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ABSTRACT
◥

Enhancers are noncoding regulatory DNA regions that mod-
ulate the transcription of target genes, often over large distances
along with the genomic sequence. Enhancer alterations have been
associated with various pathological conditions, including can-
cer. However, the identification and characterization of somatic
mutations in noncoding regulatory regions with a functional
effect on tumorigenesis and prognosis remain a major challenge.
Here, we present a strategy for detecting and characterizing
enhancer mutations in a genome-wide analysis of patient
cohorts, across three lung cancer subtypes. Lung tissue–
specific enhancers were defined by integrating experimental data
and public epigenomic profiles, and the genome-wide enhancer–
target gene regulatory network of lung cells was constructed by
integrating chromatin three-dimensional architecture data. Lung
cancers possessed a similar mutation burden at tissue-specific
enhancers and exons but with differences in their mutation

signatures. Functionally relevant alterations were prioritized on
the basis of the pathway-level integration of the effect of a
mutation and the frequency of mutations on individual enhan-
cers. The genes enriched for mutated enhancers converged on the
regulation of key biological processes and pathways relevant to
tumor biology. Recurrent mutations in individual enhancers also
affected the expression of target genes, with potential relevance
for patient prognosis. Together, these findings show that non-
coding regulatory mutations have a potential relevance for cancer
pathogenesis and can be exploited for patient classification.

Significance: Mapping enhancer–target gene regulatory inter-
actions and analyzing enhancer mutations at the level of their target
genes and pathways reveal convergence of recurrent enhancer
mutations on biological processes involved in tumorigenesis and
prognosis.

Introduction
Lung cancer is the leading cause of cancer-related deaths world-

wide (1), with the majority of lung cancers associated with long-term
tobacco smoking. Furthermore, lung cancer is the tumor type with the
second highest reported mutation burden amounting to 12.9 single-
nucleotide variants (SNV) per megabase for smokers (2).

In this landscape of overall high mutation rate, driver somatic
mutations with transforming potential in lung cancers have been
reported for several oncogenes such as EGFR, ALK, ERBB2, BRAF,
ROS1,MET, RET, NTRK1, NRG1, KRAS, as well as tumor-suppressor
genes TP53 and STK11 (3–5). Despite the advances in targeted
therapies against driver genes, lung cancers are still associated with

poor survival and a high death-to-incidence rate (1). Therefore, it
would be crucial to identify additional alterations beyond the com-
monly mutated genes to further characterize lung cancer biology and
possibly open new avenues for treatment.

Cancer genomics studies predominantly focused on characterizing
mutations in protein coding sequence (CDS) regions. However,
noncoding regulatory elements such as enhancers and promoters play
a pivotal role in transcription regulation (6) and are enriched for
transcription factor–binding sites (TFBS; ref. 7). An ever-increasing
amount of evidence suggests that alterations in noncoding regulatory
elements can drive pathological phenotypes in various diseases (8–10).
Moreover, genome-wide association studies reported a large fraction
of disease-associated SNPs in distal noncoding regulatory elements
(enhancers; refs. 11, 12), including SNPs associated to increased cancer
risk. Furthermore, accumulating evidence corroborates the functional
consequences for tumorigenesis of mutations in regulatory ele-
ments (13). In this context, the genetic or epigenetic mis-regulation
of enhancers emerged as a potential pathogenic mechanism in can-
cer (14). Moreover, mutations in noncoding regulatory regions may
exert a functional effect through multiple mechanisms, including
alterations in transcription regulation, disruption of chromatin
domain structure, changes in mRNA stability, and creation of de novo
TFBSs (13).

However, characterizing genome-wide functional relevance of non-
coding regulatory regions mutations in cancer is still a significant
challenge, despite some scoring methods proposed in the
literature (15–18). In this context, enhancers stand out as especially
critical noncoding regulatory features. Indeed, on the one hand,
enhancers are the most cell type–specific players among the epigenetic
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determinants of cell identity (19) and several chromatin remodeling
factors acting on enhancers are often mutated in tumors (20), thus
attesting to their crucial functional relevance for cell homeostasis.
However, on the other hand, studying genetic or epigenetic alterations
of enhancers is specifically challenging due again to their intrinsic cell-
type specificity and the difficulties in the genome-wide definition of the
enhancer–target genes (ETG) regulatory network.

Indeed, even though a specific gene may be active in multiple cell
types, its activation can be regulated by different enhancers in different
contexts (21). Active enhancers are generally defined using functional
genomics data, thus providing a cell type–specific definition (22, 23).
Therefore, to assess the impact of noncoding mutations in putative
enhancer regions, it is necessary to estimate the cell-specific activity of
enhancers within the tissue of origin of the cancer being studied.

Enhancers are generally distant from their target promoters along
with the linear sequence of the genome (24). Moreover, a gene can be
regulated by more than one enhancer, and an enhancer can regulate
multiple genes (25). To this concern, we recently showed that chro-
matin three-dimensional (3D) architecture could help to disentangle
the complexity of these interactions (26). Namely, we leveraged the
biological consensus on enhancer-gene regulatory contacts occurring
in the 3D context of topologically associated domains (TAD; ref. 27).
TADs are dynamically formed by chromatin loop extrusion in inter-
phase cells (28, 29), thus, determining the stochasticity and dynamics
of enhancer–promoter interactions within a hierarchy of insulated
domains. This is a change of perspective with respect to identifying
ETG pairs just based on interaction frequencies inferred from chro-
mosome conformation capture data, and it is in line with the latest
evidence, indicating that the non-linear relationship between enhancer
contact frequency and transcription output (30, 31) can be explained
by the dynamic nature of TADs and loop extrusion (32).

Given the complexity of the ETG regulatory interactions and the
overall high mutational burden in lung cancers, in this context, it is
crucial to develop strategies to identify and prioritize the mutations in
noncoding regulatory elements with the potential to affect tumor
biology. Here, we present complementary approaches to identify and
characterize the functional role of noncoding somatic mutations in
lung cancer patient genomes. We leverage public and novel epige-
nomic profiles to define lung tissue-specific enhancers (Fig. 1A andB).
We use state-of-the-art techniques to reconstruct the ETG regulatory
interactions by leveraging the three-dimensional architecture of chro-
matin (Fig. 1C). We examine mutational burden and mutational
signature differences across distinct classes of coding and noncoding
regulatory elements. We highlight the aggregation of enhancer muta-

tions in biologically relevant pathways and gene sets (Fig. 1D and E).
We show that recurrent mutations of individual enhancers may affect
the target gene with a potential clinical relevance (Fig. 1F).

Materials and Methods
Cell cultures

Human NCI-H460 cells were obtained from the ATCC and were
cultured in RPMI-1640 medium (catalog no. BE12–167F, Lonza)
containing 10% FBS (catalog no. 10270–106 Life Technologies) and
2 mmol/L glutamine (catalog no. LOBE17605F, Euroclone).

HBEC3-KT (human bronchial epithelial cells immortalized with
CDK4 and hTERT) cells were obtained from Voden and also donated
to co-author (Luca Roz) by Prof. John Minna (UT Southwestern,
Dallas, TX) and were cultured in Keratinocyte-SFM with L-glutamine
(catalog no. 17005034 Thermo Fisher Scientific) with Keratinocyte-
SFM supplements: 0.025 mg/mL of human recombinant EGF (1–53)
and 62.5 mg/mL of bovine pituitary extract (catalog no. 37000015
Thermo Fisher Scientific).

Cell line authentication was performed using GenePrint 10 System
(Promega). Each cell line is tested any time we have to prepare a new
stock to refill our bank. All cells were cultured at 37�C in 5% CO2 and
regularly tested for Mycoplasma contamination using MycoAlert
(Lonza) in addition to the PCR method.

Chromatin immunoprecipitation sequencing experiments
Cells were cross-linked in 1% fixing solution (50 mmol/L Hepes

KOH pH7.5, 100 mmol/L NaCl, 1 mmol/L EDTA, 0.5 mmol/L
EGTA, 11% formaldehyde in water) for 10minutes at room tem-
perature, followed by lyses and chromatin shearing. 5% of chro-
matin was saved as input. Immunoprecipitation (IP) was performed
overnight on a wheel at 4�C with H3K27ac antibody (Abcam,
catalog no. ab4729, RRID:AB_2118291) or control IgG (Abcam,
catalog no. ab37415, RRID:AB_2631996) with a dilution of 2.5
ng/mL. The following day, antibody–chromatin immune complexes
were loaded onto Dynabeads Protein G (Invitrogen, catalog no.
10004D).

The bound complexes were washed twice in IP buffer (10 mmol/L
Tris-HCl pH 8.0, 140mmol/L NaCl, 1mmol/L EDTA, 0.1% SDS, 0.1%
DOC, 1% Triton X-100, 1X PMSF, 1X protease inhibitors), twice in
High Salt Solution (10 mmol/L Tris-HCl pH 8.0), 500 mmol/L NaCl,
1 mmol/L EDTA, 0.1% SDS, 0.1% DOC, 1% Triton X-100, 1X PMSF,
1Xprotease inhibitors) followed twice byRIPA-LiCl buffer (10mmol/L
Tris-HCl pH 8.0, 1mmol/L EDTA, 250mmol/L LiCl, 0.5%DOC, 0.5%

Figure 1.
Methodological framework overview. Schematic illustration of our workflow for enhancer mutation characterization.A, Lung-specific enhancer definition from eight
different lung cell and tissue types. ChIP-seq for open chromatin (H3K27ac) and chromatin accessibility (DNase-seq or ATAC-seq) from each sample are intersected
to obtain cell-specific putative enhancers. The union of the regions from each cell creates the master list after removing regions overlapping with promoters and
exons. � , in the cell line, indicates the in-house data. B, Somatic mutation calling.Whole-genome sequencing data of tumor and corresponding normal blood of three
lung cancer cohorts viz., LUAD, LUSC, and SCLC obtained from public resources are processed using an ensemble mutation calling approach to identify somatic
mutations. C, Enhancer–target gene prediction using canonical correlation of functional genomics data to investigate the synchronized activity of enhancer–
promoter pairs across multiple cell types. Implementation of the 3D colocalization information encoded in hierarchical contact score to control for FDR in multiple
testing hypotheses. D, Reconstructed ETG network with somatic mutations in enhancers. Lung-specific enhancer regulatory network reconstructed with somatic
mutations at enhancers obtained through steps A, B, and C. Dark cyan circles represent enhancers, red lightning marks represent mutations, and colored ovals
represent genes. E, Aggregation of enhancer mutations at the pathway level. Pathway level enrichment of TGEM is performed using three approaches, that is, over-
representation analysis to determine biological pathwayswith TGEM enrichment, direct heat diffusion to determine significantly affected sub-networks, and a global
test to assess the effect of TGEMon gene expression at the pathway level. F, Functional analysis to characterize recurrentlymutated enhancers. Recurrentlymutated
enhancer cores are determined for the functional characterization of a relevant enhancermutation. The effect of the enhancermutation on the target gene expression
is assessed by stratifying patients based on the presence of the enhancer mutation. Similarly, survival probability is estimated in patients stratified on the basis of the
presence of the enhancer mutation. TFBS alteration in the enhancer core upon somatic mutation is assessed to determine the mechanistic effect of enhancer
mutation. (Created with BioRender.com.)
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NP-40, 1X PMSF, 1X protease inhibitors) and once in 10mmol/L Tris-
HCl (pH 8.0). Crosslinking was reversed at 65�C overnight in elution
buffer (10 mmol/L Tris-HCl pH 8.0, 5 mmol/L EDTA, 300 mmol/L
NaCl, 0.4% SDS), DNA was purified by standard phenol/chloroform
[Phenol:Chloroform:Isoamyl Alcohol 25:24:1 (Sigma), saturated with
10 mmol/L Tris, pH 8.0, 1 mmol/L EDTA (catalog no. P3803)]
extracted, precipitated, and resuspended in 30 mL of 10mmol/L
Tris-HCl (pH 8). Chromatin immunoprecipitation (ChIP) efficiency
was tested by qPCR reactions, performed in triplicate using the SYBR
Select Master Mix (Invitrogen, 4472908) on a StepOnePlus Real-Time
PCR System (Applied Biosystems) on CDH13 promoter (positive
control) and on the gene body of RARRES2P9 (negative control;
Supplementary Table S1 for primers ETG-p1 and ETG-p2, respec-
tively). Relative enrichment was calculated as the IP/Input ratio.
Library preparation was performed starting from 5 ng of Input or
IP-DNA, using Kapa HyperPrep kit from Kapa Biosystems. A dual
index barcoded adapter was ligated to each library, followed by size
selection using Ampure XP beads; libraries undergo 12 cycles of PCR
amplification and after additional purification, were checked on
Agilent Bioanalyzer 2100 for size and quantitated on Qubit 4.0 fluo-
rometer. Equimolar amounts of indexed libraries were pooled and
loaded on Illumina HighOutput flowcell on NextSeq550 for sequenc-
ing in 2�75nt read mode. Approximately 80 million paired-end
sequencing reads were generated for each library.

Assay for transposase-accessible chromatin with sequencing
experiments

Assay for transposase-accessible chromatin with sequencing
(ATAC-seq) library preparation was carried out as previously
described in ref. 33. Briefly, 50,000 cells from each sample were
centrifuged at 500 � g at 4�C, then resuspended in ATAC-seq
resuspension buffer (RSB; 10 mmol/L Tris-HCl, 10 mmol/L NaCl,
3 mmol/L MgCl2) supplemented with 0.1% NP-40, 0.1% Tween-20
and 0.01 digitonin. Samples were incubated on ice for 15 minutes and
washed twice with 300 mL of RSB supplemented with 0.1% Tween-20.
Nuclei were pelleted at 500� g for 10minutes at 4�C. The nuclei pellet
was resuspended in 50 mL transposition mix [25 mL 2X TD buffer,
2.5mL transposase (Illumina), 16.5 mL PBS, 0.5 mL 1% digitonin, 0.5 mL
10%Tween-20, and 5mLH20] and incubated for 30minutes at 37�C in
a thermal-mixer at 1000 rpm. Samples were purified using the Qiagen
Mini elute PCR Purification kit according to the manufacturer’s
protocol (elution in 21 mL of elution buffer). Libraries were PCR-
amplified using the NEBNext High-Fidelity PCR Master Mix and
amplified for 5 cycles using NEBNext 2x MasterMix and custom
primers, as previously described in ref. 34. Libraries were sufficiently
amplified individually in addition to 5 cycles of PCR as computed from
qPCR fluorescence curves. Libraries were purified using Zymo DNA
Clean and Concentrator. The libraries were then size selected using
AMPure XP Beads.

After 12 cycles of PCR amplification and additional purification,
libraries were checked on Agilent Bioanalyzer 2100 for size and
quantitated on Qubit 4.0 fluorometer. Equimolar amounts of indexed
libraries were pooled and loaded on Illumina HighOutput flowcell on
NextSeq550 for sequencing in 2�75nt read mode. Approximately 80
million paired-end sequencing reads were generated for each library.

ChIP-seq and ATAC-seq data analysis
Paired-end raw reads were filtered on the basis of the quality

value obtained from FastQC (RRID:SCR_014583) v0.11.9 (-q 10 and -
p 30; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
using the Trim Galore! (RRID:SCR_011847) software v0.6.4_dev

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).
The filtered reads were aligned to the hg19 reference genome using
BWA(RRID:SCR_010910) v0.7.17-r1188 (https://sourceforge.net/pro
jects/bio-bwa/files/) to produce the alignment file (BAM). The PCR
duplicates were removed from the BAM files using PICARD (RRID:
SCR_006525) tools v2.23.1 (http://broadinstitute.github.io/picard/).
The BAM files were sorted and indexed for peak calling using
SAMtools (RRID:SCR_002105; https://sourceforge.net/projects/
samtools/files/samtools/). The BedGraph files were generated by
comparing BAM files of IP and input (IP read coverage/input read
coverage), resulting in a ratio for every base across the whole-
genome using bamCompare from deepTools (RRID:SCR_016366)
v3.4.3 (https://deeptools.readthedocs.io/en/develop/content/tools/
plotProfile.html). To call the peaks MACS2 (RRID:SCR_013291)
v2.2.7.1 (https://github.com/macs3-project/MACS) was used. This
framework was implemented using Nextflow (RRID:SCR_024135)
nfcore ChIP-seq (https://nf-co.re/chipseq) v1.2.1 or ATAC-seq
(https://nf-co.re/atacseq) v1.2.1 pipeline for ChIP and ATAC
sequencing data, respectively. The quality assessment of the
ChIP-seq and ATAC-seq profile are provided in Supplementary
Fig. S1A and S1B. The bed and bedgraph files obtained from the
analysis were visualized using the IGV (RRID:SCR_011793) brows-
er and further processed using custom made R and Python scripts.

Lung-specific enhancers’ definition
For the definition of lung-specific enhancers across the genome,

we leveraged two epigenetic markers of open chromatin, that is,
H3K27ac and DNase or transposase (through ATAC-seq) sensitiv-
ity. We downloaded uniformly processed H3K27ac ChIP-seq and
DNAse-seq files in bigbed format for six lung tissue/cell types (lung,
IMR-90, PC-9, A549, AG04450, lung fibroblasts) with replicates
from ENCODE3 (RRID:SCR_015482; https://www.encodeproject.
org/matrix/?type¼Experiment&replicates.library.biosample.donor.
organism.scientific_name¼Homoþsapiens&biosample_ontology.
organ_slims¼lung). In addition, we performed H3K27ac ChIP-seq
and ATAC-seq on two lung cell lines viz., HBEC3-KT and NCI-
H460.

For each of the cell or tissue type, the corresponding peak files were
first filtered to retain only peaks with strong significant enrichment,
that is, (adjusted P value ≤0.01). Following which, we merged peak
genomic coordinates across replicates and defined consensus peaks as
merged peaks overlapping individual replicate peaks inmore than 50%
of replicates.

To obtain a comprehensive list of cis-regulatory elements active in
lung cells and tissue types, we conducted a two-step procedure. First,
for each of the eight-lung cell/tissue types (viz., lung, IMR-90, PC-9,
A549, AG04450, fibroblast, NCI-H460 and HBEC3-KT), the inter-
section between H3K27ac and chromatin accessibility (ATAC or
DNase-seq–based) peaks with overlapping regions (≥6 bps) were used
to define cell-specific regulatory regions.

Additional filters were applied ex post, with respect to the tran-
scription start site (TSS) to separate promoter-proximal (within 3.5 kb
upstream and 1.5 kb downstream of TSS) or distal regulatory regions,
and only the promoter-distal ones were retained as putative cell-type–
specific enhancers for the following steps. Second, cell-type–specific
enhancers with overlapping intervals across different cell types were
merged (union) together to define a consensus set of enhancer regions.
This set was filtered on the basis of size to remove intervals larger than
2.5 kb. Noncanonical and Y chromosomes were excluded. Themerged
set of genomic regionswas alsofiltered on the basis of position to retain
only noncoding promoter-distal regions, similarly to the previous step,
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to obtain the reference list of lung-specific enhancers (N ¼ 187,206).
This was used as a comprehensive reference set of enhancer regions,
which are active in at least one of the lung cell types considered
(Supplementary Fig. S1C and S1F).

Enhancer core definition
We defined enhancer cores, as the region of overlap between lung-

specific enhancers andDNase footprinting peaks from the IMR-90 cell
line. For this purpose, we obtained the footprinting peaks from the
Roadmap Epigenomics consortium (https://egg2.wustl.edu/roadmap/
data/byDataType/dgfootprints/). The obtained enhancer cores (N ¼
335,955) were in the size range 6 to 40 bp with an average of 13bps.

Promoter definition
We defined reference promoters as 2 kb regions (1.5 kb upstream

and 0.5 kb downstream) around the TSS of annotated protein-coding
genes, based on RefSeq (RRID:SCR_003496) annotations in (hg19.
ncbiRefseq.gtf.gz; May 2019 download, hg19 reference genome assem-
bly). Noncanonical and Y chromosomes were excluded. To create a
more comprehensive list of promoters, in case of multiple alternative
transcripts for the same gene, the promoter for each transcript was
considered barring overlapping regions with exons and 50UTR of
another transcript.

Somatic mutations calling and mapping
High-coverage (average coverage for each pair of tumor and

matched normal ≥35x) whole-genome sequencing (WGS) data of
55 lung adenocarcinomas (LUAD; ref. 4), 50 lung squamous cell
carcinoma (LUSC; ref. 5), and 54 small-cell lung cancer (SCLC; ref. 35)
samples were downloaded from The Cancer Genome Atlas (TCGA;
for LUAD and LUSC cohorts) and European Genome Archive
(EGA; for the SCLC cohort) in the form of tumor and matched
normal BAM files (Supplementary Table S2; Supplementary
Fig. S2A–S2C). For the uniform processing of the samples, the
sequencing data were realigned on hg19 reference genome using BWA
following the GATK best practices (RRID:SCR_001876). Mutations
(SNVs and small indels) were called across the whole-genome using
FreeBayes (RRID:SCR_010761), MuTect (RRID:SCR_000559), Scal-
pel (RRID:SCR_012107), VarDict (RRID:SCR_023658), and Varscan
(RRID:SCR_006849). FreeBayes, Varscan, and VarDict are indel and
SNV callers whereas Scalpel is an indel-only caller and Mutect is an
SNV-only caller, thus, altogether resulting in 4 variant callers in the
ensemble. Mutations present in the low-complexity regions as defined
in ref. 36 were removed. Finally, for determining a somatic variant, we
used the concordance of a variant call by at least two tools. A custom
pipeline based on BC-BIO/bcbio-nextgen (RRID:SCR_004316;
https://github.com/bcbio/bcbio-nextgen) was used to perform all the
operations on WGS data above Supplementary Fig. S2D–S2F. The
mutation list of each sample was then mapped on the lung-specific
enhancers and promoters using pybedtools (RRID:SCR_021018;
https://daler.github.io/pybedtools/; Fig. 2A and B).

Region-specific mutation burden
To identify somatic mutation enrichment of various regions of the

genome, we computed the burden of somatic mutations in exons,
enhancers, promoters, and the rest of noncoding regions (RNCR) for
each sample. RNCRwas defined as the whole-genome devoid of exons,
enhancers, and promoters.

mutation frequency of regions type x ¼
P

i number of mutations in region xið Þ
P

i size of region xið Þ ;

where xi is any genomic region of type x, with x 2{exons, enhancers,
promoters, RNCR}.

The mutation burden of each sample was reported in the results
section as scatter plots in various comparison scenarios and the slopes
of each linear regression were estimated (Fig. 2C and D; Supplemen-
tary Fig. S2G and S2H).

Mutation signatures
To obtain an approximate estimate of the contribution of different

known mutational signatures to each sample, we used the Mutatio-
nalPatterns v3.17 package from Bioconductor (RRID:SCR_006442).
As a reference set of mutational signatures, we used a table with the
relative frequency of each of the 96 trinucleotide substitutions across
30 known mutation signatures from COSMIC (RRID:SCR_002260;
https://cancer.sanger.ac.uk/signatures/signatures_v2/) database ver-
sion 2. Mutation signatures were estimated for the whole-genome
and the relative frequency of each signature was plotted in a heat map
(Fig. 3A).

To assess the variations in mutation signature between coding and
noncoding regions in LUAD, LUSC, and SCLC samples, we computed
the relative contribution of the 30 COSMIC mutation signatures for
coding regions and noncoding regions for all the samples (Supple-
mentary Fig. S3A). To compute the difference in the relative contri-
bution of the frequency (Fig. 3B), the Wilcoxon rank-sum test using
the scipy.stats.ranksums function in SciPy (RRID:SCR_008058) was
used for each signature individually in each lung cancer subtype
(LUAD, LUSC, and SCLC). A mutation signature was deemed sig-
nificantly different between the two categories with a P value lower
than 0.01, and we reported in Fig. 3B all signatures significantly
different in at least one of the cancer subtypes. For assessing the
difference, (noncoding average relative contribution)–(coding average
relative contribution) was computed, for each lung cancer subtype.

Furthermore, the mutation signatures prevalent in enhancers,
promoters, and exons were computed (Supplementary Fig. S3B) and
the relative contribution of the signatures across samples was used to
plot box and whiskers plot. Significance was determined by one-way
ANOVA and followed by multiple comparison of means with a post
hoc test (Tukey test; Fig. 3C) to define which group means are driving
the differences, using the scipy.stats.multicomp function in SciPy.

ETG pairing
ETG pairs were identified starting with an input of 180,852 lung-

specific enhancers and 18,027 promoters as described in ref. 26. Briefly,
we computed the maximum enrichment signal of DNase-seq and
H3K27ac ChIP-seq over enhancer regions, and then we used DNase-
seq, H3K27ac, andH3K4me3 over promoter regions. As in the original
published procedure, consolidated fold-change enrichment signal
tracks in bigwig format from the Roadmap Epigenomics consortium
for 44 cell and tissue types were used as the reference compendium of
epigenomic profiles. Canonical correlation was adopted to investigate
the inter-set correlation patterns to quantify the strength of each
enhancer–promoter pair and a P value was computed for the overall
dependence between each promoter and enhancer. We selected
1,809,529 enhancer–promoter pairs with canonical correlation P value
of <0.05. To control the number of false discoveries due to multiple
hypothesis testing, we adopted the Adaptive P value thresholding
procedure (AdaPT; ref. 37) by considering relevant contextual three-
dimensional colocalization information in the formof theHierarchical
Contact (HC) score.We used the sameHC score that was computed as
described in ref. 26 based on 11 Hi-C datasets (38–43) covering
multiple cell lines and primary tissues: Lung (n ¼ 3), pancreas
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(n ¼ 2), breast (n ¼ 2), ovary, and B cells (n ¼ 2). The HC score was
computed as described in (26). Finally, we identified 48,829 enhancer–
promoter pairs with adjusted P value thresholding based on AdaPT
<0.01 (Fig. 4; Supplementary Fig. S4A–S4C).

Enrichment of mutations at enhancer cores
To compute the enrichment of mutations at the enhancer core level,

we use the Poisson Binomial Distribution (PBD), as proposed by (44).
The PBD allows us to calculate the probability of observing a certain
number of samples with at least one mutation in a specific enhancer
core, considering the sample-specific background mutation rates.

Let Xi 2[0, N] be a random variable representing the number of
samples with at least onemutation in the i-th enhancer core, whereN is
the number of samples in the cohort. Then Xi follows a PDB with a k-
dimensional vector of probability pi¼ [1-(1-pk)

ni]k, where ni is the size
of the i-th enhancer core in base pairs, and pk is the background
mutation rate for the k-th sample. Namely, we computed the k-th
sample background mutation frequency as follows:

pk ¼
total number of mutations in the k � th sample

size of the genome bpð Þ

Finally, we calculated the probability of having at least si samples
with at least one mutation in the i-th enhancer core as P(Xi≥si), using
the poibin v1.5 R package (http://cran.nexr.com/web/packages/poibi
n/index.html). P values were computed for all the enhancer cores and
adjusted formultiplicity using the Bonferronimethod (Supplementary
Fig. S5).

CIEN-Ins detection
For detecting the presence of CIEN-Ins in the WGS data, we

leveraged the Compact Idiosyncratic Gapped Alignment Report
strings from the BAM file. Using custom scripts, we identified the
soft clipped sequences at the genomic loci of interest (chr16:82672414–
82672441, hg19), along with the number of reads associated with the
insert. We then computed the proportion of CIEN-Ins reads to the
total reads at the loci to determine the sampleswithCIEN-Ins variation
(≥ 25%) in the TCGA lung and breast cancer cohorts (Supplementary
Fig. S6A–S6D).

Cell line screening for experimental validation
For the experimental validation of the role of the CIEN in regulating

its gene expression, 10 lung cancer cell lines were screened for (i)
sequence of CIEN-core, (ii) expression of CDH13 gene, and (iii) copy
number of CDH13 gene (Supplementary Fig. S7A–S7C).

CIEN-core sequence determination
DNA was isolated using the Qiagen AllPrep DNA/RNA Mini Kit

following the manufacturer’s protocols. CIEN-core was amplified

(Primers Supplementary Table S1) and run on a 1.5% agarose gel.
All the bands were purified with the Qiagen PCR purification kit,
according to the manufacturer’s instructions. Samples were eluted in
30 mL and sequenced by the Sanger method.

CDH13 expression quantification
RNA was isolated using the Qiagen AllPrep DNA/RNA Mini Kit

following the manufacturer’s protocols. For qRT-PCR, 500 ng of RNA
was reverse-transcribed using superscript III (Thermo Fisher Scien-
tific) following the manufacturer’s protocol. qRT-PCR was performed
with TB Green Premix Ex Taq (Tli RNase H Plus) using Roche
LightCycler 96. PCR amplification parameters were 98�C (30s), and
35 cycles of 98�C (10s), 65�C (30s), 72�C (10s), and 72�C (2 min).

The expression ofCDH13 gene was quantified for all the isoforms of
the gene in 10 lung cancer cell lines in comparison withWI38 (normal
lung fibroblast cell line) and BJ (normal skin fibroblast cell line).

Copy-number assessment
Copy number of CDH13 gene in the tested lung cell lines was

determined byquantitative PCR, by comparing the cycle threshold (Ct)
values of CDH13 and GAPDH loci. As a reference, the WI38 cell line
was used, because its GAPDH copy number is already known. All
primer details are provided in Supplementary Table S1.

Candidate enhancer validation
Clones bearing a deletion of CIEN-core were generated using the

CRISPR/Cas9 technology. To this purpose, oligonucleotides corre-
sponding to three different protospacer sequences (named T1, T2,
and T3) located 50 (T1 and T2) or 30 (T3) to the CIEN-Ins sequence
were cloned in the PX459 vector (Addgene, plasmid #62988). Two
plasmid pairs (T1þT3 andT2þT3) were used to induce double-strand
breaks (DSB) and trigger deletion of the intervening sequence. Briefly,
a total of 1�106 NCI-H460 cells (2 mg/100 mL) were electroporated in
A69 buffer (30mmol/L sodiumphosphate buffer, 5mmol/L potassium
chloride, 10 mmol/L magnesium chloride, 20 mmol/L HEPES,
11 mmol/L glucose, 100 mmol/L NaCl, pH6.9) using the Amaxa
Nucleofector II Device (program T-020). Subsequently, after 24 hours
of electroporation transfected cells were positively selected for 3 days
with 1.5 mg/mL puromycin. Single-cell clones were obtained by
limiting dilution and screened by PCRusing primers ETG-p3, flanking
the region to be deleted. Amplicons of different sizes allowed to
identify clones homozygous and heterozygous for the deleted targeted
region. The characteristics of the designed sgRNA are detailed in
Supplementary Table S1 and Supplementary Fig. S7D).

Screening-enhancer deletion clones
The genomic locus was amplified with the phosphorylated primers

ETG-p4 using the Phusion polymerase. The amplicons were gel

Figure 2.
Mutational landscape of lung cancer cohort. A, Circos plot of the global landscape of mutations in patients with lung cancer. Chromosomes are shown on the
outermost circle. The following circle is a bar graph of gene density obtained by binning the genome in 1Mbpwindows (dark blue). The next circles from the periphery
to the center are the bar graphs representing the number of enhancers (dark cyan), promoters (salmonpink), and exons (powder blue)mutated (log-scale). The scale
of each bar graph is represented at the start of chromosome1. Mutations in the noncanonical chromosome (chromosome Y) were removed from the analysis.
B, Sample-wise mutation distribution. The bottom shows the line plot representing the mean somatic mutation per Mb in the lung cancer sample. Themiddle shows
the relative proportions in the percentage of the six possible base-pair substitutions, as indicated in the legend on the right. The top shows the stacked bar plot
depicting the number of mutated genomic elements. Each bar represents the total number of enhancer mutations (dark cyan), promoter mutations (salmon pink),
and exonmutations (powder blue) for a patient. Samples are sorted on the basis of the total number of mutations in exons (x-axis).C,Mutation burden comparisons.
Scatter plots showing themutationburdenperMb in enhancers (x-axis) andexons (y-axis).D,Scatter plots showing themutationburdenperMb in enhancers (x-axis)
and the rest of the noncoding region (RNCR; y-axis). Each blue dot in scatter plots represents a sample, the gray line represents the bisectors, the blue line represents
the line of regression, and the slope of the regression is mentioned in the plot.
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purified and blunt cloned into EcoRV-linearized and dephosphory-
lated pCRII-delta18 vector. Transformation was followed by sequenc-
ing using SP6.

CDH13 expression was quantified using primer ETG-p5. Assays
were done in triplicate and relative levels of gene expression were
normalized to beta-actin (ETG-p6).

Number of mutations versus number of predicted enhancers
The upper and lower right quadrant was defined as genes with

more than 14 associated enhancers with more than 20 mutated
samples and more than 14 associated enhancers with less than 10
mutated samples, respectively. The upper-left quadrant was defined
as genes with 14 or less associated enhancers and 20 or less
mutations. The genes from the respective quadrants were then
individually assessed for gene set enrichment with MSigDB-curated
gene sets. Gene sets with FDR < 0.05 are reported in Supplementary
Table S3.

Gene expression analysis
RNA sequencing data were obtained for patients with high

coverage WGS data from the TCGA (105 samples) and EGA (30
samples). The quantification of the transcripts was obtained using
kallisto (RRID:SCR_016582; https://pachterlab.github.io/kallisto/)
as Transcripts per Kilobase Million (TPM) based on the hg19
reference genome. To assess the impact of enhancer mutation on
the gene expression, a regression model was applied on the nor-
malized gene expression level e as a function of l, that is the
mutation status of its enhancers [1, mutated; 0, wild-type (WT)],
controlling for the impact of CNA status c (0, WT; positive value,
amplification; negative value, deletion), DNA methylation m (mean
beta value), promoter mutation p (1, mutated; 0, WT), and exon
mutation x (1, mutated; 0, WT).

The R function model used for estimation:
Mod.lm lm[log2(Expression(, x)þ1)� as.factor(enhancer(, x))þ

CNA(, x) þ Methylation(, x) þ as.factor(promoter(, x))þ as.factor
(exon(, x)].

Samples were stratified into mutated and non-mutated on the basis
of the presence of enhancer mutation (at least five), and their corre-
sponding gene expression as TPM values were compared, the P value
obtained from the regression model for the coefficient enhancer
mutation was then used for significant thresholding (P < 0.05). The
genes with significant difference between the mutated and non-
mutated samples were assessed for gene set enrichment with
MSigDB-curated gene sets. Gene sets with FDR < 0.05 are reported
in Supplementary Table S3.

For the quantification of transcription factor expression in the NCI-
H460 cell line, RNA-sequencing data were obtained in FASTQ file
format from the GEO (Gene Expression Omnibus) database
(GSM2072563). The reads were processed to quantify transcripts
using kallisto as described above.

Promoter methylation
Methylation data for the TCGA samples were obtained as Meth-

ylation Beta Value fromHumanMethylation450 (HM450) arrays (45).
To assess themethylation status of a promoter, meanmethylation beta
values of the probes present in the promoter (2 kb around TSS) were
computed.

Survival analysis
Clinical features such as sex, vital status, TNM stage (tumor, lymph

node, metastasis), and smoke exposure were also obtained from the

TCGA (46) for the patients. Event-free survival probabilities
were calculated by using the Kaplan–Meier method (survminer
v0.4.9 R package https://cran.r-project.org/web/packages/survminer/
index.html; RRID:SCR_021094). The Log-rank test was used to assess
the statistical significance of the different groups.

Regression analysis
To assess the association of genomic features and clinical features

with the CIEN-Ins, generalized linear model (GLM) was used to
compute the P value through tidy verse R package (https://cran.r-
project.org/web/packages/tidyverse/index.html). The following func-
tion was used for the estimation:

mod.glm glm(mut�Methylation-beta-valuesþ as.factor(Tumor-
stage)þ as.factor(sex)þ log2(CDH13expþ1)þ as.factor(exonic_mut)
þ as.factor(copynumberalteration),data¼ TCGA-lung_data, family¼
“binomial”).

TFBS analysis
To calculate the presence of TFBS motifs in enhancer cores,

we used FIMO (https://meme-suite.org/meme/tools/fimo) Version
5.4.1 from theMEME suite (RRID:SCR_001783) with a custom library
of all TRANSFAC (RRID:SCR_005620) and JASPAR motifs (RRID:
SCR_003030; https://jaspar.genereg.net/downloads/) at a q value
threshold (FDR—Benjamini–Hochberg multiple testing correction)
of 0.05. TF motif analysis was performed on the reference genome
sequence of the enhancer cores and the altered sequence of enhancer
cores resulting from somatic mutations in patients. The predicted
motif scores for the reference and altered sequence was plotted in a
scatter plot.

Tissue-specific expression quantification
For studying the tissue-specific expression levels, we obtained

the gene TPMs from the Genotype-Tissue Expression (GTEx;
RRID:SCR_013042) project database v8, (GTEx_Analysis_2017–06–
05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz). We compared the expres-
sion levels of genes with more than 25 enhancers (arbitrary cutoff
value) with the genes with fewer lung-specific enhancers. The test gene
set is composed of genes with at least 25 enhancers, (n¼ 130). For the
background gene set, we bootstrapped 10 sets from the genes with less
than 25 enhancers with approximately the same size. The mean
expression levels of the genes in each group were quantified and log2
fold change was computed. The Mann–Whitney U test was imple-
mented to assess the significance, and Bonferroni correction for
multiple hypothesis testing was used to obtain the adjusted P value.
Gene expression values for all the tissues were represented in box plots.

Gene set enrichment analysis
Target genes with enhancer mutations (TGEM) with at least 12

mutations (n ¼ 466) were used for the gene set enrichment analysis
(GSEA). Two different datasets of the MSigDB resources (http://www.
gsea-msigdb.org/gsea/msigdb/index.jsp) C2 (literature-curated gene
sets) and C6 (oncogenic gene sets) were used through the GSEA
(RRID:SCR_003199). Gene sets with a P value of <0.01 were consid-
ered significantly enriched and the results were plotted using custom
Python scripts.

For the gene ontology and pathway enrichment analyses, TGEM
with (n > 3) were used. The list of target genes (n¼ 7,102) were then
used to obtain gene ontology–biological process and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrichment
through the g:profiler tool (RRID:SCR_006809; https://biit.cs.ut.
ee/gprofiler/gost) with a P value of <0.01.
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Global test for groups of genes
We implemented a global test for groups of genes (47) using the R

package (https://bioconductor.org/packages/release/bioc/html/glo
baltest.html) to identify the impact of TGEM. Explanatory variable
is thematrix of gene expression for genes within a gene set (X), and the
response variable is the number of mutated enhancers that are
associated to genes within the gene set (Y).

As input gene sets, we used MSigDB C2–curated (n ¼ 6366) and
the Hallmark gene sets (n ¼ 50; RRID:SCR_016863) for the
analysis. Poisson regression was used to model count response.
Custom R scripts were used to identify significantly affected gene
sets. A gene set was considered significantly affected, when the P
value was <0.05.

Network diffusion for sub-network identification
Hotnet2 (https://github.com/raphael-group/hotnet2) was applied

to identify sub-networks of protein–protein interaction network with
more mutations than expected. We used the HINT database (RRID:
SCR_002762) for the protein interaction information, with a beta of 0.4
and 100 network permutations and 1,000 heat permutations.

Data availability
The data generated in this study are publicly available in GEO at

GSE228832, including H3K27ac ChIP-Seq and ATAC-seq data on
HBEC3-KT and NCI-H460 cell lines. The cancer genomics WGS and
RNA-seq data analyzed in this study were obtained from The database
of Genotypes and Phenotypes at phs000178.v11.p8 and the European
Genome–Phenome Archive (EGA) at EGAS00001000925. The COS-
MIC mutation signatures analyzed in this study were obtained from
the COSMIC database version 2 at https://cancer.sanger.ac.uk/signa
tures/signatures_v2/. The ENCODE3 ChIP-seq and DNase-seq data
analyzed in this study were obtained from https://www.encodeproject.
org. All other raw data are available upon request from the corre-
sponding author.

Results
Lung-specific enhancers’ identification

To achieve a comprehensive and accurate genome-wide definition
of lung-specific enhancers, we created a repertoire of epigenomics
profiles for eight different lung cell types and tissue samples, including
bronchial epithelial cells, primary lung tissue, lung fibroblasts (n¼ 3),
LUAD (n ¼ 2), and large-cell lung cancer (Supplementary Table S4).
This repertoire builds on similar solutions adopted in recent reference
literature in the field (e.g., compared with lung cancer cell lines
matching in ref. 48), but is purposely expanded to include normal
epithelial cells. The rationale of this approach for the comprehensive

definition of lung-specific enhancers stems from three factors: (i) The
exact cellular origin of lung cancers is unclear (49), but most likely
related to different cells within the epithelial compartment, potentially
including also neuroendocrine cells for SCLCs (50, 51); (ii) lung
cancers have relevant intratumoral heterogeneity and intricate cellular
communications within the tumor microenvironment (52–54);
(iii) the intent to examine noncoding mutations considering multiple
lung cancer subtypes and highlight differences between them. To this
aim, we primarily relied on ENCODE consortium data as they cover a
broad range of cell and tissue types; standard data quality control and
pre-processing procedures are adopted. To define enhancers in six
lung cell and tissue types, we obtained ENCODE 3 epigenomics data
for ChIP-seq (chromatin IP followed by high-throughput sequencing)
enrichment peaks of histone H3 lysine 27 acetylation (H3K27ac), that
is a chromatin mark associated to active enhancers (23), and chro-
matin accessibility peaks based on DNase-seq, a general feature of
active regulatory elements (55). Although H3K4me1 is also found at
enhancers, it is often reported to be present also in poised or weak
enhancers (23), thus we did not use it.

When studying mutations connected to chromatin features, it is
crucial to have a reference epigenomic profile for the cell type of origin
of the tumor. To this concern, an earlier study in ref. 56 specifically
remarked that the lack of reference normal lung epithelium was
confounding the match of lung cancer mutations with epigenetic
features. Hence, to address this gap, we ensured the inclusion of
immortalized HBEC3-KT data in our repertoire by performing in-
house experiments for H3K27ac ChIP-seq and ATAC-seq, an alter-
native genome-wide method to probe chromatin accessibility (57). To
our knowledge, this is the first genome-wide epigenomic profile for
active enhancers chromatin marks for immortalized normal lung
epithelial cells, thus achieving crucial complementation of publicly
available datasets. In addition, we also enriched our repertoire with
data from the NCI-H460 cell line, a large-cell lung carcinoma line
commonly used in standard experimental validations.

We combined H3K27ac and chromatin accessibility epigenomic
profiles to identify active enhancers in each cell type (seeMaterials and
Methods): Average number 49,017 and average size 402 bp (Supple-
mentary Fig. S1C).We observe that 49% of the enhancers derived from
the lung normal tissue sample are cell type–specific, as they are not
found in the other samples that always have a lower portion of cell-
type–specific enhancers (Supplementary Fig. S1D). Their pairwise
comparison showed, on average, 31% similarity (Jaccard Index, JI):
This reflects, on the one hand, the cell-specific nature of enhancers and,
on the other hand, the partial conservation observed at the tissue level
(Supplementary Fig. S1E). The JI between the threefibroblasts is higher
and more similar between themselves than cancer cell lines, possibly
indicating that the latter are more heterogenous in activating

Figure 4.
Enhancer–target gene pairing. A, Distance between enhancer and predicted target gene. The x-axis denotes the distance (in Kb) between the enhancer and the
predicted target gene, and the y-axis denotes the number of ETG pairs in the distance range. Each bar represents the total number of ETG pairs (in thousands) within
the distance range per chromosome, as indicated in the legend on the right. B, Hierarchical contact score and the distance between ETG pairs. Bubble plot
representing the number of ETGpairs (color)withHC score (y-axis) and the distance between the enhancer and the predicted target gene inKb (x-axis).C,Number of
enhancers versus number of mutated samples. Heat map showing the number of enhancers predicted for a gene (x-axis) compared with the number of enhancers
mutated (y-axis). The color of the square indicates the number of genes with x number of enhancers and y number of mutated samples. D, Differential
gene expression between genes with enhancer mutations. The volcano plot displays the log2-fold change expression (x-axis) between samples grouped by the
specific enhancermutation status of each gene (with vs. without enhancer mutations). Transcriptswith significant difference and log2-fold change >1 are highlighted
in pink, or log2-fold change < �1 are highlighted in violet. The y-axis is the �log10(P value) of the coefficient for enhancer mutations in the linear regression model.
The horizontal red line marks the P value of <0.05 significance threshold. The size of the circles for significantly altered genes indicates the number of associated
enhancers mutated. E, Transcription factor–binding sites at enhancer cores. Scatter plot showing the TF motif score computed by FIMO at enhancer core with the
reference sequence (x-axis) and altered sequence (y-axis).
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different epigenetic features. Nevertheless, A549 and NCI-H460
have considerable overlap. HBEC3-KT cell have good overlap (0.28
JI) with both A549 and PC9 cancer cell lines, thus confirming the
importance of considering HBEC3-KT to define enhancers relevant
for lung tissues and lung cancers. To define a comprehensive list, we
considered the union of the cell-specific enhancers resulting in
180,852 enhancers (Supplementary Table S5) with an average size of
456 bp (Supplementary Fig. S1F). The number of enhancers per
chromosome (chr) ranged between 2,213 in chr21 and 16,710 in
chr1, in line with the size of each chromosome and its gene density.
We considered this the reference list of “lung-specific enhancers”
throughout our analyses.

Genomic landscape of noncoding mutations in lung cancer
To understand the effect of noncoding mutations in lung cancers,

we used high-coverage WGS data from three different lung cancer
cohorts, including 55 patients with LUAD (4), 50 patients with
LUSC (5), and 54 patients with SCLC (35). Samples in the cohorts
were selected on the basis of the availability of high-coverage WGS
data from paired tumor and normal samples (average coverage for
each pair ≥35x), in addition to transcriptomic data (RNA-seq) for
functional characterization (Supplementary Fig. S2A–S2C).

In the analysis of somatic mutations inferred from WGS data, the
standard bioinformatic pipelines adopt a single-variant caller. We
aimed to go beyond the limitations of a single bioinformatic tool by
adopting an ensemble approach that combines the results of four
complementary algorithms (calling both indels and SNVs) to balance
sensitivity and specificity (see Materials and Methods). Although
individual tools have shown similar performances with 80%–90%
concordance (58), the ensemble can reduce the differences attributed
to individual callers. To ensure sensitivity and specificity, we obtained
high-confidence somatic SNVs and indels retaining only the ones
called by at least two somatic mutation calling tools for each tumor
sample against the matched normal (Supplementary Fig. S2D).

With this approach, in total, we observe 6,937,213 somatic varia-
tions (SNVs and small indels) in the lung cancer cohort, where the
number of variations per sample ranges from 2,926 to 288,853 (mean
¼ 52,956; median ¼ 48,292). The mean mutation density per mega-
base (Mb) per sample ranges between 0.88 and 89.73 (mean ¼ 16.33;
median ¼ 14.99). We observe that the average mutation density in
LUAD, LUSC, and SCLC samples are 14.34, 15.76, and 18.89, respec-
tively (Supplementary Fig. S2E).

We observe that noncoding regulatory mutations (enhancer and
promoters) and coding mutations are spread across the genome, with
chr1 being the most mutated and chr21 the least, in line with being the
largest and smallest chromosomes, respectively (Fig. 2A). Meanwhile,
we identify that, on average, 863 enhancers, 620 promoters, and 2128
exons are mutated (at least once) per sample (Fig. 2B). Furthermore,
among the SNVs, the C > A and C > T are the most prevalent single
base-pair substitutions (SBS) across the cohorts (Fig. 2B). Overall, the
SBS rates across the considered lung cancer subtypes are similar
(Supplementary Fig. S2F).

With the knowledge that lung cancer is a highly mutated cancer
type, we sought to understand whether the noncoding regulatory
elements were mutated at the same rate as the rest of the noncoding
region. Thus, we computed the region-specific somatic mutation
burden in exons, promoters, enhancers, and the rest of the non-
coding regions devoid of enhancers and promoters (the latter
referred to as RNCR from now on). We observe that for all the
samples, enhancers have a similar mutation burden with respect to
exons and promoters (Fig. 2C; Supplementary Fig. S2G and S2H).

In contrast, the mutation burden of the RNCR is higher compared
with the enhancer regions (Fig. 2D). The similar propensity for
mutation burden in regulatory and coding regions of the genome
can be suggestive of a functional relevance.

Mutation signature differences across regulatory and coding
regions

To further investigate the mechanisms determining the emergence
of mutations in coding and noncoding regulatory regions, we exam-
ined themutational signatures across different portions of the genome.
First, to understand the general mutational processes at play, we
computed the mutational profiles from the WGS data. We then
compared them with the COSMIC SBS profiles (version 2) to identify
the prevailing signatures and their relative contribution in each
sample. We observe that the most prevalent signature in our cohort
is associated with smoking (signature 4), as expected for lung cancers,
together with three signatures of unknown etiology (signatures 5, 8,
and 16; Fig. 3A).

We then examined whether any difference is detected in muta-
tional signatures between the coding and the noncoding portions of
the genome (Fig. 3B). After computing the relative frequency of
mutational signatures in the coding and noncoding portions of the
genome, we compared them for each lung cancer type. We iden-
tified a significant difference in at least one cancer type for 18 out of
30 signatures. Among them, signatures 5, 8, and 16 were the most
prevalent in coding regions compared with noncoding regions, with
8 and 16 significantly different in all the three tumor types. On the
contrary, signatures associated with defective DNAmismatch repair
(signature 6), likely UV exposure (signature 7), aflatoxin exposure
(signature 24), and APOBEC activity (signature 1) were signifi-
cantly higher in noncoding regions in all three tumor types (Fig. 3B;
Supplementary Fig. S3A).

These differences in the mutational processes associated with
coding and noncoding portions of the genome prompted us to
further explore the mutational profile in specific functional regions.
Thus, we compared the relative contribution of mutation signatures
between enhancer, promoter, and exon regions: In this analysis, we
considered the three tumor types together as in most cases the
differences between coding and noncoding mutational signatures
reported above were concordant (Fig. 3B). When comparing
enhancer, promoter, and exon regions, we detected significant
differences across many signatures, including 1, 3, 6, 10, 12, 18,
24, and 25, although with different trends across the genomic
features considered (Fig. 3C). Signatures 5, 7, 16, and 19 also show
significant variations, but they are driven by the pairwise differences
of “enhancers versus promoters” and “promoters versus exons,” as
confirmed by the ANOVA post hoc test. Interestingly, the signature
associated with defective DNAmismatch repair (signature 6; ref. 59)
is higher in promoters than enhancers and exons. In contrast, the
signature associated with failure of DSB repair is higher in enhan-
cers (signature 3) compared with promoters and exons. Signature 3
is also characteristic of insertions and deletions with overlapping
microhomology at breakpoint junctions (59). We also observed a
significant difference in the signature associated with the activity of
error-prone polymerase POLE (signature 10; ref. 59; Fig. 3C; Sup-
plementary Fig. S3B). Even though the mutation burden in the
selected regions is similar, the differences in signatures indicate that
they are differently affected by mutagenic processes. Moreover, the
presence of signatures associated with failures in DSB repair at
enhancer regions is in line with previous literature reporting this
type of DNA damage occurring at enhancers (60–62).
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Overall, these results highlight the mechanistic differences in the
mutational processes at the coding and noncoding regulatory regions,
with specific differences involving regulatory regions.

Mutations in enhancers significantly affect the target gene
expression

For the functional characterization of mutations in enhancers, it is
crucial to interpret their effect in the context of the regulatory network
linking enhancers and their target genes. In this context, relying on a
comprehensive yet accurate reconstruction of lung-specific ETG pairs
is essential. For this purpose, we adapted the statistical framework
recently developed in our laboratory (26), incorporating information
on chromatin 3D architecture and our reference set of lung-specific
enhancers obtained as described above. In our statistical framework,
we incorporate TADs hierarchical structure inferred from Hi-C
datasets and encoded in the HC score, which is then used as side
information in theAdaPTprocedure to adjust theP value for eachETG
pair. As a result, we obtained 48,829 ETG pairs (AdaPT FDR adjusted
P value ≤ 0.01) with distances ranging from <5kb to >500kb (Fig. 4A
and B; Supplementary Table S6). This is a crucial advancement over
previous cancer genomics studies that attempt to link noncoding
regulatory mutations to genes without accounting for the TADs
hierarchical structure that drives their interactions.

Our ETG pairing resulted in 10,709 genes with at least one asso-
ciated lung-specific enhancer (total of 33,797 enhancers out of the
initial set). Our ETG approach has paired one gene with five enhancers
(on average) and one target gene per enhancer (median). These results
align with previous literature, indicating that multiple enhancers can
regulate the same gene, whereas only one gene is the preferred target of
each enhancer (Supplementary Fig. S4A and S4B). Incidentally, genes
associated with many lung-specific enhancers (≥25) are highly tran-
scribed specifically in normal lung tissue compared with genes with
fewer enhancers (Supplementary Fig. S4C).Upon intersecting enhanc-
er mutations and their target genes, we observed that 10,425 genes had
at least one enhancer mutated in at least one tumor sample. As it may
be expected, we noticed that some genes with a large number of
associated enhancers tend to have a large number of samples with a
mutation in any of their enhancers (Fig. 4C). However, in Fig. 4C, we
also see several genes with few associated enhancers but many muta-
tions (upper-left quadrant) and genes withmany associated enhancers
but with few mutations (lower-right quadrant), suggesting that reg-
ulatory mutations for these genes may undergo a positive or negative
selection, respectively.

Genes with few enhancers and higher number of mutations (upper-
left quadrant genes n ¼ 17) have an overlap with developmental
biology-related gene sets. On the other hand, the genes with many
enhancers and higher mutations (upper-right quadrant n ¼ 74) are
enriched in gene sets associated with invasiveness, epithelial-to-
mesenchymal transition and extracellular matrix organization (ECM).
Genes with many enhancers and fewmutations (lower-right quadrant
n ¼ 262) are enriched in gene sets associated with cytokines, natural
killer cells, and NOTCH signaling pathway (FDR < 0.05 in MsigDB-
curated gene sets; Supplementary Table S3).

To assess the impact of mutated enhancers, we applied a regression
model of the normalized gene expression level as a function of the
mutation status of its enhancers, controlling for the impact of copy-
number alterations (CNA), DNA methylation, promoter and exon
mutation status. The regression analysis was performed on a total of
1,322 genes with at least 5 mutations in the enhancers associated to a
gene. We found that 72 genes were specifically affected by enhancer
mutations (P <0.05 on the enhancer mutation status coefficient in the

regression model; Fig. 4D; Supplementary Table S3). As a confirma-
tion of their relevance in cancer, we observe that 30 out of 65
significantly enriched gene sets (FDR < 0.05 in MsigDB-curated gene
sets) are indeed derived from studies on 14 different cancer types
(Supplementary Table S3). The genes with large differential expression
(at least two-fold change) are highlighted in (Fig. 4D).

We also examined the impact of enhancer mutations on TFBS. For
this purpose, we focused on theDNase-seq–footprinting calls available
from high-coverage DNase seq data of the IMR-90 cell line to identify
regions of active TF binding within the selected lung-specific enhan-
cers. DNase I–footprinting regions were used to narrow down the
genomic regions of interest to the most likely location of TFBS that we
named enhancer cores. To identify the extent of TFBS sequence
alterations at enhancer cores, we first determined the TFBS sequence
motifs in these regions using the reference genome sequence. We then
examined how the motifs would change with the sequence alterations
induced by somatic mutations detected in our lung cancer patient
cohort. We observed that the changes in the sequence of enhancer
cores might result in both gain- or loss-of-TFBS, depending on the
specific instance (Fig. 4E). In several cases, the somatic mutations do
not change the TFBS motifs composition of the enhancer core.
However, there is a higher number of TFBS losses rather than gain
of such motifs.

Overall, these data suggest that a loss of function may be more
frequent than a gain of function as a consequence of enhancer
mutations. Moreover, these data confirm the potential functional
impact of enhancer mutations with respect to their target gene
expression.

Enhancermutations aggregate at pathway level and participate
in the same biological process

According to the literature and our data as well, a gene can be
regulated by multiple enhancers, and in principle, an individual
enhancer can regulate multiple genes. As such, enhancers are, in fact,
the constituents of the broader gene regulatory network comprising
distal enhancers and their target genes. Thus, to interpret perturba-
tions of the enhancer regulatory activity, we should analyze these
events at the pathway and regulatory network level. For the prioriti-
zation of enhancer mutations at pathway level, we explored and
proposed three approaches, including gene sets enrichment analyses,
network diffusion analysis to identifymutated sub-networks (63) and a
custom global-test–based analysis (47) to determine whether enhanc-
er-mutated genes are differentially expressed.

First, we performed aGSEA.Wemappedmutations in lung-specific
enhancers and linked them to their target genes, thus defining a list of
TGEMs. Then we used these genes in KEGG functional annotations to
test for the over-representation of terms associated with specific
pathways or functions enriched in the list of TGEM. We found that
10 out of the 20 significantly enriched pathways (FDR adjusted P value
< 0.01) are directly involved in cancer or cancer-related properties,
such as the PI3K–AKTsignaling, focal adhesion and regulation of actin
cytoskeleton pathways (Fig. 5A). Other 6 out of the 20 pathways are
related to immunity and inflammation. The remaining enriched
pathways have 70% of genes from our list overlapping with the
cancer-related pathways. As such, there’s a striking majority of asso-
ciation to cancer-related biological processes. As the PI3K-AKT
signaling is one of the cancer driver pathways targeted by therapies,
we further explored its mutational landscape in our cancer cohort. To
this aim, we mapped the mutations in exons, enhancers, and promo-
ters of therapeutically targeted genes obtained from DrugBank data-
base (64) belonging to the PI3K–AKT signaling pathway.We observed
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that mutations in exons, enhancers, and promoters show a non-
overlapping occurrence pattern in patients, that is, an individual gene
of the pathway is targeted by either of the three categories of mutations
in any given patient, whereas combination of two is rare and all the
three types of mutations are never observed together in the therapeu-
tically targeted genes (Fig. 5B).

We also performed a similar analysis using a curated list of gene sets
derived from the literature (MSigDB database- C2 gene sets). We
observed a significant overlap (FDR adjusted P value < 0.01) with gene
sets associated with invasive tumor features, stemness, ECM organi-
zation, and focal adhesion (Supplementary Fig. S5A). We observed
that the TGEM converge on Gene ontology biological processes such
as positive regulation of kinase activity, regulation of protein phos-
phorylation, positive regulation of MAPK cascade, mononuclear cell
differentiation, negative regulation of transcription by RNApol II, and
angiogenesis (Supplementary Table S7). These results confirm, using
independent and complementary definitions of functional pathways,
that mutations in enhancers recurrently target genes participating in
biological processes with known relevance in cancer biology.

As mentioned above, the analysis of enhancer alterations integrated
within the context of the broader gene regulatory network is mainly
motivated by biological reasons related to their mechanism of action.
However, there are also statistical reasons because we observe hetero-
geneity of mutations at enhancers, whereby at the level of individual
enhancers, the recurrence of mutations is generally low (no. of
enhancers with <5 mutations: 14386; Supplementary Fig. S5B). Thus,
we applied the direct heat-diffusion method implemented in Hot-
Net2 (63), originally designed for coding regions meant to overcome
the long-tail phenomenon (extensive heterogeneity of mutations
leading to low recurrence on individual features). We used the TGEM
information as input to HotNet2 and identified 11 significantly
mutated sub-networks (Supplementary Table S7). Interestingly, two
sub-networks associated with Regulation of transcription by RNA
Pol II (Fig. 5C) were identified as significantly enriched on the basis of
mutations in its associated enhancers. These results suggest that the
dysregulation of enhancers due to somatic mutations may have a
cascade effect on the dysregulation of transcription also through their
target genes.

A crucial issue with the interpretation of enhancer mutations at
the pathway level is the ability to understand whether their combi-
natorial effect results in a disruption of transcriptional regulation. For
this purpose, to understand whether the mutations in enhancers
can affect gene expression at the pathway level, we adopted a custom
approach based on the global test (47). We used this statistical test to
determine whether the global expression of genes in a gene set
(explanatory variables) is related to the number of mutated enhancers
associated with genes within the gene set itself (response variable). We
used the global test on TGEM with MSigDB-curated gene sets (n ¼
6,366) and observed that the enhancer-mutated genes impact

434 gene sets (P < 0.05; Fig. 5D). The top-most significant gene
set (P ¼ 0.0002) was derived from a publication by (65) as a set of
DNA repair genes with a putative ZNF143-binding site in their
promoter (MsigDB gene set “WAKASUGI_HAVE_ZNF143_BIN-
DING_SITES”). Upon further exploring the specific gene set
(Fig. 5E) using a hierarchical clustering graph, we observe that
the positively associated genes have a significant impact on the
response variable. We also used the MSigDB Hallmark gene set (n¼
50) and found the DNA repair gene set to be most significantly
affected (Supplementary Fig. S5C). Overall, these results indicate
that indeed mutations in enhancers can accumulate in specific
pathways with known biological relevance for tumor biology. The
integrated analysis of regulatory mutations occurrence and gene
expression differences with the global test approach also confirms a
potential disruption of the target genes regulation. However, more
focused experimental work is needed to confirm and dissect the
functional role of individual enhancers.

Recurrently mutated intronic enhancer affects CDH13
expression

To prioritize individual noncoding regulatory regions affected by
mutations for further experimental investigation, we quantified the
recurrence of mutations at the level of individual enhancers, which
may seem in line with approaches also adopted previously (66).
However, a crucial difference with prior publications is that we
narrowed down the selection of SNVs and small indels occurring
within the enhancer core regions only (defined by DNase footprinting
peaks), as discussed above.

We looked for the recurrence of mutations focusing at the enhancer
core levels for biological and statistical reasons (Supplementary
Fig. S5D). From a biological point of view, the effect of an enhancer
coremutation ismore likely to affect the TFBS directly, thereby leading
to alterations in the regulation of its target gene. Furthermore, focusing
on more functionally relevant regions may increase the statistical
power (66). Thus, within each enhancer, we considered onlymutations
fallingwithin any of its cores, defined as described above.We identified
9,151 enhancer cores to bemutated in at least one sample, of which, 57
have a significantly higher number of mutations compared with the
background mutation rate of the samples (adjusted P value < 0.01;
Supplementary Table S8).

The topmost significantlymutated enhancer cores, resides within an
intronic enhancer hosted in the cadherin 13 (CDH13) gene (Fig. 6A).
Indeed, CDH13 is an atypical (without a transmembrane domain)
member of the cadherin family, often known to be downregulated in
cancerous cells (67, 68).CDH13 downregulation is associated with poor
prognosis (69). The CDH13 intronic enhancer (chr16: 82671674–
82672964, hg19; CIEN from now on) is present in the first intron of
the gene but distant from the TSS (>11Kb). On the basis of our ETG
pairingmethod (26), we observed that the CIEN and CDH13 promoter

Figure 5.
Pathway level enrichment of enhancer mutations. A, Scatter plot shows the over-representation of genes with enhancer mutations in the KEGG pathway. The x-axis
represents the ratio of the overlapping genes to the total number of genes in the pathway. The size of the circle denotes the number of genes in overlap, and the color
shows the negative logarithmic adjusted P value. B, Mutational landscape of the PI3K–AKT pathway. Co-mutation plot showing druggable PI3K–AKT signaling
pathway genes (y-axis) affected in lung cancer samples (x-axis) by mutations in enhancers, promoters, and exons as indicated in the legend on the right. The top
stacked bar plot shows the number of mutations in each sample, and the gene-wise mutation rate is displayed on the right. C, Network view of protein interactions
among two sub-networks of regulation of transcription by RNA Pol II identified by HotNet2. Interactions between proteins in the sub-network from each interaction
network are colored on the basis of a P value.D, Significantly altered gene sets (MSigDB-C2 curated). The violin plot shows the gene sets that are affected by TGEM.
E, Hierarchical clustering graph of theWAKASUGI_HAVE_ZNF143_BINDING_SITES gene set fromMSigDB C2 gene set. The gene plot shows the P value associated
with the impact of the enhancer mutation on the gene expression. The part of the clustering graph with a significant P value is plotted in black.
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have highly correlated activity (0.826 canonical correlation from),
they both reside within the same TAD across multiple hierarchies (HC
score, 75.32), thus predicting a regulatory interaction with high con-
fidence (adjusted P value ¼ 0.001). Moreover, among pathways sig-
nificantly affected by enhancers mutations based on the global test
analysis reported in the previous paragraph, we found two pathways,
both related to lung, that also contains the CDH13 gene: Namely, the
MSigDB pathways MCDOWELL_ACUTE_LUNG_INJURY_DN and
SCHLESINGER_METHYLATED_DE_NOVO_IN_CANCER.

CIEN comprises 16 enhancer cores with an average length of
14bps, among which, only two cores (chr16:82672417–82672441
and chr16:82672305–82672343) are mutated in 8 and 1 samples,
respectively. The enhancer core (chr16:82672417–82672441, CIEN-
core) is mutated in 7 samples with an SBS from C to T at locus
chr16:82,672,430 (hg19) and in one sample with an insertion at
chr16:82,672,428. Incidentally, this insertion is a reported germline
sequence variant in dbSNP (rs139451683), comprising of a stretch
of TG dinucleotides followed by a tail of CG bases [ins (TG)n(CG)4,
referred to as CIEN-Ins from now on]. A visual inspection of
sequencing reads in the 7 samples with a C to T SNV highlighted
the presence of clipped reads that may suggest that a germline
CIEN-Ins was lost in the tumor and erroneously annotated as an
SBS by the mutation calling algorithms.

Indeed, as CIEN-Ins is rich in GT and GC bases, the reads partially
overlapping the insertion may be clipped by the sequence aligner and
erroneously interpreted by themutation calling algorithm as a putative
sequencing artefact. Upon careful reprocessing of all WGS data
specifically for this region (see Materials and Methods), we confirmed
the presence of CIEN-Ins in different combinations across patients: (i)
presence of CIEN-Ins in tumor and normal samples; (ii) presence in
tumor samples and absence in their matched normal; (iii) vice versa
(Fig. 6B; Supplementary Fig. S6A) resulting in a total of 51 out of 105
samples with CIEN-Ins (somaticþ germline combined) in the TCGA
lung cancer cohorts. The number and percentage of reads supporting
the CIEN-Ins variant across samples, mostly around 50% (Supple-
mentary Fig. S6A), support the conclusion that this is not a random
sequencing error, but a real sequence variant in the samples. Never-
theless, we adopted a conservative approach by not considering
samples with less than 25%of reads supporting theCIEN-Ins presence.

Incidentally, genomic features, including hypermethylation of the
promoter, CNA, gene expression, and exon mutation and clinical
features such as stage of the tumor, sex of the patients, and the lung
cancer subtype (LUAD and LUSC), are not significantly associated
with CIEN-Ins occurrence in the TCGA lung cancer samples
(GLM; Fig. 6B; Supplementary Table S9). However, stratifying
patients with respect to CIEN-Ins and hypermethylation of promoter,
show that the samples with hypermethylation and CIEN-Ins have
higher CDH13 expression than samples with either of the alterations
(Supplementary Fig. S6B).

To functionally validate the impact of CIEN-Ins on the regulation of
CDH13 gene in the most appropriate cellular model, we first screened
10 lung cancer cell lines and two fibroblast cell lines used as reference
(seeMaterials andMethods and Supplementary Fig. S7A–S7C).On the
basis of (i) the presence of CIEN-Ins, (ii) expression of the CDH13

gene, and (iii) a diploid copy of the CDH13 gene, we chose the NCI-
H460 lung cancer cell line. We then used CRISPR-Cas9 to delete
CIEN-Ins in the NCI-H460. The successful deletion of the regulatory
region was confirmed by Sanger sequencing. Upon homozygous
deletion of CIEN-Ins, CDH13 is significantly downregulated (P value
¼ 0.002 independent t test in 5 biological replicates, that is, 5 different
clones; Fig. 6C).

Intronic enhancers are known to regulate their harboring gene
expression by establishing direct or indirect enhancer–promoter
contacts, which may be achieved by recruiting and clustering multiple
TFs (70). To this concern we must note that the CIEN-core reference
genome sequence is 23bp long and houses putative TFBS motifs for
three transcription factors (EGR1, KLF9, and ZSCAN4), whereas the
CIEN-Ins sequence has additional putative motifs for seven transcrip-
tion factors (HES1, HES2, ZBTB14, EGR4, TCFL5, NRF1, and RREB1;
Supplementary Fig. S6C).

We predicted the survival impact of CIEN-Ins by calculating the
disease-free interval (DFI) and progression-free interval probability
for lung cancer subtypes where these data are available (LUAD and
LUSC, n¼ 102). Strikingly, we found that patients with CIEN-Ins had
a better disease-free survival in LUSC (Fig. 6D). When considering
together the LUAD and LUSC samples with disease-free survival
annotations, we observed that the patients with CIEN-Ins had better
DFI (Fig. 6E), but they did not pass statistical significance thresholds.
Similarly, we observed the progression-free survival to be better in
patients with insertion than those without, but not passing statistical
thresholds (Fig. 6F).

We asked whether the presence of CIEN-Ins may be a general
phenomenon observed also in other cancer types. As the downregula-
tion of CDH13 was also reported in breast cancer (71), we examined a
cohort of the TCGA high-coverage WGS samples (n ¼ 112) for this
tumor type. Surprisingly, we found that only 4% of the breast cancer
samples had the insertion sequence variant in either tumor or normal
tissue, in contrast with 48.6% in patients with lung cancer (Supple-
mentary Fig. S6D). This low occurrence of CIEN-Ins in patients with
breast cancer suggests that it is not a general phenomenon.

Overall, these results attest to the importance of combining the
tissue-specific definition of enhancers and tailored refinement of
sequence variants analysis over enhancer core regions to dissect the
disruption potential of regulatory noncoding mutations recurrent at
individual loci.

Discussion
The coding genome has been extensively studied in cancer to

identify potential driver mutations and therapeutic targets. Despite
these efforts, there is a sizeable heterogeneity in terms of cancer biology
and clinical behavior of patients that is not explained by known coding
mutations. We hypothesized that noncoding mutations in regulatory
regions, such as enhancers and promoters, could contribute to cancer
development or progression and can be exploited to develop novel
strategies for the molecular classification of patients. Without a
consensus on solutions to assess whether mutations in regulatory
regions can be driver of tumorigenesis, it may be safer to assume they

(Continued.) C, CDH13 expression upon CIEN-Ins deletion. CDH13 gene expression relative to b-actin in wild-type and homozygous deletion of CIEN-Ins in NCI-
H460 cell line. The dots represent biological replicates (n ¼ 5). D, Progression-free survival interval probability in lung cancer samples (LUADþLUSC).
E, Disease-free survival interval (DFI) probability in lung cancer samples. F, DFI probability in LUSC samples. For the survival analysis, patients were stratified
on the basis of the presence of CIEN-Ins in the tumor, and Kaplan–Meier curves were plotted for the two groups. The risk table with the number of patients is
described at the bottom. Differences between the two groups were evaluated using a log-rank test.
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are passenger. However, they may still have an impact on tumor
biology and specific strategies for their identification and prioritization
are needed.

We worked on various challenges connected to this goal to go
beyond the limitations of themost commonly adopted solutions in the
field, in particular with regard to defining the reference set of lung-
specific enhancers, pairing enhancers with their target genes, identi-
fying mutations in distal regulatory regions and characterizing their
functional effects.

Defining enhancers has been a major challenge due to the lack of an
exhaustive reference list for all cell types. Enhancers are cell-type–
specific; hence, a list of enhancers from one cell type does not represent
thewhole-lung tissue.Moreover, the cell of origin of lung cancers is not
well defined. Hence, we opted for a comprehensive list of lung-specific
enhancers defined from a collection of eight distinct lung cell lines and
primary tissue samples, including epithelial cells, primary lung tissue,
and fibroblasts, as well as a few cancer cell lines. Our goal was to cover
primarily enhancers active in the tissue of origin of the tumor. Thus, in
our compendium, we included only a couple of lung cancer cell lines
(A549 and PC9) because they were previously adopted by reference
literature in the field exploring noncoding regulatory mutations (48).
As such, we aimed to consider also this information to be as com-
prehensive as previous literature. We then added also NCI-H460 as in
the subsequent screening was identified as a good candidate for
experimental validations on theCDH13 locus (Supplementary Fig. S7).

This may seem a counterintuitive solution as opposed to directly
using only one cell type for enhancer definition. However, as lung
tumors are highly heterogeneous and our cohort of samples consisted
of a mix of different lung cancer subtypes, stages, and other clinical
features, we applied a comprehensive approach to map all active lung
enhancers. Although this rationale is in line with similar solutions
chosen in recent literature, we adopted a broader set of samples with
respect to reference articles in this field (e.g., compared with lung
cancer cell lines matching in ref. 48). In particular, we included novel
epigenomics profiles generated for this project, most notably for
HBEC3-KT so far not available from lung cancer genomics studies
despite their possible role as the cell of origin for a good fraction of
these tumors. For identifying active enhancers in the lung, we used a
combination of H3K27ac and chromatin accessibility (DNase-seq or
ATAC-seq) profiles.

Somatic mutations calling on WGS data is challenging due to the
hurdles posed by various factors, including tumor heterogeneity,
mutations clonality, and tumor ploidy. In addition, somatic muta-
tion calling can be highly affected by the sensitivity of the adopted
algorithm. To overcome these concerns, we selected only high-
coverage WGS datasets with tumor and matched normal genomes
from three lung cancer subtypes cohorts. Then we applied a tailored
bioinformatic pipeline implementing an ensemble approach using a
total of five algorithms (four tools for calling indels and four tools
for calling SNVs) and used the concordance of at least two variant
callers to achieve a comprehensive yet reliable set of somatic
sequence variants. This solution was aimed to go beyond the limits
of the standard approaches based on a single algorithm. Moreover,
as lung cancer has a high mutation burden, our priority was
ensuring the control of false positives arising from individual
mutation calling algorithms.

Lung cancer is reported to have a high mutation burden genome-
wide (72).We observed that themutation burden at enhancers is lower
than the rest of the noncoding genome and that enhancers, promoters,
and exons have a comparable mutation burden. This observation is in
line with previous literature showing across multiple tumor types that

promoter and enhancer regions are mutated at a rate similar to the
transcribed genic regions, whereas intergenic regions carry a higher
mutational burden (73). We speculate that this lower and comparable
mutation burden across such functionally relevant regions could be
attributed to a combination of negative selection and transcription-
coupled DNA repair mechanisms. However, more specific experi-
ments on tumor evolution would be required to properly investigate
this hypothesis.

Nevertheless, we compared themutation signatures observed across
these genomic features to shed light on the process of mutagenesis
affecting coding and noncoding regulatory regions. Signature 4,
associated with smoking, was prevalent in all of the considered
genomic regions, in concordance with its association with lung cancer.
We also identify and show different prevalence for specific mutation
signatures across cancer subtypes and distinct genomic features
(enhancers, promoters, and exons) that were not previously reported.
The differential prevalence of signatures between these coding and
noncoding regulatory elements is also a novel result, to the best of our
knowledge. When looking at the differential mutation signatures
across genomic regions, we observe mutation signatures associated
with defective DNAmismatch repair and DNADSB repair to be more
prevalent in regulatory regions compared with coding regions. These
results corroborate and extend beyond recent data on the accumula-
tion of single and DSBs at regulatory regions (60–62). Moreover, the
role of the mismatch repair system in maintaining genome stability is
well characterized, and its role in regulating gene enhancer activity in
cancer is emerging (74).

For connecting enhancer mutations to their putative target genes,
we adopted our framework integrating multi-scale hierarchical chro-
matin 3D architecture organization in TADs to reconstruct ETG pairs.
This approach accounts for the most updated biological knowledge on
ETG interactions occurring in the context of structural domains and
their dynamic and hierarchical structure. Then, a novel strategy and
a crucial change of perspective in comparison with previous studies
has been adopted in the integration and interpretation of the
composite effect of enhancers mutations at the level of pathways
connecting their target genes. Analyzing enhancers’ mutations in
terms of their target gene or pathway is meant to solve, at the same
time, the problem of focusing the interpretation of effects on the
downstream biological targets and aggregates mutations that may
have a complementary effect.

Hence, we first aggregated the enhancer mutations at the pathway
level and identified them as frequently harboring enhancer mutations
in several pathways, including PI3K–AKT signaling, focal adhesion,
and ECM organization. Interestingly, initial observations may suggest
that only half of the enriched pathways are directly involved in cancer,
but a more detailed examination revealed that other pathways are
associated to relevant processes for cancer, such as immunity and
inflammation. Moreover, the remaining enriched pathways have
several genes in common with cancer pathways, thus confirming a
general association of enhancers’mutations with pathways potentially
affecting tumorigenesis.

Furthermore, we also observed enhancer mutations affecting gene
expression in pathways regulating DNA repair through a custom
approach based on the global test. This approach has the conceptual
and practical advantage that the effect on target genes and pathways
expression can be interpreted by a statistical test summing up the
combinatorial effect of multiple sparse variations across all enhancers
regulating those genes and pathways. Overall, these results highlight
the role of enhancers in the gene regulatory networks that affect critical
pathways relevant to cancer progression.
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These results also confirm that the aggregation and interpretation of
enhancer mutations at the level of their target genes and pathways are
the keys to highlighting their convergence over biological processes
that can affect cancer development and progression. Indeed, these
approaches allow identifying recurrent alterations affecting pathways
with known relations to cancer biology, whereas highly recurrent
mutations at individual enhancers are generally less frequent. The
combinatorial effect of mutations spread across multiple enhancers
targeting the same gene or pathway can explain why the field has been
struggling to identify recurrent mutations at individual regulatory
elements. Indeed, we can speculate that regulatory mutations at
enhancers may contribute to the dysregulation of specific functions
and pathways related to tumorigenesis. Their combinatorial effects
would distribute the selective pressure across multiple genes and
their even larger set of enhancers rather than on individual regu-
latory elements.

The identification of biologically relevant mutations in CDS has
primarily relied on assessing their recurrence across cancer patients.
The sheer size of the noncoding genome lowers the chance of
recurrence of mutations in any specific regulatory element. How-
ever, we explored the recurrence at individual enhancer cores as a
possible strategy to prioritize biologically relevant mutations. We
found the enhancer core of CIEN (CDH13 intronic enhancer)
associated with the CDH13 gene to be recurrently mutated with
a characteristic insertion variation [ins(TG)n(CG)4]. We hypothe-
sized that CIEN-Ins affect CDH13 expression by expansion of
existing or generation of new TFBS. We also observe the presence
of TFBS motifs at multiple adjacent locations within the region.
This result is interesting, especially in the light of literature reports
that at gene regulatory regions, there can be an accumulation of
potential TFBSs, and the presence of multiple degenerate or weakly
competing binding sites could accelerate the TF search for its target
gene (75). Using CRISPR/Cas9-based genome editing, we con-
firmed that the deletion of the enhancer core results in the down-
regulation of the CDH13 gene in a cellular model. We found the
presence of CIEN-Ins associated with higher disease-free survival in
a cohort of LUSC samples, although the number of patients with
complete clinical follow-up data was limited. Previous literature
indicated a tumor-suppressor function for CDH13 and its down-
regulation associated to poor prognosis. Thus, we conclude that the
CIEN-Ins may also act as a tumor suppressor by promoting CDH13
expression.

In conclusion, here we present a combination of strategies to
identify functionally relevant noncoding mutations. Furthermore,
we have shown that enhancer mutations can affect the expression of
target genes and that recurrent mutations can influence survival
probability of patients. Finally, we also highlight how mutations in
enhancers can affect key cancer pathways. These results confirm the
potential relevance of noncoding regulatory mutations with respect
to cancer pathogenesis and how they can be exploited for patient
molecular classification and to understand more details of tumor

biology. We expect that extending this approach to other tumor
types may further elucidate tumor-specific programs of biological
alterations.
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