Plant Gene Register

Nucleotide Sequence of a cDNA Encoding NADP-Sorbitol-6-Phosphate Dehydrogenase from Apple¹

Yoshinori Kanayama*, Hitoshi Mori, Hidemasa Imaseki, and Shohei Yamaki

Laboratory of Horticultural Science (Y.K., S.Y.) and Research Institute for Biochemical Regulation (H.I.), School of Agricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464–01, Japan; and Division of Biological Regulation, National Institute for Basic Biology, Myodaijicho, Okazaki 444, Japan (H.M., H.I.)

Sorbitol plays a key role in the translocation of photosynthate in the Rosaceae family, including apple (*Malus domestica*), pear, and stone fruits (4, 7). NADP-S6PDH² plays the most important role in biosynthesis of sorbitol in apple because its activity increases before accumulation of sorbitol in seedlings (8), and high activity is maintained in leaves (10). This enzyme reduces G6P to S6P using only NADPH (1, 6). Therefore, S6P dehydrogenase (EC 1.1.1.140), which catalyzes NAD-dependent conversion between fructose 6-phosphate and S6P in microorganisms (3), is different from NADP-S6PDH described in this paper.

We report the isolation of a cDNA clone encoding NADP-S6PDH from apple (Table I). To our knowledge, this is the first report of the complete primary structure of a sorbitolrelated enzyme from plants. A cDNA library constructed from apple seedlings was screened with the antibody against NADP-S6PDH purified from loquat leaves (1). The nucleotide and deduced amino acid sequences of the clone cDNA is shown in Figure 1.

ACKNOWLEDGMENTS

We thank Dr. M. Hirai, National Research Institute of Vegetables, Ornamental Plants, and Tea, for the gift of antibodies. We also thank Ms. H. Kajiura, National Institute for Basic Biology, for amino acid sequencing work.

LITERATURE CITED

- 1. **Hirai M** (1981) Purification and characteristics of sorbitol-6phosphate dehydrogenase from loquat leaves. Plant Physiol **67:** 221–224
- 2. Inglis AS (1983) Cleavage at aspartic acid. Methods Enzymol 91: 324-332
- Liss M, Horwitz SB, Kaplan NO (1962) D-Mannitol-1-phosphate dehydrogenase and D-sorbitol-6-phosphate dehydrogenase in Aerobacter aerogenes. J Biol Chem 237: 1342-1350
- 4. Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Plant **70**: 553–557
- Mori H, Takeda-Yoshioka Y, Hara-Nishimura I, Nishimura M (1991) Pumpkin malate synthase. Cloning and sequencing of the cDNA, and northern blot analysis. Eur J Biochem 197: 331-336
- 6. Negm FB, Loescher WH (1981) Characterization and partial purification of aldose-6-phosphate reductase (alditol-6-phosphate:NADP 1-oxidoreductase) from apple leaves. Plant Physiol 67: 139–142
- Webb KL, Burley JWA (1962) Sorbitol translocation in apple. Science 137: 766
- 8. Yamaki S (1980) Property of sorbitol-6-phosphate dehydrogenase and its connection with sorbitol accumulation in apple. Hortscience 15: 268–270
- Yamaki S (1981) Subcellular localization of sorbitol-6-phosphate dehydrogenase in protoplast from apple cotyledons. Plant Cell Physiol 22: 359–367
- Yamaki S, Ishikawa K (1986) Role of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J Am Soc Hort Sci 111: 134-137

¹ This study was carried out under the National Institute for Basic Biology Cooperative Research Program (91–166).

² Abbreviations: NADP-S6PDH, NADP-dependent D-sorbitol-6-phosphate dehydrogenase; G6P, D-glucose 6-phosphate; S6P, D-sorbitol 6-phosphate.

Table I. (Characteristics of a	cDNA I	Encoding .	Apple NADP-S6PDH
------------	----------------------	--------	------------	------------------

Organism:

Malus domestica.

Function:

S6P + NADP⁺ \rightleftharpoons G6P + NADPH + H⁺ (1, 6).

Techniques:

A cDNA library constructed in pBluescript (Stratagene) by the vector-primer method (5) was screened with polyclonal antibodies raised against purified loquat NADP-S6PDH (1). Sequencing of double-stranded DNA was by the dideoxynucleotide method. T7 primer was used for sequencing of deletion mutants, and synthetic oligonucleotide primers were used for the other strand.

Methods of Identification:

Sequence identity with a partial amino acid sequence of a polypeptide obtained by cleavage (2) of purified NADP-S6PDH at Pro²³¹ to Ala²⁴⁵ of the deduced sequence; detection of NADP-S6PDH activity in an extract of *Escherichia coli* harboring the cDNA; synthesis of an immunoreactive protein similar in size to the purified enzyme in *E. coli*.

Expression Characteristics:

mRNA of approximately 1.4 kb detected by northern blot analysis of polyadenylate-enriched RNA and total RNA.

Regulation:

Unknown.

(G+C) Content:

46.4% in the coding region.

Structural Features of Protein:

Open reading frame of 310 amino acids; M_r 34,900; dimers consisting of two equally sized subunits (1).

Subcellular Location:

Chloroplast and cytosol (9).

DDBJ/EMBL/GenBank Accession No.:

D11080

						_														
	CCGCT																			
61	GTTTG	GAG	AGI	FGAG	GAAA	ACA	TGI	CCA	CCG						GCT	ACO	GAG/	ATGO	CGGT	
							М	S	Т				S		G		Е	М	P V	14
121	CATCG	GTC	TCC	GGC(CTTI	GGG	CGTC	TGG	AGA	AGG	ACG	AGC	TTA	AAG	AAG	it C A	TCI	TA A	ATGC	
	Ι	G	L	G	L	W	R		Е						Е	V	I	L		34
181	TATTA	AGA	TT	GGC1	ΓΑΤΟ	CGCC	CATI	TTG	ACT	GTG	CTG	стс	ATT	ACA	AGA	GTO	i a a c	GCAG	ACGT	
	-	K	I	G	Y	R	H		D	С	A				K	S	E	A		54
241	TGGAG	AAG	CAC	CTTO	GCAC	GAAG	GCAT	TTA	AGA	CTG	GAC	TTG	TTA	AGA	GGG	AAG	AAC	TTT	TCAT	
		Ε	A	L	A		A		K		G	L			R	Е	E	L		74
301	TACCA	CCA	AG/	ATT1	rgg/	ATT	CAG	ACC	ATG	GGC	ATG	TGG	TGG	AGG	ССТ	GTA	ĀGA	ĀCA	GCCT	
	Т	Т	K	Ι	W	N	S	D	H	G	H	V	V	E	A	С	K	N	S L	94
361	CGAGA	AGC	TT	CAG	ATAC	GATT	TATC	TGG	ATC	TCT	ACC	TGG	TTC	ACT		ĊĂĂ	TGC	CCA		••
	_		L	Q	I	D								H	Ŷ	P	M	P		114
421	GCACA	ATG	CAA	ATT	GGT/		CTG	CCA	GTC	TTT	TGG	GCG	ÅGG	ATA	ÂGG	TGT	TGG	- A C A		
			A	I	G	K									K	v	L	D		134
481	TGTAA	CAA	TTT	rcco	CTTO		Ā A A	ССТ	GGG	ĀGG	GCA									104
		Т	I	S	L	0	۵								T	v	s	1		154
541	AGTTC	GCA	GC/	TT	GTC	ŤCA	GCA	ACT	ATG	AGC	тст							กลา.		104
			S	T			S								R	D	c	100	A Y	174
601	CTCCA	AAA	TAA	ĀGO	ČTG													ຄວລີຍ		114
			ī	ĸ			v					T		P		F	0	R	DS	194
661	TCTCG		•																	134
			ĸ	F	C		K			v						T			G G	214
721	TGCTG																			214
			A	N	K	D							P		D	D	P			234
781	TGATG																			234
101			A		K				S						L I I	R	W	G		254
841	GAGGA																		TCCA	2 9 4
011			T	A			P								L I UN	K	E			274
901	GGTTC	•••	•	••																614
			E	F	0			D						I		S				294
961	GTATC	-	-	-	-	-	~													634
001			T		L	P		K							Y		лли	ou I	UCCA	310
1021	TTCAA	••	-	-	-	-											100	C A A	6664	310
1081	AATGG	AAA	CTA	ŤČ	TGA	ATC	TTA	CTT	ACA	ATA	110	TGA	GCT		TAT	AAT	TTT	CCA	CITC	
	CTCAT																			
1201	GAAAA	TAT	1 1			000	TTC	TAT	107 111	11A TTT	100	TAC	TTA	1 U U	A 1 1 A A T	CIC		TTA	AACA	
	AAAAA										100	170			~~!	unu		IIA	ANUA	
												-								

Figure 1. Nucleotide sequence and deduced amino acid sequence of a cDNA encoding apple NADP-S6PDH. The partial amino acid sequence determined by Edman degradation of a peptide fragment obtained from NADP-S6PDH is underlined.