Thermodynamics. Methylene H₄MPT dehydrogenation using NADP⁺ was found to proceed almost to completion. The reverse reaction, the reduction of methenyl H₄MPT using NADPH, ceased after less than 1% of the methylene H₄MPT had been reduced, as predicted from the E_0 of -390 mV of the N^5, N^{10} -methenyl H₄MPT- N^5, N^{10} -methylene H₄MPT couple and the E_0 of -320 mV of the NADP⁺-NADPH couple. In the case of methylene H₄F dehydrogenation, equilibrium was attained when about 30% of the methylene H₄F had been converted to methenyl H₄F, in agreement with the E_0 of -300 mVof the methylene H₄F-methenyl H₄F couple. From the concentrations at equilibrium, free energy changes (ΔG° values) of -13 and +3 kJ/mol were calculated for methylene H₄MPT dehydrogenation and methylene H₄F dehydrogenation, respectively.

Intracellular concentrations of dephospho-H₄MPT and H₄F. Dephospho-H₄MPT and H₄F in cell extracts of *M. extorquens* AM1 were converted into more stable and readily detectable methenyl derivatives, which were subsequently subjected to reversed-phase HPLC and quantitated spectroscopically. Per milligram of cell extract protein, 1.4 nmol of dephosphomethenyl H₄MPT and 0.5 nmol of methenyl H₄F were detected, corresponding to intracellular concentrations of 0.4 and 0.15 mM, respectively, assuming that the intracellular volume is 3.3 μ l/mg of protein, as in other procaryotes (3).

Dephospho-methenyl H₄MPT and methenyl H₄F were identified by their retention times on the HPLC column (internal standardization [data not shown]) and by the UV-visible spectra (Fig. 4), and their masses were determined by MALDI/ TOF mass spectrometry (data not shown). The dephosphomethenyl H₄MPT isolated from *M. extorquens* AM1 was used as the substrate by the NADP-dependent methylene H_4MPT dehydrogenase with a specific activity similar to that for methenyl H₄MPT.

The HPLC analysis did not yield evidence for the presence of tetrahydropterin derivatives other than dephospho-H₄MPT and H_4F .

DISCUSSION

The NADP-dependent methylene H_4MPT dehydrogenase from M. extorguens AM1 has several properties in common

FIG. 4. UV-visible spectra of dephospho-methenyl H₄MPT and methenyl H₄F isolated from *M. extorquens* AM1 grown on methanol. The compounds were separated by HPLC, and their spectra were recorded online by diode array detection.

with the two kinds of methylene H₄MPT dehydrogenases found in methanogenic archaea, the F₄₂₀-dependent methylene H₄MPT dehydrogenase (16) and the H₂-forming methylene H_4 MPT dehydrogenase (29). The three types of dehydrogenases are all composed of only one type of subunit with a molecular mass between 30 and 40 kDa, and they all lack a chromophoric prosthetic group and exhibit a ternary complex (sequential) catalytic mechanism. However, the three enzymes show only a very low degree of sequence similarity (<15%). Only minor sequence similarities are also found with NAD(P)dependent methylene H₄F dehydrogenases from bacteria and eucarya, which, with a few exceptions (2, 20, 24, 31, 38), are generally more complex, multifunctional enzymes containing additionally methenyl H4F cyclohydrolase in bacteria and both methenyl H_4F cyclohydrolase and N⁵-formyl H_4F synthetase activities (1, 9) in eucarya. Therefore, based on differences in amino acid sequence and coenzyme specificity, four families of methylene tetrahydropterin dehydrogenases can be defined; they catalyze the following reactions:

methylene $H_4MPT + NADP^+ \rightleftharpoons$ methenyl $H_4MPT^+ +$ NADPH ($\Delta G^{\circ} = -13 \text{ kJ/mol}$)

methylene H₄MPT + F₄₂₀ + H⁺ \rightleftharpoons methenyl H₄MPT⁺ + F₄₂₀H₂ (Δ G° = -5.5 kJ/mol)

methylene $H_4MPT + H^+ \rightleftharpoons$ methenyl $H_4MPT^+ + H_2$ $(\Delta G^\circ = +5.5 \text{ kJ/mol})$

methylene $H_4F + NAD(P)^+ \rightleftharpoons$ methenyl $H_4F^+ +$ NAD(P)H ($\Delta G^{\circ} = +3.5 \text{ kJ/mol}$)

Within each of the four families, all enzymes show sequence similarity, even when they belong to organisms that are very distantly related phylogenetically.

In addition to the NADP-dependent methylene H₄MPT dehydrogenase, M. extorquens AM1 cell extracts contain an NAD-dependent methylene H₄MPT dehydrogenase activity. Genetic evidence indicates that this enzyme is encoded by orfX

FIG. 5. Possible role of methylene H_4MPT dehydrogenase (MtdA) and other enzymes in growth of *M. extorquens* AM1 on methanol. Note that the presence of methanofuran in *M. extorquens* AM1 has not been proven. It is not known whether N^5 -formyl H_4MPT can support purine biosynthesis.

(6). The amino acid sequence of OrfX is 30% identical to that of the NADP-dependent methylene H_4MPT dehydrogenase. While the NADP-dependent dehydrogenase (MtdA) exhibits some activity with methylene H_4F , the NAD-dependent methylene H_4MPT dehydrogenase is specific for H_4MPT (unpublished results).

For understanding possible functions of the pyridine nucleotide-dependent methylene H₄MPT dehydrogenases found so far only in M. extorquens AM1, it is important that they preferentially catalyze the C_1 oxidation reaction, whereas the three other methylene tetrahydropterin dehydrogenases can, in principle, operate in both directions. It is also of importance that the NADP-dependent methylene H₄MPT dehydrogenase exhibits some NADP-dependent methylene H₄F dehydrogenase activity and that M. extorquens AM1 contains dephospho-H₄MPT and H₄F at similar concentrations. Under certain conditions the NADP-dependent methylene H₄MPT dehydrogenase could therefore also function in the reversible dehydrogenation of methylene H_4F . There is evidence that methanolgrown M. extorquens AM1 contains an H₄F-specific serine hydroxymethyltransferase and an H₄F-specific methenyl H₄F cyclohydrolase (unpublished results). There is also evidence for the presence of an H₄MPT-specific methenyl H₄MPT cyclohydrolase and an H₄MPT-specific formylmethanofuran:H₄MPT formyltransferase. It therefore appears that in M. extorquens AM1 two independent C₁ transfer pathways are simultaneously operative, one that involves dephospho-H₄MPT as the C_1 carrier and is most likely to operate in the oxidative direction and one that involves $H_{a}F$ and might operate in either direction, depending upon cellular pools of intermediates (Fig. 5). Purification and characterization of the enzymes involved in these pathways are an important step in the elucidation of the roles of the two C₁ transfer pathways in the anabolism and catabolism of *M. extorquens* AM1 growing on methanol.

ACKNOWLEDGMENTS

This work was supported by the Max-Planck-Gesellschaft, the Deutsche Forschungsgemeinschaft, and the Fonds der Chemischen Industrie (R.K.T.) and by an NIH grant to M.E.L. (GM36296).

REFERENCES

- Allaire, M., Y. G. Li, R. E. MacKenzie, and M. Cygler. 1998. The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunctional enzyme at 1.4 Å resolution. Structure 6:173–182.
- Barlowe, C. K., and D. R. Appling. 1990. Isolation and characterization of a novel eucaryotic monofunctional NAD⁺-dependent 5,10-methylenetetrahydrofolate dehydrogenase. Biochemistry 29:7089–7094.
- Blaut, M., and G. Gottschalk. 1984. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in *Methanosarcina barkeri*. Eur. J. Biochem. 141:217–222.
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
- Breitung, J., G. Börner, S. Scholz, D. Linder, K. O. Stetter, and R. K. Thauer. 1992. Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran:tetrahydromethanopterin formyltransferase from the extreme thermophile *Methanopyrus kandleri*. Eur. J. Biochem. 210:971– 981.
- Chistoserdova, L., J. A. Vorholt, R. K. Thauer, and M. E. Lidstrom. 1998. C₁-transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science 281:99–102.
- Chistoserdova, L. V., and M. E. Lidstrom. 1994. Genetics of the serine cycle in *Methylobacterium extorquens* AM1: identification of *sgaA* and *mtdA* and sequences of *sgaA*, *hprA*, and *mtdA*. J. Bacteriol. 176:1957–1968.
- Eirich, L. D., G. D. Vogels, and R. S. Wolfe. 1978. Proposed structure for coenzyme F₄₂₀ from *Methanobacterium*. Biochemistry 17:4583–4593.
 Enßle, M., C. Zirngibl, D. Linder, and R. K. Thauer. 1991. Coenzyme F₄₂₀
- Enßle, M., C. Zirngibl, D. Linder, and R. K. Thauer. 1991. Coenzyme F₄₂₀ dependent N⁵,N¹⁰-methylenetetrahydromethanopterin dehydrogenase in methanol-grown *Methanosarcina barkeri*. Arch. Microbiol. 155:483–490.
- 10. Escalante-Semerena, J. C., K. L. Rinehart, and R. S. Wolfe. 1984. Tetrahy-

dromethanopterin, a carbon carrier in methanogenesis. J. Biol. Chem. 259: 9447–9455.

- Fulton, G. L., D. N. Nunn, and M. E. Lidstrom. 1984. Molecular cloning of a malyl coenzyme A lyase gene from *Pseudomonas* sp. strain AM1, a facultative methylotroph. J. Bacteriol. 160:718–723.
- Gloss, L. M., and R. P. Hausinger. 1987. Reduction potential characterization of methanogen factor 390. FEMS Microbiol. Lett. 48:143–145.
- Keltjens, J. T., and G. D. Vogels. 1988. Methanopterin and methanogenic bacteria. BioFactors 1:95–103.
- 14. Keltjens, J. T., A. J. A. M. Brugman, J. M. A. Kesseleer, B. W. J. te Brömmelstroet, C. van der Drift, and G. D. Vogels. 1992. 5-Formyl-5,6,7,8tetrahydromethanopterin is the intermediate in the process of methanogenesis in *Methanosarcina barkeri*. BioFactors 3:249–255.
- Keltjens, J. T., and G. D. Vogels. 1993. Conversion of methanol and methylamines to methane and carbon dioxide, p. 253–303. *In J. G. Ferry* (ed.), Methanogenesis. Chapman & Hall, New York, N.Y.
- Klein, A. R., and R. K. Thauer. 1997. Overexpression of the coenzyme-F₄₂₀dependent N⁵,N¹⁰-methylenetetrahydromethanopterin dehydrogenase gene from the hyperthermophilic *Methanopyrus kandleri*. Eur. J. Biochem. 245: 386–391.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
- MacKenzie, R. E. 1984. Biogenesis and interconversion of substituted tetrahydrofolates, p. 256–306. *In R. L. Blakley and S. J. Benkovic (ed.)*, Folates and pterins. John Wiley & Sons, New York, N.Y.
- Marison, I. W., and M. M. Attwood. 1982. A possible alternative mechanism of the oxidation of formaldehyde to formate. J. Gen. Microbiol. 128:1441– 1446.
- Moore, M. R., W. E. O'Brien, and L. G. Ljungdahl. 1974. Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from *Clostridium formicoaceticum*. J. Biol. Chem. 249:5250–5253.
- Nunn, D. N., and M. E. Lidstrom. 1986. Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene of *Methylobacterium* sp. strain AM1. J. Bacteriol. 166:581–590.
- Peel, D., and J. R. Quayle. 1961. Microbial growth on C₁ compounds. 1. Isolation and characterization of *Pseudomonas* AM1. Biochem. J. 81:465–469.
- Raemakers-Franken, P. C., A. J. Kortstee, C. van der Drift, and G. D. Vogels. 1990. Methanogenesis involving a novel carrier of C₁ compounds in *Methanogenium tationis*. J. Bacteriol. **172**:1157–1159.
- Ragsdale, S. W., and L. G. Ljungdahl. 1984. Purification and properties of NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from *Acetobacterium woodii*. J. Biol. Chem. 259:3499–3503.
- 25. Schleucher, J., C. Griesinger, B. Schwörer, and R. K. Thauer. 1994. H₂forming N⁵, N¹⁰-methylenetetrahydromethanopterin dehydrogenase from *Methanobacterium thermoautotrophicum* catalyzes a stereoselective hydride

transfer as determined by two-dimensional NMR spectroscopy. Biochemistry **33**:3986–3993.

- te Brömmelstroet, B. W., C. M. H. Hensgens, W. J. Geerts, J. T. Keltjens, C. van der Drift, and G. D. Vogels. 1990. Purification and properties of 5,10methenyltetrahydromethanopterin cyclohydrolase from *Methanosarcina barkeri*. J. Bacteriol. 172:564–571.
- 27. te Brömmelstroet, B. W., W. J. Geerts, J. T. Keltjens, C. van der Drift, and G. D. Vogels. 1991. Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F₄₂₀-dependent enzymes, from *Methanosarcina barkeri*. Biochim. Biophys. Acta 1079:293–302.
- Thauer, R. 1997. Biodiversity and unity in biochemistry. Antonie Leeuwenhoek 71:21–32.
- Thauer, R. K., A. R. Klein, and G. C. Hartmann. 1996. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem. Rev. 96:3031–3042.
- Tsuji, K., H. C. Tsien, R. S. Hanson, S. R. DePalma, R. Scholtz, and S. LaRoche. 1990. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J. Gen. Microbiol. 136:1– 10.
- Uyeda, K., and J. C. Rabinowitz. 1967. Enzymes of clostridial purine fermentation. Methylenetetrahydrofolate dehydrogenase. J. Biol. Chem. 242: 4378–4385.
- 32. Van Beelen, P., A. P. M. Stassen, J. W. G. Bosch, G. D. Vogels, W. Guijt, and C. A. G. Haasnoot. 1984. Elucidation of the structure of methanopterin, a coenzyme from *Methanobacterium thermoautotrophicum*, using two-dimensional nuclear-magnetic-resonance techniques. Eur. J. Biochem. 138:563–571.
- 33. Van Beelen, P., J. F. A. Labro, J. T. Keltjens, W. J. Geerts, G. D. Vogels, W. H. Laarhoven, W. Guijt, and C. A. G. Haasnoot. 1984. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur. J. Biochem. 139:359–365.
- Walsh, C. 1986. Naturally occurring 5-deazaflavin coenzymes: biological redox roles. Acc. Chem. Res. 19:216–221.
- White, R. H. 1998. Methanopterin biosynthesis: methylation of the biosynthetic intermediates. Biochim. Biophys. Acta 1380:257–267.
- Wohlfarth, G., G. Geerligs, and G. Diekert. 1990. Purification and properties of a NADH-dependent 5,10-methylenetetrahydrofolate reductase from *Peptostreptococcus productus*. Eur. J. Biochem. **192:**411–417.
- Wohlfarth, G., and G. Diekert. 1991. Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch. Microbiol. 155:378– 381.
- Wohlfarth, G., G. Geerligs, and G. Diekert. 1991. Purification and characterization of NADP⁺-dependent 5,10-methylenetetrahydrofolate dehydrogenase from *Peptostreptococcus productus* Marburg. J. Bacteriol. 173:1414– 1419.