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ABSTRACT
Introduction  The clinical assessment of Parkinson’s 
disease (PD) symptoms can present reliability issues 
and, with visits typically spaced apart 6 months, can 
hardly capture their frequent variability. Smartphones and 
smartwatches along with signal processing and machine 
learning can facilitate frequent, remote, reliable and 
objective assessments of PD from patients’ homes.
Aim  To investigate the feasibility, compliance and user 
experience of passively and actively measuring symptoms 
from home environments using data from sensors 
embedded in smartphones and a wrist-wearable device.
Methods and analysis  In an ongoing clinical feasibility 
study, participants with a confirmed PD diagnosis are 
being recruited. Participants perform activity tests, 
including Timed Up and Go (TUG), tremor, finger tapping, 
drawing and vocalisation, once a week for 2 months 
using the Mobistudy smartphone app in their homes. 
Concurrently, participants wear the GENEActiv wrist 
device for 28 days to measure actigraphy continuously. In 
addition to using sensors, participants complete the Beck’s 
Depression Inventory, Non-Motor Symptoms Questionnaire 
(NMSQuest) and Parkinson’s Disease Questionnaire 
(PDQ-8) questionnaires at baseline, at 1 month and at the 
end of the study. Sleep disorders are assessed through 
the Parkinson’s Disease Sleep Scale-2 questionnaire 
(weekly) and a custom sleep quality daily questionnaire. 
User experience questionnaires, Technology Acceptance 
Model and User Version of the Mobile Application Rating 
Scale, are delivered at 1 month. Clinical assessment 
(Movement Disorder Society-Unified Parkinson Disease 
Rating Scale (MDS-UPDRS)) is performed at enrollment 
and the 2-month follow-up visit. During visits, a TUG 
test is performed using the smartphone and the G-Walk 
motion sensor as reference device. Signal processing and 
machine learning techniques will be employed to analyse 
the data collected from Mobistudy app and the GENEActiv 
and correlate them with the MDS-UPDRS. Compliance and 
user aspects will be informing the long-term feasibility.
Ethics and dissemination  The study received ethical 
approval by the Swedish Ethical Review Authority 
(Etikprövningsmyndigheten), with application number 
2022-02885-01. Results will be reported in peer-reviewed 
journals and conferences. Results will be shared with the 
study participants.

INTRODUCTION
Parkinson’s disease (PD) is a heterogeneous 
neurodegenerative disorder characterised by 
third cardinal symptoms: bradykinesia, resting 
tremor and musculoskeletal rigidity as well as 
several non-motor symptoms including cogni-
tive alterations, anxiety, depression, halluci-
nations, pain, speech issues, sleep disorders 
along with autonomic disorders such as 
bladder and bowel problems and ortho-
static hypotension.1 PD is the second most 
common neurodegenerative disorder, with 
a worldwide prevalence estimated to reach 
13 million cases by 2040.2 The diagnosis and 
assessment of PD are mainly based on clinical 
findings such as history and physical exam-
inations.3 The most used and recommended 
rating scales to measure PD disease severity, 
progression and functional disability are the 
Hoehn and Yahr staging scale and the Move-
ment Disorder Society-Unified Parkinson 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ This study uses a mobile and wearable device to 
conveniently, non-invasively, passively and active-
ly quantify symptoms at home in a user-friendly 
manner.

	⇒ The study combines objective data collected across 
multiple tests, to evaluate the frequency and severi-
ty of motor and non-motor symptoms.

	⇒ The study aims to identify the link between data 
collected at home and conventional clinical scales, 
potentially enhancing the remote monitoring and 
management of Parkinson’s disease.

	⇒ This study excludes participants with severe symp-
toms who are unable to use smartphones, which 
may result in a less diverse sample and limit the 
generalisability of the findings.

	⇒ Data analysis is dependent on the quantity and vari-
ability of collected data; success of the study relies 
on participants’ compliance with the intensive data 
collection regime.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-7102-083X
http://dx.doi.org/10.1136/bmjopen-2023-077766
http://dx.doi.org/10.1136/bmjopen-2023-077766
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2023-077766&domain=pdf&date_stamp=2024-02-22


2 Ymeri G, et al. BMJ Open 2023;13:e077766. doi:10.1136/bmjopen-2023-077766

Open access�

Disease Rating Scale (MDS-UPDRS).4 5 The MDS-UPDRS 
is usually performed twice a year during clinical appoint-
ments to track disease progression. Both scales can 
present reliability issues, use ordinal scores and do not 
track disease burden in a home environment at regular 
intervals.6

To complement in-clinic examinations, patients may 
be asked to record their symptoms in diaries at home; 
however, these diaries often lack the necessary accuracy7 
needed to effectively supplement clinical assessments and 
are prone to recall bias. Smartphones offer a more conve-
nient alternative to pen and paper, allowing for more 
efficiency and accuracy while minimising such biases.8 
Nevertheless, self-reports alone are insufficient to capture 
the full extent of symptoms, and additional technologies 
have been demonstrated to provide significant benefits 
across a range of applications.9 Consequently, there is 
a need for systems that allow PD patients to be conve-
niently, reliably, objectively and longitudinally monitored 
in their home environments.

Accelerometers, particularly those embedded in mobile 
phones and smartwatches, have recently been explored as 
cost-effective, user-friendly solutions to monitor PD symp-
toms, and facilitating better follow-up, care and improved 
patient management.10–12 As an example, Lopez-Blanco 
and coworkers13 explore the gyroscope embedded in smart-
watches to analyse rest tremor in PD patients. Their results 
show that using smartwatches for assessing rest tremor can 
correlate with clinical score and is well accepted by users. 
Czech and coworkers14 investigate wearable devices to 
measure gait in PD. Their results prove that measuring gait 
in PD can be performed reliably with a single accelerom-
eter. However, their study uses a lumbar-mounted acceler-
ometer and does not investigate common wearable devices 
such as smartwatches or smartphones. Some research proj-
ects extend the range of monitored symptoms, such as in15 
where the authors investigate the quantification of dexterity 
in PD through a smartphone-based system. In this paper, 
authors incorporate finger tapping (FT) and drawing 
tests in a clinical trial including 19 PD participants and 
22 healthy controls. Their results show weak to moderate 
correlations between UPDRS items and smartphone-based 
ratings; however, this study was performed in a clinical envi-
ronment and does not show that the same quality of data 
can be obtained at home. In addition, the more recent 
mPower study16 explores assessment of PD using a smart-
phone application in home environments. Recruitment 
of participants in this study was performed online which 
did not guarantee that all the participants were clinically 
diagnosed with PD. This study incorporates a number of 
tasks to gather data with the participants’ mobile phones, 
including FT, vocalisation exercises, walk, balance and 
memory tests. Their results show that the FT task was more 
predictive for the self-reported status of PD. A smartphone 
app, cloudUPDRS app, is also introduced in17 which also 
includes a number of data collection activities such as reac-
tion, tremor and walking tests, and a well-being test, but 
excluding voice or cognition tests.

Despite the existence of various digital health tools for 
PD monitoring, these typically focus on a single measure-
ment modality, or the recruitment of the participants 
does not generalise the results for at-home assessments. 
A multimodal, user-friendly and affordable solution for 
home-based continuous monitoring of PD could provide 
significant advantages for both patients and clinicians.

Considering this, the primary aim of this study is 
to determine the feasibility of reliably measuring PD 
symptoms using mobile phones and wearable devices at 
home and to provide a more holistic overview of symp-
tomatology compared with what has been attempted in 
previous studies. The study is supported by the develop-
ment of a novel, multimodal symptoms tracker system, 
which both passively and actively quantify motor symp-
toms such as bradykinesia, gait impairment, tremor, voice 
disorders, as well as non-motor symptoms like depression, 
and sleep disturbances.

METHODS AND ANALYSIS
Study design and participants
This clinical feasibility study involves the recruitment of 
30 participants with clinically diagnosed PD at the Center 
for Neurology, Academic Specialist Center Torsplan 
(ASCT), Stockholm Health Services, Region Stockholm.

Participants are recruited based on the inclusion and 
exclusion criteria summarised in table  1. Guided by 
similar studies that have used between 10 and 50 partic-
ipants,18–20 the goal of this study is towards hypothesis 
generation and assessing feasibility. Efforts are made to 
recruit participants with a diverse range of PD symptoms 
while avoiding over-representation of one sex or age cate-
gory. Given the limited number of participants and the 
exploratory nature of this study, no specific software is 
used for randomisation; an ad hoc approach is adopted 
depending on the circumstances. Recruitment started in 
the fourth quarter of 2022, with plans to complete data 
collection in the fourth quarter of 2023.

Table 1  Inclusion/exclusion criteria

Inclusion criteria Exclusion criteria

Must be diagnosed with 
Parkinson’s disease 
and under treatment at 
Karolinska University 
Hospital or Academic 
Specialist Center Torsplan

Not able to use a smartphone 
independently

Must have mild or moderate 
motor and non-motor 
symptoms

Unable to read and 
understand Swedish

Must own a smartphone, 
Android or iPhone

Severe symptoms (H&Y 3 and 
above)

H&Y, Hoehn and Yahr.
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Outcomes
The research questions that this study addresses are:
1.	 Are the multimodal measurements collected by mobile 

phones and wearable devices valid for estimating PD 
symptoms?

2.	 What extracted information/features from raw data 
are predictive of MDS-UPDRS scores using data col-
lected by mobile phones and wearables?

3.	 Are mobile phones and wearable devices usable and 
accepted for data collection?

These research questions entail collecting data from 
devices at participants’ home and reference data in-clinic 
and developing algorithms to associate the MDS-UPDRS 
score from the data collected at home. The questions also 
imply measuring compliance to the data regime protocol, 
usability of the technology and long-term acceptance.

Patient and public involvement
None.

Data collection
Data from participants are collected through two clin-
ical visits—at baseline and after 2 months—as well as in 
between visits by using a mobile phone app and a wear-
able device in home environment. The mobile phone app 
used in this study is Mobistudy,21 a free and open-source 
app designed for clinical research. The app prompts users 
to perform scheduled tasks during their 2-month partic-
ipation in the study, as outlined in table 2. Tasks include 
answering questionnaires and performing motor tests. 
The motor tests are prompted to be performed twice: 
one prior to medication intake and again postintake to 
measure ON and OFF states. While there is no designated 
time of day for these tests, participants are instructed to 
consistently follow this premedication and postmedica-
tion schedule.

The tasks included in the Mobistudy app for this study 
are:

	► Questionnaires:
	– Beck’s depression inventory-II (BDI-II).22 This is 

used to quantify depression.
	– Parkinson’s disease sleep scale (PDSS-2).23 Used to 

quantify sleep disorder.
	– Non-Motor Symptoms Questionnaire 

(NMSQuest).24 Measures non-motor symptoms.
	– Parkinson’s Disease Questionnaire (PDQ-8).25 

Short scale to assess motor and non-motor symp-
toms in daily life.

	– Sleep quality questionnaire. Based on,26 is a custom 
daily short questionnaire to assess sleep quality (full 
questions list in online supplemental appendix 1).

	– User Version of the Mobile Application Rating 
Scale (uMARS).27 Measures usability and the qual-
ity of the app.

	– Technology Acceptance Model (TAM).28 Estimates 
long-term usage of the app.

	► Timed up and go test (TUG test): Participants are 
instructed to stand up from a chair, walk 3 meters, 
turn around, return to the chair, and sit down. The 
mobile phone, secured in a waist belt around the hip, 
records data from inertial sensors (accelerometer and 
gyroscope) and estimates the total time required to 
complete the task.

	► Vocalization test: Participants record their voice 
during a vocalization exercise guided by the app. The 
exercise consists of pronouncing the sustained vowels 
“a”, “i” and “u” for as long as possible.

	► Hold the phone test (HTP test): Participants are 
instructed to hold the phone for 60 seconds while the 
phone records inertial sensors data (acceleration and 
orientation). The task is repeated for each hand in 

Table 2  The schedule for when activity tasks and questionnaires are performed by the recruited participants

Activity tasks and questionnaires Day after recruitment

Timed Up and Go test 1 8 15 22 29 36 43 50

Beck’s Depression Inventory 3 31 54

Parkinson’s Disease Sleep Scale 7 14 21 28 35 42 49 56

NMSQuest 3 31 54

PDQ-8 3 31 54

Vocalisation test 1 8 15 22 29 36 43 50

Hold your phone test 1 8 15 22 29 36 43 50

Finger tapping test 1 8 15 22 29 36 43 50

Drawing test 1 8 15 22 29 36 43 50

Sleep Quality Questionnaire Daily

uMARS 20

TAM 20

Actigraphy Continuously, recording at 25 Hz until battery is depleted after 28 days

NMSQuest, Non-Motor Symptoms Questionnaire; PDQ-8, Parkinson’s Disease Questionnaire; TAM, Technology Acceptance Model; uMARS, 
User Version of the Mobile Application Rating Scale.

https://dx.doi.org/10.1136/bmjopen-2023-077766
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three positions: resting the hand holding the phone 
in the lap while sitting, extending the arm at shoul-
der’s height, and moving the arm from outstretched 
to touching the nose repeatedly.

	► Finger tapping test (FT test): Participants are 
instructed to rapidly tap two buttons on the screen 
using the index and middle fingers.

	► Drawing test: Participants are instructed to draw a 
square and a squared spiral on the screen by tracing a 
marked line with their index finger.

In addition to the app, a wrist-worn actigraphy device 
(GENEActiv, Activinsights, UK) is used to collect contin-
uous three-dimensional acceleration data in free-living 
conditions. A gait analysis device (GWALK, BTS Bioengi-
neering, Italy) is used to gather reference gait analysis data 
during the TUG test in clinic, at enrolment and conclu-
sion of the study. The GENEActiv device is set to capture 
data at a sample rate of 25 Hz. While 10 Hz is considered 
sufficient for wrist-based acceleration in day-to-day activi-
ties,29 this study adheres to the Nyquist theorem by using 
at least twice the maximum frequency of tremor.30

While aiming at including a wide range of symptom-
atology, in this first feasibility study, we decided to focus 
on motor symptoms, also given the nature of the sensors 
employed. We decided to exclude cognitive function, as 
this would have required the implementation of addi-
tional interactive features on the Mobistudy app that were 
not justified by the scope of the research.

Participants are approached during their regular visits to 
the ASCT clinic. If they give informed consent to partici-
pate, they receive an introduction to the study, instruc-
tions, a waist belt and an actigraphy device. The Mobistudy 
app is downloaded and installed on their smartphone, 
and participants create an account. A series of demo tests 
using Mobistudy is available for participants to practice 
and ensure understanding before the study starts. Each test 
includes in-app instructions. A TUG test, performed with 
the GWALK gait analysis reference device, and a full MDS-
UPDRS assessment by a neurologist are conducted during 
enrollment.

During the 8-week at-home period, participants 
complete tests and answer questionnaires using their 
phones and the Mobistudy app (illustrated in figure 1). 
Participants are contacted on day 10 and on day 30 either 
via email or phone call to check compliance and the pres-
ence of any technical or practical issues.

On completing of the study, participants attend a second 
clinical visit, during which they perform a TUG test with 
GWALK, undergo a full MDS-UPDRS assessment and 
complete an interview. The semistructured interview is 
designed to complement questions asked in the usability 
questionnaires and covers motivations for participation, 
usability, user-friendliness, acceptance, perceptions of trust 
and suggestions for improvements (full schedule in online 
supplemental appendix 2). A researcher conducts the inter-
view with the participant either in the clinic or over the phone 

Figure 1  Timeline of the study depicting assessments, tests and questionnaires, when and where they take place. BDI, Beck’s 
Depression Inventory; NMSQuest, Non-Motor Symptoms Questionnaire; PDQ-8, Parkinson’s Disease Questionnaire; PDSS, 
Parkinson’s Disease Sleep Scale; TAM, Technology Acceptance Model; TUG, Timed Up and Go; uMARS, User Version of the 
Mobile Application Rating Scale; MDS-UPDRS, Movement Disorder Society-Unified Parkinson Disease Rating Scale.

https://dx.doi.org/10.1136/bmjopen-2023-077766
https://dx.doi.org/10.1136/bmjopen-2023-077766
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if consent is granted. Interviews are expected to last no more 
than 30 min and are audio recorded.

Data management
Clinical data, including patients’ demographics (age, 
sex, year of diagnosis of PD, year of onset of first symp-
toms, deep brain stimulation device status, any PD-related 
surgery, medication regime and comorbidities) as well as 
in-clinic results (evaluated MDS-UPDRS and TUG test), 
are collected by the ASCT. These data are stored on an 
encrypted disk on a computer managed by the research 
team.

App-based data is collected using the Mobistudy plat-
form.21 This includes participants’ profiles—name, 
surname, date of birth, sex, height, weight, long-
term diseases, long-term medications—questionnaire 
responses and sensors data. Sensors data includes acceler-
ation and orientation during the TUG test and HTP test, 
voice recordings collected during the vocalisation test, 
timestamps of taps during the FT test and finger coordi-
nates during the drawing test. Metadata including time 
and date of when a data collection task was executed, 
and phone model and make, are also recorded. These 
data are stored on servers owned and managed by Malmö 
University in Sweden, they are encrypted during the trans-
mission and at rest and are accessed only by researchers 
under strict rules.

The GENEActiv actigraphy device stores acceleration 
data internally. On the study’s completion, participants 
return the device, the researcher charges it, extracts and 
saves the data on the study computer marked with the 
patient identifier.

Interviews of participants are conducted by researchers 
in person (when possible) or over the phone and recorded 
for later analysis with patient’s consent.

Malmö University acts as central repository for data, 
including data collected via Mobistudy and by ASCT. 
Data is shared among researchers using the Box cloud 
storage service managed by the University and employing 
the Cryptomator (https://cryptomator.org/) encryption 
software.

Collaborators from the University of Edinburgh receive 
access to pseudonymised data such as general demo-
graphic information, MDS-UPDRS assessments, audio 
data from the vocalisation test and the data from the 
GENEActiv wrist-wearable device. These data are shared 
through a separate shared folder, containing no personal 
information.

Data will be removed from the Mobistudy servers on 
completion of data collection but retained on researchers’ 
computers during analysis. An archive will be kept for 10 
years in accordance with current regulations.

Quality assurance
Data are reviewed monthly to ensure comprehensive and 
accurate recording at the clinic and through the app. 
Every 2 months, interim data analyses are also put in place 
to allow in-depth quality checks and possible bugs in the 

software. Non-compliant participants are contacted by the 
clinical team to explore reasons and propose solutions.

Data analysis plan
Quantitative data will be analysed using statistical, signal 
processing and machine learning methods, while qual-
itative data will be evaluated based on the theoretical 
foundations underlying the questionnaires and interview 
questions.

Validity of measurements collected by mobile phones and 
wearables
From the data collected from activity tests and the wrist-
wearable device, we will extract features and train machine 
learning models to infer the severity of the disease using 
the MDS-UPDRS score as a reference. This includes 
measuring time needed to complete the TUG test, finger 
dexterity in the FT test, tremor in the HTP and the 
drawing tests, and assessing voice distortions in the vocali-
sation test.31 The main metric for assessing validity will be 
correlation between features and/or inferred scores and 
actual scores. We will associate the measurements to the 
MDS-UPDRS closest in time. The variability of fluctuating 
symptoms will be addressed by exploring how averaging 
features, including before and after medication and over 
the weeks, affects the correlation. The data collected by 
the wearable will also offer a reference to understand if 
and in what way symptoms have evolved over time.

As targets, we will employ both summative scores, for 
example, for part 3 (motor symptoms), which will be 
compared with aggregated results from all the tests, and 
specific items, when those can be mapped to the result of 
a specific test, for example, finger tapping with item 3.4.

Data acquired by the GWALK gait analysis device during 
the TUG tests in clinic will be employed as a reference to 
validate the algorithms used to analyse the data collected 
by the app in the same test.

Algorithms will be implemented to assess tremor, 
bradykinesia and sleep quality from the actigraphy data 
obtained from the wearable device. Sleep-related ques-
tionnaires will serve as a reference for sleep quality 
assessment.

Various machine learning classifiers such as AdaBoost, 
random forest, multilayer perceptron, support vector 
machine, XGBoost and similar algorithm for regres-
sion analysis will be trained to predict symptoms scores. 
Regression models will be used to predict the scale of the 
MDS-UPDRS whereas classifiers will be used to predict 
scores binned into boarder categories (eg, no symptoms, 
low symptoms, high symptoms). A preliminary proof of 
feasibility has been performed through a regression anal-
ysis to infer disease severity32 based on a dataset with self-
reported part of MDS-UPDRS components collected in 
the mPower study.33 This offered insights into the antici-
pated quality from data collected in free-living conditions. 
Importantly, a correlation between data collected from 
smartphones and symptoms’ severity was confirmed but 
only after removing a substantial number of participants 

https://cryptomator.org/
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who were considered unreliable. This study aims to 
address those deficiencies by selectively recruiting partic-
ipants with clinically diagnosed PD.

Algorithms for classification and regression analysis will 
be compared on different evaluation metrics including 
common performance metrics such as accuracy, sensitivity, 
specificity and area under the curve-receiver operating 
characteristic (AUC-ROC) for classifiers. For regression 
models, metrics like mean squared error, mean absolute 
error and R square measures will be used.

Feature selection (FS) will be performed, and the best 
predictive features will be identified. Methods mentioned 
in,34 Relevance, Redundancy, and Complementarity 
Trade-off, minimal-redundancy-maximal-relevance 
(mRMR Peng), correlation-based FS and recursive feature 
elimination will be explored, as well as dimensionality 
reduction techniques such as principal component anal-
ysis.35 To assess the performance of different machine 
learning algorithms, k-fold cross-validation and leave-
one-participant-out cross-validation method will be used, 
in order to account for participant identity confounding.

Compliance, usability and acceptance
Participants’ compliance is measured using activity logs 
from which we can derive the number of tests performed 
and questionnaires answered.

Usability and long-term acceptance of the app will be 
assessed by computing descriptive statistics about the 
quantitative answers given to the questionnaires and 
performing a thematic analysis of the interviews based on 
the theoretical foundations that defined the questions.

Strengths and limitations
Most existing digital systems for PD assessment focus on 
one symptom, for example, tremor, or cognitive decline. 
Our proposed approach is multidimensional, aiming at 
a more holistic view of the participants’ status. Another 
important strength of this study is that sensors are used 
to measure symptoms objectively and reliably while 
performing motor tasks and within a daily life environ-
ment, thus allowing frequent measurements.

Limitations of the study include the sample size and 
sufficiently representing all disease severity levels. Patients 
with severe PD are excluded from the study, which could 
impact the generalisability of the results. Furthermore, 
given the home-based setting of this study, the quality of 
the data may be affected by the participants’ degree of 
participation and compliance to the study protocol.
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