Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Dec;100(4):1858–1862. doi: 10.1104/pp.100.4.1858

Species-Dependent Variation in the Interaction of Substrate-Bound Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) and Rubisco Activase

Zhen-Yuan Wang 1,2,3,1, Gordon W Snyder 1,2,3, Brian D Esau 1,2,3, Archie R Portis Jr 1,2,3, William L Ogren 1,2,3
PMCID: PMC1075876  PMID: 16653209

Abstract

Purified spinach (Spinacea oleracea L.) and barley (Hordeum vulgare L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase supported 50 to 100% activation of substrate-bound Rubisco from spinach, barley, wheat (Triticum aestivum L.), soybean (Glycine max L.), pea (Pisum sativum L.), Arabidopsis thaliana, maize (Zea mays L.), and Chlamydomonas reinhardtii but supported only 10 to 35% activation of Rubisco from three Solanaceae species, tobacco (Nicotiana tabacum L.), petunia (Petunia hybrida L.), and tomato (Lycopersicon esculentum L.). Conversely, purified tobacco and petunia Rubisco activase catalyzed 75 to 100% activation of substrate-bound Rubisco from the three Solanacee species but only 10 to 25% activation of substrate-bound Rubisco from the other species. Thus, the interaction between substrate-bound Rubisco and Rubisco activase is species dependent. The species dependence observed is consistent with phylogenetic relationships previously derived from plant morphological characteristics and from nucleotide and amino acid sequence comparisons of the two Rubisco subunits. Species dependence in the Rubisco-Rubisco activase interaction and the absence of major anomalies in the deduced amino acid sequence of tobacco Rubisco activase compared to sequences in non-Solanaceae species suggest that Rubisco and Rubisco activase may have coevolved such that amino acid changes that have arisen by evolutionary divergence in one of these enzymes through spontaneous mutation or selection pressure have led to compensatory changes in the other enzyme.

Full text

PDF
1860

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jordan D. B., Chollet R. Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J Biol Chem. 1983 Nov 25;258(22):13752–13758. [PubMed] [Google Scholar]
  3. Meagher R. B., Berry-Lowe S., Rice K. Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Genetics. 1989 Dec;123(4):845–863. doi: 10.1093/genetics/123.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  5. Portis A. R., Salvucci M. E., Ogren W. L. Activation of Ribulosebisphosphate Carboxylase/Oxygenase at Physiological CO(2) and Ribulosebisphosphate Concentrations by Rubisco Activase. Plant Physiol. 1986 Dec;82(4):967–971. doi: 10.1104/pp.82.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Robinson S. P., Portis A. R., Jr Adenosine triphosphate hydrolysis by purified rubisco activase. Arch Biochem Biophys. 1989 Jan;268(1):93–99. doi: 10.1016/0003-9861(89)90568-7. [DOI] [PubMed] [Google Scholar]
  7. Robinson S. P., Portis A. R. Ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents the in vitro decline in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 1989 Jul;90(3):968–971. doi: 10.1104/pp.90.3.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Robinson S. P., Streusand V. J., Chatfield J. M., Portis A. R. Purification and assay of rubisco activase from leaves. Plant Physiol. 1988 Dec;88(4):1008–1014. doi: 10.1104/pp.88.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Roesler K. R., Ogren W. L. Primary Structure of Chlamydomonas reinhardtii Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase Activase and Evidence for a Single Polypeptide. Plant Physiol. 1990 Dec;94(4):1837–1841. doi: 10.1104/pp.94.4.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rundle S. J., Zielinski R. E. Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley. J Biol Chem. 1991 Mar 15;266(8):4677–4685. [PubMed] [Google Scholar]
  11. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shen J. B., Orozco E. M., Jr, Ogren W. L. Expression of the two isoforms of spinach ribulose 1,5-bisphosphate carboxylase activase and essentiality of the conserved lysine in the consensus nucleotide-binding domain. J Biol Chem. 1991 May 15;266(14):8963–8968. [PubMed] [Google Scholar]
  13. Somerville C. R., Portis A. R., Ogren W. L. A Mutant of Arabidopsis thaliana Which Lacks Activation of RuBP Carboxylase In Vivo. Plant Physiol. 1982 Aug;70(2):381–387. doi: 10.1104/pp.70.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Streusand V. J., Portis A. R. Rubisco Activase Mediates ATP-Dependent Activation of Ribulose Bisphosphate Carboxylase. Plant Physiol. 1987 Sep;85(1):152–154. doi: 10.1104/pp.85.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wang Z. Y., Portis A. R., Jr A fluorometric study with 1-anilinonaphthalene-8-sulfonic acid (ANS) of the interactions of ATP and ADP with rubisco activase. Biochim Biophys Acta. 1991 Sep 20;1079(3):263–267. doi: 10.1016/0167-4838(91)90067-a. [DOI] [PubMed] [Google Scholar]
  17. Werneke J. M., Chatfield J. M., Ogren W. L. Catalysis of Ribulosebisphosphate Carboxylase/Oxygenase Activation by the Product of a Rubisco Activase cDNA Clone Expressed in Escherichia coli. Plant Physiol. 1988 Aug;87(4):917–920. doi: 10.1104/pp.87.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Werneke J. M., Ogren W. L. Structure of an Arabidopsis thaliana cDNA encoding rubisco activase. Nucleic Acids Res. 1989 Apr 11;17(7):2871–2871. doi: 10.1093/nar/17.7.2871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Werneke J. M., Zielinski R. E., Ogren W. L. Structure and expression of spinach leaf cDNA encoding ribulosebisphosphate carboxylase/oxygenase activase. Proc Natl Acad Sci U S A. 1988 Feb;85(3):787–791. doi: 10.1073/pnas.85.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES