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Abstract

We propose a generalization of the Weibull dissolution model, referred to as generalized Weibull 
dissolution model, that seamlessly captures all three fractional dissolution rates experimentally 

observed in pharmaceutical solid tablets, namely decreasing, increasing, and non-monotonic rates. 

This is in contrast to traditional reduced order models, which capture at most two fractional 

dissolution rates and, thus, are not suitable for a wide range of product formulations hindering, 

for example, the adoption of knowledge management in the context of Industry 4.0. We extend 

the generalized Weibull dissolution model further to capture the relationship between critical 

process parameters (CPPs), critical materials attributes (CMAs), and dissolution profile to, in turn, 

facilitate real-time release testing (RTRT) and quality-by-control (QbC) strategies. Specifically, 

we endow the model with multivariate rational polynomials that interpolate the mechanistic 

limiting behavior of tablet dissolution as CPPs and CMAs approach certain values of physical 

significance (such as the upper and lower bounds of tablet porosity or lubrication conditions), thus 

the semi-mechanistic nature of the reduced order model. Restricting attention to direct compaction 

and using various case studies from the literature, we demonstrate the versatility and the capability 

of the semi-mechanistic ROM to estimate changes in dissolution due to process disturbances in 

tablet weight, porosity, lubrication conditions (i.e., the total amount of shear strain imparted during 

blending), and moisture content in the powder blend. In all of the cases considered in this work, 

the estimations of the model are in remarkable agreement with experimental data.
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1. Introduction

Continuous manufacturing of pharmaceutical solid dosage forms offers potential flexibility, 

higher product quality, reduced manufacturing footprint, and economic advantages over 

batch manufacturing, in both product development and product manufacturing stages (Lee 

et al., 2015). However, while innovator companies are selectively adopting continuous 

manufacturing, the overwhelming majority of pharmaceutical plants employ batch 

operations. It is evident that even though continuous manufacturing offers notable benefits, 

it is not a universal solution. For example, batch production is sometimes cost-effective 

in terms of set-up cost. Similarly, continuous production is sometimes not feasible if unit 

operations have very different processing times, such as the period of tablet relaxation 

required before coating (Leane et al., 2018). In contrast, a recent U.S. Food and Drug 

Administration (FDA) audit indicates that continuous manufacturing applications have 

received faster regulatory approval and, in turn, made more revenues due to faster market 

entry compared to batch applications (Fisher et al., 2022). The adoption of continuous 

manufacturing has hastened the development of modern process systems engineering tools, 

such as process modeling, online process analytical technology (PAT), active process 

control, material tracking, and real-time risk assessment, among others (Lee et al., 2015; 

Lakerveld et al., 2013; Byrn et al., 2015; Gao et al., 2011; Kvarnström and Bergquist, 

2012). These developments certainly lead to enhanced product knowledge and process 

understanding which, ultimately, provide a platform for realizing quality-by-design (QbD) 

(Yu, 2008) and real-time release testing (RTRT) (Markl et al., 2020) and, eventually, for 

ensuring consistent product quality based on process data (Chatterjee, 2012).

The FDA has released guidelines for implementing QbD in the pharmaceutical 

manufacturing process (FDA and CDER, 2006). The QbD framework emphasizes the use 

of systematic approaches to process development for new drug products, which utilize 

enhanced process and product understanding based on sound scientific principles. Once 

the critical quality attributes (CQAs) of the pharmaceutical product have been identified, 

mechanistic and data-driven mathematical models can be used to deduce how critical 

process parameters (CPPs) and critical material attributes (CMAs) affect the CQAs and, 

in turn, to identify the design space (DS) where the process can be operated so that the target 

product profile (TPP) is not affected due to changes in operating conditions (Lawrence et al., 

2014). The QbD framework can be extended to a quality-by-control (QbC) framework (Su 

et al., 2019b) through active process control strategies to handle, for example, operating 

problems related to process disturbances and uncertainties in real-time. Evidently, the 

development of mechanistic and semi-mechanistic reduced order models (ROMs), resulting 

from a trade-off between complexity and performances but still based on product and 

process understanding, forms an essential cornerstone for process design, optimization, and 

control in pharmaceutical manufacturing.

The dissolution profile is one of the most important CQAs for any pharmaceutical solid 

dosage form (Lawrence et al., 2014). Dissolution tests are time-consuming destructive tests 

that are used as surrogates for in-vivo drug release and the bioavailability of drugs. They 

are performed offline to ensure batch-to-batch manufacturing consistency and, for example, 

evaluate post-approval formulation changes to product quality (FDA and CDER, 1997). 
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Therefore, predictive dissolution ROMs are crucial for the successful implementation of 

any RTRT strategy (FDA, 2004, 2012; Wu et al., 2015). In the context of continuous 

manufacturing, these models must generate a dissolution profile based on prior product 

knowledge and process understanding, CPPs monitored in real-time, and any in-line and 

at-line PAT available (Zaborenko et al., 2019). By way of example, Fig. 1 shows the 

Continuous Solids Processing Pilot Plant at Purdue University. The API and excipients are 

fed through K-Tron and Schenck feeders, respectively, and uniformly blended in a Gericke 

GCM-250 blender. Depending on the manufacturing process, namely direct compaction or 

dry granulation, the powder blend is next sent to a K-Tron MT12 micro-screw lubricant 

feeder or an Alexanderwerk WP120 roller compactor for dry granulation. Finally, solid 

tablets are produced by a Natoli NP-400 rotary tablet press. Among many other CPPs and 

CMAs, we identified the following dominant CPPs and CMAs that affect the dissolution of 

a solid oral dosage form: (i) API concentration (Pawar et al., 2016b; Wenzel et al., 2017), 

(ii) crystal size distribution (Chu et al., 2012; Nagy et al., 2021), (iii) lubrication (lubricant 

concentration (Uzunović and Vranić, 2007) and shear strain Hernandez et al. (2016), Pingali 

et al. (2011)), (iv) glidant (Pingali et al., 2011) (v) moisture content in powder blend 

(Steendam et al., 2000, 2001), (vi) compaction force (Pingali et al., 2011; Pawar et al., 

2016b), and (vii) tablet porosity (Hattori and Otsuka, 2011).

Drug dissolution is classically considered to be governed by the Noyes–Whitney equation 

(Noyes and Whitney, 1897), namely the dissolution rate is proportional to the difference of 

dissolved drug concentration C at time t from the solubility level Cs, i.e., Ċ(t) ∞ [Cs − C(t)]. 
Similarly, Lánsky and Weiss (2001) proposed that the mass of drug dissolved from a 

pharmaceutical solid product M t  can be empirically described by

Ṁ(t) = K(t) M∞ − M(t) (1)

where M∞ is the dose of the solid product, i.e., the total mass of API in the solid product, 

and K t  is the fractional dissolution rate, i.e., the ratio of dissolution rate to the undissolved 

amount. For a homogeneous compound and well-stirred dissolution medium (Lánsky and 

Weiss, 1999), the fractional dissolution rate is assumed constant in time and, in turn, the 

classical first-order model is recovered. In general, the fractional dissolution rate K t  can 

be interpreted as the conditional probability that a randomly selected API molecule transfers 

from the solid state into the solution during a differential period of time, given that the 

dissolution has not taken place before time t. There is a large spectrum of mechanistic and 

empirical models for characterizing drug release profiles (see, e.g., Bruschi (2015), Costa 

and Lobo (2001) and references therein), that either has the form of or can be interpreted as 

an approximation of Eq. (1) over a short period of time. A ROM of pharmaceutical tablet 

dissolution for realizing QbD and QbC frameworks, however, needs to predict changes in 

dissolution profile both due to process disturbances, for process control purposes, and over a 

wide design space, for process design and optimization purposes. Furthermore, a dissolution 

model suitable for a wide range of product formulations is desirable, since it facilitates 

knowledge management in the context of Industry 4.0 (Ding, 2018). In this work, we will 

establish that there is a lack of a dissolution ROM with such general behavior, and we will 

present a generalization of the Weibull dissolution model (Costa and Lobo, 2001) which 
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overcomes this limitation. Furthermore, a ROM suitable for QbD and QbC frameworks 

needs to relate the dissolution profile with CPPs and CMAs of the manufacturing process. 

In this work, we restrict attention to direct compaction (i.e., manufacturing route (A) in Fig. 

1) and we illustrate this concept by extending the generalized Weibull dissolution model to 

process disturbances in tablet porosity, lubrication conditions (i.e., the total amount of shear 

strain imparted during blending), and moisture content in the powder blend.

The paper is organized as follows. In Section 2, a generalized Weibull dissolution model is 

proposed and its equivalence to classical dissolution models is established. The performance 

of the proposed model is demonstrated in Section 3 using selected experimental data from 

published dissolution tests of pharmaceutical formulations. The model is extended to capture 

the relationship between CPPs, CMAs, and the dissolution profile of solid tablets, and the 

resulting semi-mechanistic reduced order dissolution model for continuous manufacturing 

is presented in Section 4. A parameter identification method that maximizes the similarity 

factor between dissolution experimental data and model predictions is presented in the 

same section. The versatility and capability of the semi-mechanistic ROM to estimate 

changes in dissolution due to process disturbances are demonstrated in Section 5 using 

various case studies from the literature. The formulation, fabrication, and characterization of 

lomustine tablets (an oral antineoplastic agent for the treatment of primary and metastatic 

brain tumors) are discussed in Section 6. The model parameter estimation of a lomustine 

tableting-dissolution ROM and the applicability of this model to RTRT in continuous 

manufacturing are examined in the same section. Possible avenues for extending this line of 

work is described in Section 7. Concluding remarks are presented in Section 8.

2. A generalized Weibull dissolution model

Lánsky and Weiss (2003) established that the fractional dissolution rate can be classified 

into three types, namely decreasing fractional dissolution rate (DFR), increasing fractional 

dissolution rate (IFR), and non-monotonic fractional dissolution rate (NMFR). Fig. 2 

illustrates that apparently similar dissolution profiles can have distinctively dissimilar 

fractional dissolution rate profiles. A time-dependent fractional dissolution rate is influenced 

by the heterogeneity of the dissolving tablet, e.g., by the polydispersity of the API crystals, 

and, hence, it is prevalent in pharmaceutical solid products. In fact, all three fractional 

dissolution rate profiles are observed in commercial products. Similarly, mechanistic and 

empirical models typically used to characterize drug release profiles (see, e.g., Bruschi 

(2015), Costa and Lobo (2001) and references therein) exhibit at least one of these fractional 

dissolution rate profiles. For example, Macheras and Dokoumetzidis (2000) showed that the 

fractional dissolution rate of the Weibull dissolution model is a power function of time. As 

we established before, in the context of Industry 4.0, it is desirable to adopt a dissolution 

model suitable for a wide range of process states and product formulations to, e.g., realize 

QbD and QbC frameworks and facilitate knowledge management. In this section, we will 

establish that there is a lack of a dissolution ROM with such general behavior, and we will 

propose a generalization of the Weibull dissolution model (Costa and Lobo, 2001) which 

overcomes this limitation.
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The Weibull model is one of the most popular dissolution models in capturing the trend 

of experimental dissolution curves. It is characterized by the following time-dependent 

fractional dissolution rate

K(t) = ktk − 1

λk for k > 0 and t ∈ [0, ∞) (2)

where λ and k are model parameters. Using definition (1), the fraction of drug released is 

given by

M(t)
M∞

= 1 − e−(t/λ)k for k > 0 and t ∈ [0, ∞) (3)

For k > 1, the fractional dissolution rate is of increasing type; for k ∈ 0,1 , the fractional 

dissolution rate is of decreasing type; for k = 1, the fractional dissolution rate is time-

independent. The Weibull dissolution model does not capture a non-monotonic fractional 

dissolution trend (Lánsky and Weiss, 2003).

The zero-order dissolution model has the following fractional dissolution rate

K(t) = 1/(a − t) for t ∈ [0, a)
0 for t ∈ [a, ∞) (4)

where a is a model parameter (Lánsky and Weiss, 2003). Using definition (1), the fraction of 

drug released is given by

M(t)
M∞

= t/a for t ∈ [0, a)
1 for t ∈ [a, ∞) (5)

The fractional dissolution rate increases before the dose is completely released at t = a, i.e., 

it increases before M a = M∞. Similarly, there is a family of classical models which have a 

time-dependent fractional dissolution rate over a finite interval of time only, and a fraction of 

drug released given by

M(t)
M∞

= 1 − (1 − t/a)n for t ∈ [0, a)
1 for t ∈ [a, ∞)

(6)

where a and n are model parameters (Wang and Flanagan, 1999; De Almeida et al., 1997). 

Furthermore, for n = 3, the model is known as the cube-root model or Hixson–Crowell 

model; for n = 2, the model is known as the square-root model; and for n = 3/2, the model is 

known as the three-half-root model. Evidently, the zero-order model is recovered for n = 1. 

The Hopfenberg model (Bruschi, 2015) specifically considers a = C0a0/k0, where k0 is the 

erosion grade constant, C0 is the initial concentration of the drug in the matrix and a0 is the 

initial characteristic size of the solid product — that is the radius of a sphere n = 3  and 

cylinder n = 2  or thickness of a film n = 1 . Using definition (1), the fractional dissolution 

rate is given by
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K(t) = n/(a − t) for t ∈ [0, a)
0 for t ∈ [a, ∞) (7)

and it increases for t ∈ 0, a. The Korsmeyer–Peppas models (Korsmeyer et al., 1983) also 

estimate that the dose is completely released over a finite interval of time, and they have a 

fraction of drug released given by

M(t)
M∞

=
tn/a for t ∈ 0, a1/n

1 for t ∈ a1/n, ∞
(8)

where a and n are model parameters. These models estimate that M a1/n = M∞ and they 

are known for capturing only the first 60% of experimental trends (Korsmeyer et al., 1983). 

For n = 1/2, the model is known as Higuchi model; for 1/2 < n < 1, the model is denoted as 

anomalous transport; for n = 1, the zero-order model is recovered; and for n > 1 the model 

is called Super Case-II transport. Using definition (1), the fractional dissolution rate of the 

Korsmeyer–Peppas model is given by

K(t) =
ntn − 1/ a − tn for t ∈ 0, a1/n

0 for t ∈ a1/n, ∞
(9)

Interestingly, these models belong to the increasing fractional dissolution rate class for 

n ≥ 1 and to the non-monotonic class, otherwise. Similarly, the Peppas-Sahlin model can be 

expressed as (Peppas and Sahlin, 1989)

M(t)
M∞

= C1tm + C2t2m t ∈ 0, min t1
*, t2

*
(10)

where the first term is interpreted as the Fickian diffusional contribution, whereas 

the second term is the Case II relaxational contribution. In the above equation, 

C1 > 0, t1
* = C1

2 + 4C2 − C1 /2C2
1/m

 is the time at which the function reaches 1, and 

t2
* = −C1/2C2

1/m is the time at which the function reaches its maximum. Using definition 

(1), the fractional dissolution rate of the Peppas-Sahlin model is given by

K(t) = mC1tm − 1 + 2mC2t2m − 1

1 − C1tm − C2t2m t ∈ 0, min t1
*, t2

*
(11)

Interestingly, these models belong to the decreasing fractional dissolution rate class 

for 0 < m ≤ 1 and, otherwise, to the non-monotonic class. However, to the best of our 

knowledge, there is no dissolution ROM with all three fractional dissolution rate profiles.

We address this technical need by proposing a generalization of the Weibull model, referred 

to as generalized Weibull dissolution model. This new model has the following fractional 

dissolution rate and the fraction of drug released functions
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K(t) = ktk − 1

λk 1 + (t/s)k for t ∈ [0, ∞) (12)

M(t)
M∞

= 1 − 1 + (t/s)k −(s/λ)k for t ∈ [0, ∞) (13)

where λ, k and s are model parameters. In the limit of s ∞, the generalized Weibull 

model reduces to the Weibull model, that is to (2)–(3), and λ to the time interval necessary 

to release 63.2% of the dose. The parameter k is known as the shape parameter and, 

together with s, controls the type of fractional dissolution rate. For 0 < k ≤ 1, the fractional 

dissolution rate is of decreasing type for any value of s (see Fig. 3(a)). For k > 1, the 

maximum fractional dissolution rate occurs at time equal to s k − 1 1/k and, hence, the 

fraction dissolution rate profile is controlled by s (see Figs. 3(b) and 3(c)). Specifically, 

in the limit of s ∞, the fractional dissolution rate profile is increasing, and it is non-

monotonic, otherwise.

We will demonstrate next that classical dissolution models are equivalent to the proposed 

generalized Weibull dissolution model in the initial stages of dissolution, that is they are 

equal to a number of terms in the Taylor expansion of the generalized Weibull model, or 

rather exactly equivalent, for certain values of λ, k, and s. Specifically, the Weibull model is 

exactly recovered in the limit of s ∞, as we established above, that is

1 − 1 + t/s k − s/λ k

s ∞ 1 − e− t/λ k
(14)

Similarly, the Hopfenberg model, i.e., Eq. (6), is exactly recovered if k = 1, λ = a/n and 

s = − a, that is

1 − 1 + t/s k − s/λ k

k = 1, s = − a, λ = a/n 1 − 1 − t/a n (15)

In addition, the first two terms in the Taylor expansion of the generalized Weibull model are 

equivalent to the Peppas–Sahlin model, i.e., to Eq. (10), namely

1 − 1 + t/s k − s/λ k
≈ t/λ k − 1 + λ/s k

2 t/λ 2k
k = m, λ = C1

−1/m

s = −C1/ C1
2 + 2C2

1/m
C1tm

+ C2t2m
(16)

if and only if C1
2 + 2C2 < 0. These results are summarized in Table 1.

3. Performance of the generalized Weibull dissolution model

The versatility of the proposed dissolution model, i.e., of equation (13), is demonstrated 

using selected experimental data from published dissolution tests of pharmaceutical 

Ferdoush and Gonzalez Page 7

Int J Pharm. Author manuscript; available in PMC 2024 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formulations. Specifically, the goodness of fit of the generalized Weibull dissolution model 

is quantified using the coefficient of determination (R-squared) and the Akaike information 

criterion (AIC) (Cascone, 2017) when compared against the classical and widely used 

Weibull dissolution model, i.e.,

AIC = 2Δπ − n ln SSEWeibull/SSEGWeibull (17)

where n is the number of experimental data points, Δπ = 1 is the difference between the 

number of parameters of the models, and SSEWeibull and SSEGWeibull are the sum of squared error 

of the classical Weibull and the generalized Weibull dissolution models, respectively. The 

lower the AIC value, the better the fitting of the proposed dissolution model compared to 

the classical Weibull model (Burnham and Anderson, 2004). It is worth noting that even 

though the Peppas-Sahlin model exhibits a non-monotonic fractional dissolution rate, its 

performance is not better than the generalized Weibull model and, thus, it is not used in this 

study.

Eleven cases are summarized in Table 2. It is evident from the table that the generalized 

Weibull model exhibits a superior behavior (i.e., low AIC values) when the fractional 

dissolution rate is of non-monotonic type (see cases 8 to 11). However, the generalized 

Weibull dissolution model returns the classical Weibull model (i.e., s ∞ and AIC 2) 

when the fractional dissolution rate is of increasing type (see cases 1 to 7). By way of 

example, Fig. 4 shows the dissolution profiles of cases 9 to 11, that is a blend of 45%
microcrystalline cellulose (Avicel PH102; FMC Corporation, Philadelphia), 45% lactose 

(Pharmatose; DMV International, Veghel, Netherlands), 9% micronized acetaminophen 

(APAP; Mallinckrodt Inc., Raleigh, NC) and 1% magnesium stearate (MgSt; Mallinkcrodt 

Inc., St Louis), with different levels of shear strain imparted during the mixing process 

(Pingali et al., 2011).

In addition, nine cases of atorvastatin tablets are studied and summarized in Table 3, 

since they exhibit a non-monotonic fractional dissolution rate. These cases correspond to 

different atorvastatin products, namely innovator, branded, and generic, and to different 

buffer media, namely solutions with pH1.2, pH4.5 and pH6.8 (Prihapsara, 2020). It is evident 

from the table that the non-monotonic fractional dissolution rate is captured better by the 

generalized Weibull dissolution model. By way of example, Fig. 5 shows the fraction of 

drug release profile of the atorvastatin innovator tablet (Prihapsara, 2020), together with the 

corresponding fractional dissolution rate profile. Lastly, the performance of the generalized 

Weibull dissolution model proposed in this work is illustrated in the pie chart in Fig. 6 for all 

twenty cases.

4. A reduced order model of pharmaceutical tablet dissolution for 

continuous manufacturing

Dissolution tests are time-consuming destructive tests used as surrogates for in-vivo drug 

release and bioavailability of drugs, and they are traditionally performed off-line (FDA and 

CDER, 1997). However, by leveraging data collected both off-line and in real-time (i.e., at-

line and in-line), reduced order dissolution models can be used to predict dissolution profiles 
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in real-time and, thus, facilitate RTRT and QbC strategies. To this end, the relationship 

between CPPs, CMAs and the dissolution profile of solid tablets must be established 

(see, e.g., Zaborenko et al. (2019)), namely the effects of (i) API concentration (Pawar 

et al., 2016b; Wenzel et al., 2017), (ii) crystal size distribution (Chu et al., 2012; Nagy 

et al., 2021), (iii) lubricant (e.g., concentration (Uzunović and Vranić, 2007) and shear 

strain Hernandez et al. (2016), Pingali et al. (2011)), (iv) glidant (Pingali et al., 2011) (v) 

moisture content in powder blend (Steendam et al., 2000, 2001), (vi) compaction force 

(Pingali et al., 2011; Pawar et al., 2016b), and (vii) tablet porosity (Hattori and Otsuka, 

2011). Specifically, Hernandez et al. (2016) studied the effect of shear strain on dissolution 

and predicted dissolution behavior for different lubrication conditions by using NIRS in 

combination with multivariate data analysis. Pingali et al. (2011) studied the impact of both 

glidant (e.g., silica) and lubricant (e.g., magnesium stearate) on dissolution behavior in the 

context of direct compaction, by means of PCA algorithm and NIR data. Steendam et al. 

(2000) investigated the effect of moisture content and tablet porosity on dissolution. Chu 

et al. (2012) observed that the dissolution rate of poorly soluble drugs is strongly related 

to the particle size distribution of the API. It is worth noting that despite the large body 

of experimental work to establish the relationship between CPPs, CMAs, and dissolution 

profiles, mechanistic and semi-mechanistic ROMs of pharmaceutical tablet dissolution 

for realizing QbC and RTRT frameworks in continuous manufacturing are still scarce or 

nonexistent.

In the previous section we established that there is a need for a dissolution ROM suitable for 

a wide range of product formulations, i.e., for robust knowledge management in the context 

of Industry 4.0, and we proposed the generalized Weibull dissolution model to overcome 

this limitation. In the next section, immediate release formulations are used to bear out 

the capabilities of the ROM. Hence, disintegration is an integral step for dissolution of 

these formulations. Specifically, tablet wicking, also referred to as wetting or liquid uptake 

due to capillary action, initiates swelling, strain recovery, and dissolution, and, in turn, 

is considered a prerequisite for tablet disintegration (Markl and Zeitler, 2017; Quodbach 

and Kleinebudde, 2016). According to Markl and Zeitler (2017), wicking is affected by 

manufacturing process parameters, processing route, and raw material properties. Therefore, 

in this section, we will illustrate the extension of this model to capture disturbances in tablet 

porosity, lubrication conditions, and moisture content in the powder bed—when other CPPs 

or CMAs are kept constant.

First, the dose of the solid product is written in terms of tablet weight W  and API 

concentration xAPI w/w , that is M∞ = W xAPI. Second, Pingali et al. (2011) established 

that lubrication of pharmaceutical blends using MgSt induces hydrophobicity in the API 

particles. In turn, this stain-induced hydrophobicity in blends results in tablets with 

decreasing drug release rate. Here, lubrication entails both a CMA and a CPP, namely the 

concentration of lubricant added to the formulation and the total shear strain imparted to 

the blend during the mixing process. In this section, for convenience, we adopt the number 

of revolutions in a Couette cell as a proxy for total shear strain imparted to the blend (see 

Pingali et al. (2011)) and, for simplicity, we restrict attention to studies where the lubricant 

concentration is kept constant. Third, Hattori and Otsuka (2011) observed that for increasing 
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tablet porosity, the rate of water penetration inside the tablet increases. Steendam et al. 

(2000) explained that tablets with higher porosity undergo faster disintegration, thus, higher 

area for the drug to dissolve, and faster dissolution. Fourth, we will show that moisture 

content effects can be effectively captured by a tableting ROM capable of predicting changes 

in tablet porosity due to changes in blend moisture fraction. Therefore, the generalized 

Weibull model (13) is then written as follows

M t; W , xAPI, γ, ε = W xAPI 1 − 1 + [t/s(γ, ε)]k(γ, ε) −[s(γ, ε)/λ(γ, ε)]k(γ, ε)
(18)

where the parameters of the ROM are functions of the total shear imparted to the powder 

blend, γ ∈ 0, ∞ , and the table porosity, ε ∈ 0, εc , namely λ γ, ε , k γ, ε  and s γ, ε , with 

the critical porosity εc being the smallest porosity at which a tablet is formed. It is worth 

noting that ε = 0 corresponds to the fully compacted powder, while ε = ϵc is assumed here 

to be equivalent to the loose powder blend. On the same token, the total shear strain will 

always be larger than zero, since the blend components must be blended to attain content 

uniformity (e.g., γ0 prior to lubricant mixing). The scenario of a fully lubricated and mixed 

blend is characterized in the limit by γ ∞. Therefore, these limits are such that at infinite 

lubrication and zero porosity, drug release is very slow; whereas at zero lubrication or shear 

strain and critical porosity, drug release is the fastest.

We next propose a systematic procedure to build functions λ γ, ε , k γ, ε  and s γ, ε . The 

procedure is based on the mechanistic limiting behavior described above and summarized 

in Table 4, where, e.g., λ0
0 ≡ λ 0,0  and λ0

API ≡ λ 0, εc . Specifically, we draw from multivariate 

rational interpolation and use rational polynomials (Cuyt and Verdonk, 1985) for the model 

parameters in Eq. (18). In general, a rational function f X, Y  with second-degree numerator 

and denominator is given by

f(X, Y ) = p1X2 + p2Y 2 + p3XY + p4X + p5Y + p6

q1X2 + q2Y 2 + q3XY + q4X + q5Y + 1
(19)

where X ≡ γ ∈ 0, ∞  and Y ≡ εc/ε − 1 ∈ 0, ∞ . A rational function of a lower degree does 

not exhibit coupling between γ and ε (i.e., between X and Y). Furthermore, the least 

number of terms that captures this limiting behavior is such that p1 = p2 = q1 = q2 = 0. 

Hence, the four limits of interest are f 0,0 = p6, f 0, ∞ = limY ∞
p5Y + p6
q5Y + q6

= p5/q5, 

f ∞, 0 = limX ∞
p4X + p6
q4X + q6

= p4/q4, and f ∞, ∞ = p3/q3. Lastly, the function is bounded within 

its domain if q3XY + q4X + q5Y + 1 ≠ 0 which is automatically fulfilled if q3, q4 and q5 are 

positive numbers. Lastly, since λ, k and s are positive, p3, p4, p5 and p6 are also positive 

numbers. .

The rational polynomials of lowest degree that interpolate the mechanistic limiting behavior 

shown in Table 4 are then given by
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λ(γ, ε) = λ∞
0 aλγ εc/ε − 1 + λ∞

APIbλγ + λ0
0cλ εc/ε − 1 + λ0

API

aλγ εc/ε − 1 + bλγ + cλ εc/ε − 1 + 1
k(γ, ε) = k∞

0 akγ εc/ε − 1 + k∞
APIbkγ + k0

0ck εc/ε − 1 + k0
API

akγ εc/ε − 1 + bkγ + ck εc/ε − 1 + 1
s(γ, ε) = s∞

0 asγ εc/ε − 1 + s∞
APIbsγ + s0

0cs εc/ε − 1 + s0
API

asγ εc/ε − 1 + bsγ + cs εc/ε − 1 + 1

(20)

with all positive model parameters.

Lastly, we have developed a parameter identification method based on a nonlinear 

multivariate maximization problem. The proposed ROM of pharmaceutical tablet dissolution 

for continuous manufacturing has 3 × 7 model parameters, i.e., the functions λ γ, ε , k γ, ε
and s γ, ε  has 7 model parameters each. The method is based on the similarity factor f2

described in the FDA dissolution guidance (FDA and CDER, 1997), i.e., two dissolution 

profiles are similar if f2 = 100, and are equivalent if f2 > 50. Specifically, the method 

maximizes the similarity factor f2 (or minimizes 100 − f2) between dissolution experimental 

data ℰi and model predictions ℳi by choosing optimal model parameters P− , that is

P = arg min
P ∈ ℝ+

3 × 7
Φ P = arg min

P ∈ ℝ+
3 × 7i = 1

M
100 − f2 ℳi P − ℰi (21)

with the error measurement functions given by the similarity factor

f2 ℳi − ℰi = 50 log 100 1 + 1
Ni

ℳi − ℰi 2 −0.5
(22)

where M is the number of dissolution experimental sets, Ni is the number of data points in 

the ith experimental set, ∥ ⋅ ∥ is the L2-norm, and the set of model parameters is given by

P ≡
λ∞

0 aλ λ∞
APIbλ λ0

0cλ λ0
API aλ bλ cλ

k∞
0 ak k∞

APIbk k0
0ck k0

API ak bk ck

s∞
0 as s∞

APIbs s0
0cs s0

API as bs cs

(23)

It is worth noting that parameters such as λ∞
0 aλ must be identified as a lump term so that 

λ∞
0 ∞ can be automatically captured by aλ 0 and λ∞

0 aλ ≠ 0. The nonlinear multivariate 

minimization problem was solved in MATLAB (MATLAB version 9.8.0.1380330 , R2020a) 

using the constrained optimization function fmincon with the default interior-point 

algorithm. Furthermore, the proposed model suggests that 7 sets of dissolution experimental 

data are necessary (but not sufficient) to have a well-posed parameter identification 

optimization problem (i.e., M ≥ 7 over a diverse range of processing conditions).

We close by describing the estimation of confidence intervals of model predictions. For 

convenience, the set of model parameters is recast as a vector P ∈ ℝ+
21, and the covariance 

matrix is approximated as
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covP ≈ Φ P
dof ∇2Φ P −1

(24)

where the objective function Φ, i.e., Eq. (21), and its Hessian ∇2Φ are evaluated at the 

optimal model parameters P−  (see, e.g. Casas-Orozco et al. (2021), Barz et al. (2015), Fessler 

(1996)). In the above equation, the degrees of freedom dof are the difference between the 

number of data points and the number of model parameters. It is worth noting that all 

examples of application studied in this work result in a non-diagonal covariance matrix, 

i.e., model parameters are correlated with respect to each other. Hence, we assume that 

the model parameters are multivariate Gaussian random variable N P−, covP  which, for 

simplicity, is sampled using a Monte Carlo approach to derive confidence intervals of, for 

example, model functions λ γ, ε , k γ, ε  and s γ, ε , and of model predictions such as the time 

to release 50% of the API (see, e.g., Tripathy et al. (2016)). In the next two sections, we 

illustrate this procedure for selected cases.

5. Examples of application

The versatility and the capability of the ROM to represent the dissolution profile of different 

pharmaceutical formulations and its connection with CPPs and CMAs, namely total shear 

strain imparted during lubrication γ and table porosity ε, is borne out by the following 

examples:

1. Effect of lubrication on acetaminophen tablets

2. Combined effect of porosity and moisture content on amylodextrin tablets

3. Effect of porosity on riboflavin tablets

4. Combined effect of lubrication and porosity on acetaminophen tablets

5. Effect of porosity on indomethacin tablets

The proposed dissolution model, i.e., Eqs. (18), is calibrated to experimental dissolution data 

using the nonlinear multivariate minimization problem, i.e., Eqs. (21) and (22), to estimate 

the optimal set of model parameters (23).

5.1. Effect of lubrication on acetaminophen tablets

This case study is retrieved from the work of Pingali et al. (2011). The formulation consisted 

of 45% microcrystalline cellulose (Avicel PH102; FMC Corporation, Philadelphia), 45% 

lactose (Pharmatose; DMV International, Veghel, Netherlands), 9% acetaminophen (APAP; 

Mallinckrodt Inc., Raleigh, NC) and 1% magnesium stearate (MgSt; Mallinkcrodt Inc., St 

Louis), all % w/w. The powders were mixed in a 3.8-liter V blender for 10 min to obtain 

a homogeneous mixture of lubricant and excipients. Next, controlled shear was applied in 

a Couette shear cell at a shear rate of 80rpm. The powders were exposed to a minimum, 

average, and maximum strain by applying shear strains of 40rev, 160rev, and 640rev. Target 

tablet weight was 500mg. Compression force of 8kN was applied to obtain the compacted 
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tablets. Hence, tablet porosity was kept constant at ε‾ and shear strain was varied with 

γ = γ0 + 40,160,640  rev. Therefore, Eq. (20) is simplified as follows

λ(γ, ε) = λ∞
0 aλγ εc/ε − 1 + λ∞

APIbλγ + λ0
0cλ εc/ε − 1 + λ0

API

aλγ εc/ε − 1 + bλγ + cλ εc/ε − 1 + 1
λ(γ) = λ∞

ε dλγ + λ0
ε

dλγ + 1
k(γ) = k∞

ε dkγ + k0
ε

dkγ + 1
s(γ) = s∞

ε dsγ + s0
ε

dsγ + 1

(25)

where dλ, dk and ds are model parameters, and λ∞
ε‾ , k∞

ε‾ , s∞
ε‾  and λ0

ε‾, k0
ε‾, s0

ε‾  correspond to the 

limiting behavior at full lubrication and no lubrication conditions, respectively. Lastly, 

Pingali et al. (2011) performed dissolution tests in 900 mL of phosphate buffer solution with 

a pH of 5.8 at temperature 37.0 ± 0.5∘C for 90 min. The tests were done on a USP II apparatus 

at 50rpm. The API absorbance was measured at 243 nm, and sampling was performed every 2 

minutes.

Model parameters are successfully estimated and reported in Fig. 7(a). It is evident from Fig. 

7(c) that as the total shear imparted to the blend increases, the dissolution process is delayed 

and, thus, the time to release 50% of the API increases, and plateaus at high values of strain. 

Interestingly, the fractional dissolution rate transitions from a decreasing trend, at low levels 

of shear, to a non-monotonic trend, at higher levels of shear (see the vertical line in Fig. 

7(c)). This observation reinforces the need for a dissolution model capable of capturing all 

fractional dissolution rates observed experimentally. Fig. 8 provides insight into the reasons 

for this transition, since λ and k increase with shear strain, while s decreases, with k = 1 at 

~180 rev. The goodness of the estimation is exemplified by the similarity factor between 

each set of predicted and measured dissolution profiles, i.e., f2 > 50 (FDA and CDER, 1997) 

(see Fig. 7(b)), the narrow confidence interval of model predictions (see Fig. 7(c)) and 

model parameters (see Fig. 8). Interestingly, a wider confidence interval at high shear strain 

indicates that additional experimental evidence is needed to lower the uncertainty in the 

predictions.

5.2. Combined effect of porosity and moisture content on amylodextrin tablets

This case study is retrieved from the work of Steendam et al. (2000). This formulation 

consisted of 10% theophylline monohydrate (OPG Farma, Utrecht, The Netherlands) and 

90% amylodextrin powders (AVEBE, Foxhol, The Netherlands), both %w/w. The mixture 

was mixed in a Turbula mixer at 90rpm for 30 min to obtain different moisture fractions. 

After adding lubricant, 0.5%  magnesium stearate, additional blending was performed for 

2 min. Cylindrically flat-faced amylodextrin compacts were obtained of weight 500mg and 

a diameter of 13 mm. Different compaction pressures were applied to prepare the compacts 

on a hydraulic press. The load rate was 2kN/s and the hold time was 0.1 s. Porosities of 

the tablets were calculated from the weight and dimensions of the tablets and the true 

densities of the powders. Different moisture fractions of the powder blend led to different 
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final porosity of the tablets. Since shear strain was kept constant at γ‾, Eq. (20) is simplified 

as follows

λ(γ, ε) = λ∞
0 aλγ εc/ε − 1 + λ∞

APIbλγ + λ0
0cλ εc/ε − 1 + λ0

API

aλγ εc/ε − 1 + bλγ + cλ εc/ε − 1 + 1
λ(ε) = λγ

0eλ εc/ε − 1 + λγ
API

eλ εc/ε − 1 + 1
k(ε) = kγ

0ek εc/ε − 1 + kγ
API

ek εc/ε − 1 + 1
s(ε) = sγ

0es εc/ε − 1 + sγ
API

es εc/ε − 1 + 1

(26)

where eλ, ek and es are model parameters, and λγ‾
0, kγ‾

0, sγ‾
0  and λγ‾

API, kγ‾
API, sγ‾

API  correspond to the 

limiting behavior for fully compacted powder and loose powder blend, respectively. Lastly, 

Steendam et al. (2000) performed dissolution tests in 900 mL of phosphate buffer solution 

with a pH of 6.8 at temperature 37.0 ± 0.5∘C. The tests were done on a USP II apparatus at 

100rpm. The API absorbance was measured at 268 nm.

Model parameters are successfully estimated and reported in Fig. 9(a). The goodness 

of the estimation is exemplified by the similarity factor between each set of predicted 

and measured dissolution profiles, i.e., f2 > 50 (FDA and CDER, 1997) (see Fig. 9(b)). 

It is evident from Fig. 9(c) that as tablet porosity increases, the dissolution process 

becomes faster and, thus, the time to release 50% of the API decreases. Interestingly, the 

fractional dissolution rate transitions from a non-monotonic trend, at low tablet porosity, to a 

decreasing trend, at high tablet porosity (see the vertical line in Fig. 9(c)). This observation 

reinforces the need for a dissolution model capable of capturing all fractional dissolution 

rates observed experimentally. Fig. 10 provides insight into the reasons for this transition, 

since λ and k decrease with porosity, while s increases, with k = 1 at ~0.18 porosity value.

It is well-known that moisture content has an effect on dissolution profile and, thus, it is 

another CMA to be considered in the context of process design, optimization, and control. 

Steendam et al. (2001) extended the experimental study described above to investigate the 

effect of moisture fraction on amylodextrin tablets. They observed that tablets fabricated 

using the same compaction pressure, but under different moisture conditions, have different 

dissolution profiles. It is argued that moisture has plasticizing and lubricating effects in 

amylodextrin and, thus, it facilitates deformation of the excipient particles, i.e., of the glassy 

polymer. This is evident in Fig. 11(a) for porosities above 0.09, i.e., as the moisture content 

increases, less compaction pressure is needed to attain a given tablet porosity. The trend 

is non-monotonic and more complex at porosities below 0.09. Alternatively, the figure 

indicates that tablets fabricated using the same compaction pressure, but under different 

moisture conditions, have different porosities—which, in turn, is a result of different in-die 

table porosity and different elastic recovery after table ejection from the die. We demonstrate 

next that once the tablet microstructure is formed, dissolution only depends on the tablet 

porosity, not the moisture content of the powder. The generalization of this statement to 

other formulations and pharmaceutical products is beyond the scope of this work.
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Steendam et al. (2001) performed dissolution tests of tablets fabricated using different 

compaction pressure, with a load rate of 2kN/s and hold time of 0.1 s, and five different 

moisture fractions. Fig. 11(b) shows the t50 value of these tests as a function of the measured 

tablet porosity. The existence of a unique relationship is evident from the figure. The 

figure additional shows the t50 value predicted by the model calibrated to the experimental 

dissolution profiles shown in Fig. 9, that is to the dissolution of tablets fabricated at a single 

moisture fraction. The agreement between experimental observations and model predictions 

is remarkable. Specifically, the model predicts the following time to release 50% of the API

t50 = s 2(λ/s)k − 1
1/k

(27)

where λ ε , k ε  and s ε  are given by Eq. (26). Evidently, to realize the vision conveyed 

in Fig. 1, i.e., to realize QbC and RTRT frameworks in continuous manufacturing, 

a compaction ROM that captures the complex relationship between tablet porosity, 

compaction pressure σ, and moisture fraction MF is needed, i.e., the function ε σ, MF  is 

needed.

5.3. Effect of porosity on riboflavin tablets

This case study is retrieved from the work of Hattori and Otsuka (2011). This formulation 

consisted of 0.5% riboflavin (Wako pure chemicals, Tokyo), 1% magnesium stearate (NOF 

Corporation, Tokyo), and 98.5% α-lactose monohydrate (Pharmatose 200M; DMV-Fonterra 

Exipients, Nörten-Haddenberg, Germany), all %w/w. The powder blend was mixed for 5 min. 

Cylindrically flat-faced compacts were obtained of weight 100mg and a diameter of 8 mm
Tablet porosity was controlled by compaction pressure, and all other process parameters 

were fixed. Therefore, Eq. (26) was used to estimate the model parameters and limiting 

behavior of this formulation. Lastly, Hattori and Otsuka (2011) performed dissolution tests 

in distilled water at temperature 37.0 ± 0.5 ∘C for 90 min. The tests were done on a USP II 

apparatus at 50rpm. The API absorbance was measured at 266 nm.

Model parameters are successfully estimated and reported in Fig. 12(a). The goodness of 

the estimation is exemplified by the similarity factor between each set of predicted and 

measured dissolution profiles, i.e., f2 > 50 (FDA and CDER, 1997) (see Fig. 12(b)). It is 

evident from Fig. 12(c) that as tablet porosity increases, the dissolution process becomes 

faster and, thus, the time to release 50% of the API decreases and it is equal to the t50 of 

pure API at critical porosity. Interestingly, the fractional dissolution rate transitions from a 

non-monotonic trend, at low tablet porosity, to a decreasing trend, at high tablet porosity 

(see the vertical line in Fig. 12(c)). This observation reinforces the need for a dissolution 

model capable of capturing all fractional dissolution rates observed experimentally. Fig. 13 

provides insight into the reasons for this transition, since λ and k decrease with porosity, 

while s increases, with k = 1 at ∼ 0.16 porosity value.

5.4. Combined effect of lubrication and porosity on acetaminophen tablets

This case study is retrieved from the work of Callegari et al. (2013). The formulation for 

this case study consisted of 90% lactose, 9% acetaminophen, and 1% magnesium stearate, 
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all %w/w. To obtain a homogeneous preblend of lubricant and excipients, all the powders 

were pre-mixed in a V-blender. A total of seven tablets were prepared and grouped into 

two different sets, namely tablets with different porosity values and no controlled shear 

applied (i.e., compression force of 8 to 40kN, or pressure of 102 to 510MPa, with 18 to 

6% porosity), and tablets with different controlled shear applied and same compaction force 

(i.e., controlled shear of 0, 160 and 640rev, with 8kN compaction force or 15% porosity). 

Therefore, Eq. (20) was used to estimate the model parameters and limiting behavior of this 

formulation. Lastly, Callegari et al. (2013) performed dissolution tests in 900 mL of pH5.8
phosphate buffer at temperature 37.0 ± 0.5∘C. The tests were done on a USP II apparatus at 

50rpm. The API absorbance was measured at 243 nm, and sampling was performed every 

3 min with a total of 90-150 min allocated for the dissolution test.

We close this example by illustrating that the semi-mechanistic nature of the dissolution 

ROM proposed in this work allows for identifying model parameters from experimental 

observations that are not strictly dissolution tests of solid tablets. Firstly, the limiting 

behavior of the model at critical porosity is assumed to correspond to the dissolution 

behavior of loose API crystals. Specifically, the set of parameters λ0
API, k0

API, s0
API  can be 

identified from a dissolution test of API crystals. Alternatively, if only the t50
API is available, 

the following expression can be used as an equality constrain to the nonlinear multivariate 

minimization problem (21),

t50
API = s0

API 2 λ0
API/s0

API k0
API

− 1
1/k0

API

(28)

The t50 value of pure acetaminophen crystal was obtained from the dissolution test performed 

by Albertini et al. (2004) in 900 mL of pH 6.8 phosphate buffer at temperature 37.0 ± 0.1 ∘C. 

Though the buffer media of pure API dissolution is different from tablet dissolution, that 

value was still used as an equality constraint to the nonlinear optimization problem to 

highlight different capabilities of the model. Secondly, the critical porosity εc is readily 

available from tablet hardness tests, or tensile strength curves, by means of the Leuenberger 

equation (see, e.g., Razavi et al. (2018)), that is from

σt(ϵ) = σ0 1 − εeεc − ε

εc
(29)

where σ0 is the tensile strength of a fully dense tablet, that is of a tablet with zero porosity. 

Pawar et al. (2016a) have reported tensile strength measurements for the formulation used 

in this example at different values of total shear imparted to the blend (see Fig. 15). These 

experimental data reveal that the sensitivity of critical porosity to changes in lubrication 

is small and that the estimated values are between 0.1520 and 0.1714, with an average 

of εc = 0.1645. Naturally, in the context of QbC and RTRT frameworks, tableting and 

dissolution (semi-)mechanistic ROMs would be related to each other by sharing the same 

critical porosity. Hence, εc was assumed known in the model parameter estimation.
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Model parameters are successfully estimated and reported in Fig. 14(a). The goodness of 

the estimation is exemplified by the similarity factor between each set of predicted and 

measured dissolution profiles, i.e., f2 > 50 (FDA and CDER, 1997) (see Fig. 14(b)). It is 

evident from Fig. 14(c) that as tablet porosity increases and shear imparted to the blend 

decreases, the dissolution process becomes faster and, thus, the time to release 50% of the 

API decreases. Interestingly, the fractional dissolution rate transitions from an increasing 

trend, at low tablet porosity, to a non-monotonic trend, at high tablet porosity, and, lastly, 

to a decreasing trend at critical porosity (see the dotted curves in Fig. 14(c)). This figure 

not only depicts the design space for this formulation (i.e., for QbD) but it also serves as 

a tool to identify optimal control conditions (i.e., for QbC) where the target product profile 

(TPP) is the least sensitive to changes in operating conditions or, more precisely, to the 

CPPs most difficult tightly control. It bears emphasis that these observations reinforce the 

need for a dissolution model capable of capturing all fractional dissolution rates observed 

experimentally.

5.5. Effect of porosity on indomethacin tablets

This case study is retrieved from the work of Bawuah et al. (2021). The formulation for 

this case study consisted of 39.1% microcrystalline cellulose (Avicel PH-102; FMC Europe 

NV, Brussels, Belgium), 46.9% lactose anhydrous (Supertab21AN; DFE pharma, Goch, 

Germany), 3% croscarmellose sodium (DuPont Nutrition, Wilmington DE, USA), 10% 

indomethacin (Sigma-Aldrich Company Ltd., Gillingham, UK), and 1% magnesium stearate 

(Fisher Scientific, Fair Lawn NJ, USA), all % w/w. All the powders except magnesium 

stearate were mixed for 10 mins and then magnesium stearate was added and mixed for 1 

more min at 32 rpm. Biconvex tablets were made of five different porosity levels using a 

compaction simulator. The thickness of the tablets was varied to obtain different porosity 

values and all the tablets had a target weight of 400mg. All other process conditions were 

fixed. Therefore, Eq. (26) was used to estimate the model parameters. Lastly, the dissolution 

tests of the indomethacin tablets were performed in 900 mL of pH 6.2 phosphate buffer media 

at temperature 37.0 ± 0.5 ∘C. The tests were done on a USP II apparatus at 50rpm. The API 

absorbance was measured at 265 nm. Sampling was performed every 80 s.

Model parameters are successfully estimated and reported in Fig. 16(a). The goodness of 

the estimation is exemplified by the similarity factor between each set of predicted and 

measured dissolution profiles, i.e., f2 > 50 (FDA and CDER, 1997) (see Fig. 16(b)). It is 

worth noting that the experimental data in Fig. 16(c) shows a non-monotonic trend with 

porosity that occurred due to the swelling of the disintegrant (croscarmellose sodium) at 

higher tablet porosity. According to Bawuah et al. (2021), water penetration or wicking 

rate inside a tablet is faster with increasing porosity, thus faster swelling, disintegration, 

and dissolution. However, at higher tablet porosity, this phenomenon is not always true if 

the disintegrant forms a gel layer which prolongs disintegration and dissolution time. The 

formation of gel constricts the pore space and thus slows down the wicking rate. Similar 

type of non-monotonic t50 trend due to tablet swelling is also observed by Callegari et al. 

(2013) for a formulation that consisted of 45% microcrystalline cellulose, 45% lactose, 9%
acetaminophen, and 1% magnesium stearate (all % w/w). Callegari et al. (2013) reported 
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that the volumetric swelling rate mm3/s  of tablets also shows a non-monotonic trend 

with changing tablet porosity and the faster a tablet swells, the faster it releases the drug. 

Our proposed ROMs capture this non-monotonic trend in t50, as shown in Fig. 16(c). 

Interestingly, the fractional dissolution rate is non-monotonic for any tablet porosity. Fig. 17 

provides insight into the reasons for this kind of fractional dissolution rate, since λ decreases 

and k increases with porosity, while s decreases, with k > 1 at any porosity value.

6. Parameter estimation of the ROMs for lomustine tablets

Lomustine (trade name Gleostine, a capsule) is a widely used oral antineoplastic agent for 

the treatment of primary and metastatic brain tumors (Kaina et al., 2007). As tablets are 

stable, cost-effective, easy to manufacture, handle and swallow, and have a longer shelf 

life, we illustrate the model parameter estimation of the ROM presented in Section 4 for 

lomustine solid tablets to, in turn, assist product design and manufacturing (albeit the latter 

are beyond the scope of this work). In contrast to the examples presented in Section 5, and 

to the best of our knowledge, dissolution testing conditions for lomustine products are not 

available in the open literature. Therefore, we specifically illustrate: (i) the identification 

of a plausible formulation, (ii) the development of a dissolution protocol to characterize 

lomustine tablets, (iii) the fabrication of lomustine tablets with different porosity and using 

different lubrication conditions, in the context of a direct compaction manufacturing route 

(see Fig. 1), and (iv) the estimation of model parameters from a representative set of 

dissolution profiles.

Commercial lomustine capsules, i.e., Gleostine capsules, are reported to contain mannitol, 

MgSt, lactose, and the gelatin capsule shell as excipients (Biotechnology, 2017; Lomustine 

“medac” 40 mg - Summary of Product Characteristics (SmPC) - (emc), 2020). In this work, 

by way of illustration, we adopt a blend with 4.41% lomustine, 70.59% lactose monohydrate 

(Pharmatose; DFE pharma), 24% mannitol (D-mannitol; Sigma-Aldrich), and 1% MgSt 

(Acros Organics), all % w/w. Hence, a 114mg lomustine tablet will correspond to a 5mg dose 

of lomustine (cf. Gleostine capsules with 10mg, 40mg, and 100mg doses). Lomustine crystals 

used in this study were provided by Mackey et al. (2020) manufactured by a small-scale 

hybrid manufacturing system.

Lomustine is a water-insoluble API; hence, a dissolution protocol for lomustine tablets was 

developed following Noory et al. (2002). Firstly, the effect of buffer medium pH on the 

lomustine product was evaluated. Solubility of solid tablets in media of pH 1.2, 4.5, and 

6.8 was characterized by collecting samples at 10, 20, 30, 60, 90, and 120 min. A buffer 

medium of pH 6.8 (i.e., a 0.05 M phosphate buffer) was chosen because the excipients did 

not show any interference at the wavelength of lomustine’s peak absorbance. Secondly, the 

smallest amount of surfactant in the buffer medium was determined. Sodium lauryl sulfate 

(SLS) is the most widely used surfactant to increase the solubility of a water-insoluble API, 

and it was added in 1% w/w to the medium of pH6.8 to achieve greater than 85% dissolution 

in 90 min. Following the U.S. Pharmacopeia (USP, 2011) guidelines (cf., the European 

Pharmacopoeia and the Japanese Pharmacopoeia for similar guidelines), the dissolution 

specifications adopted are listed in Table 5. Furthermore, a Distek 2100C dissolution system 
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was used to perform all dissolution tests, and a UV-1600PC UV/Vis Spectrophotometer was 

used to perform the quantitative analysis of the dissolution samples at 231 nm − lomustine 

shows a peak absorbance at 231 nm, and the excipients do not.

Following the examples of application discussed in Section 5 and in the context of a direct 

compaction manufacturing route, the effect of tablet porosity and lubrication conditions 

were investigated. Firstly, the following three experiments were carried out and reported in 

Fig. 18 to investigate the effect of lubrication:

1. Using the 250 − 355 μm sieve size range, 15mg of lomustine crystal were 

lubricated with 1%w/w MgSt and mixed for 3 minutes in a 16ml glass vial, and 

three dissolution tests were performed, using 5mg each. From the same sieve size 

range but with no lubrication, three more dissolution tests were performed, using 

5mg each. Fig. 18(b) shows that the dissolution profiles are similar within error.

2. Using the 0 − 180 μm sieve size range, two lomustine formulations were prepared 

using 4.41% lomustine, 69.59% (and 71.34%) lactose monohydrate, 24% mannitol, 

and 2% (and 0.25%) MgSt, all %w/w. Both blends were mixed for 5 min in a 

16ml glass vial. Three 114mg, 6 mm, flat-faced tablets of each formulation were 

fabricated in a Gamlen D Series bench-top compaction simulator to an in-die 

porosity of 0.15 or relative density of 0.85. Fig. 18(c) shows that the dissolution 

profiles are similar within error.

3. Using the 0 − 180μm sieve size range, two lomustine formulations were prepared 

using 4.41% lomustine, 69.59% (and 71.59%) lactose monohydrate, 24% mannitol, 

and 2% (and 0%) MgSt, all %w/w. Both blends were mixed for 5 min in a 

16ml glass vial. Three 114mg, 6 mm, flat-faced tablets of each formulation were 

fabricated in a Gamlen D Series bench-top compaction simulator to an in-die 

porosity of 0.05 or relative density of 0.95. Fig. 18(d) shows that the dissolution 

profiles are similar within error.

It is evident from the figures that lomustine crystals and tablets exhibit negligible sensitivity 

to MgSt lubrication conditions (i.e., λ0
API = λ∞

API = λz‾
API, etc.). Secondly, the characterization 

of tablets with three different relative densities was carried out and reported in Fig. 19 to 

investigate the effect of tablet porosity. Specifically, using the 125-250 μm sieve size range, 

a lomustine formulation was prepared using 4.41% lomustine, 70.59% lactose monohydrate, 

24% mannitol, and 1%MgSt, all %w/w. A total of 1200mg of the unlubricated blend was mixed 

for 1 min in a 20ml glass vial to obtain a homogeneous blend. Next, MgSt was added to the 

blend and mixed for an additional 3 min. Flat-faced, 114mg, 6 mm tablets were fabricated in a 

Gamlen D Series bench-top compaction simulator to 0.05, 0.10, and 0.15 in-die porosity. Six 

tablets were fabricated under each category, three of which were used to measure dissolution 

profile, potency, and, thus, content uniformity, while the another three were used to measure 

tablet dimensions and hardness after 17 h. Tensile strength was calculated and reported 

in Fig. 19(a), and the critical tablet porosity, i.e., the smallest porosity at which a tablet 

is formed, was estimated using (29) to be εc = 0.23. Elastic recovery was calculated and 

reported in Fig. 19(b), and it was parameterized by
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ε = εid + ϵ0 1 − εid/εc, ϵ 1 − εid (30)

where, εid is the in-die porosity of the tablet (i.e., porosity at peak compaction pressure inside 

the die), εc, ϵ is a critical porosity, which is typically larger or equal to the jamming porosity 

of the blend (here εc, ϵ = 0.33), and ϵ0 is the elastic recovery at zero in-die porosity (here 

ϵ0 = 0.12) (Gonzalez, 2019). Compaction force is reported in Fig. 19(c) and the loading path 

was parameterized by the Kawakita compaction model, that is by

F = πD2

4b a 1 − εid

εc, F − εid
− 1

−1
(31)

where D is the tablet diameter, a and b are model parameters, and εc, F is a critical porosity 

typically similar to the jamming porosity of the blend (here a = 0.52, b = 0.11MPa−1 and 

εc, F = 0.51). It is worth noting that εc, F > εc, ϵ > εc > ε.

Lastly, three lomustine tablets of each condition (i.e., of porosity 0.05, 0.10 and 0.15) were 

characterized following the dissolution protocol established above and summarized in Table 

5. Since lomustine crystal exhibits negligible sensitivity to lubrication, the dissolution profile 

of loose API crystals was also used to in the model parameter estimation of Eq. (26)—see 

Fig. 20(a). The critical porosity εc is readily available from tensile strength curves (Fig. 

19(a)). It is evident from Fig. 20(c) that as tablet porosity increases, the dissolution process 

becomes faster and, thus, the time to release 50% of the API decreases. Interestingly, the 

fractional dissolution rate transitions from a non-monotonic trend, at low tablet porosity, 

to an increasing trend, at high tablet porosity (see the vertical line in Fig. 20(c)). This 

observation reinforces the need for a dissolution model capable of capturing all fractional 

dissolution rates observed experimentally. Fig. 21 provides insight into the reasons for this 

transition, since λ and k decrease with porosity with k > 1 at any porosity value, while s
increases, the time at which maximum fractional dissolution rate occurs also increases. Thus 

the fractional dissolution rate becomes increasing at higher porosity.

The goodness of the estimation is exemplified by the similarity factor between each set 

of predicted and measured dissolution profiles, i.e., f2 > 50 (FDA and CDER, 1997) (see 

Fig. 20(b)), the narrow confidence interval of model predictions (see Fig. 20(c)) and model 

parameters (see Fig. 21). Interestingly, a wider confidence interval at low tablet porosity 

indicates that additional experimental evidence is needed to lower the uncertainty in the 

predictions. In complex experimental campaigns where multiple CPPs and CMAs are varied, 

this uncertainty quantification can be used to build a sequential design of experiment 
approach that maximizes the expected information gain and minimizes the number of 

experiments, if beyond the scope of this paper (see, e.g., Pandita et al. (2019) and references 

therein).

6.1. An outlook of RTRT in continuous manufacturing

We close this study by demonstrating the applicability of the proposed semi-mechanistic 

reduced order model of pharmaceutical tablet dissolution to QbC and RTRT in continuous 

manufacturing. Specifically, and in the context of tableting, weight variability is assumed 
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to follow a normal distribution (Fig. 22(a)) with a mean value equal to W‾ = 114mg
and a relative standard deviation equal to σW /W‾ = 1%, i.e., W ≡ N W‾ , σW

2 . The mean 

model parameter P−  reported in Fig. 20(a), of the otherwise multivariate Gaussian random 

variable N P−, covP , is used for clarity of illustration. Perfect content uniformity is assumed 

for the same lomustine formulation characterized above, i.e., for xAPI = 4.41% lomustine 

(125 − 250μm sieve size range), 70.59% lactose monohydrate, 24% mannitol, and 1% MgSt. 

Two idealized states of control strategies to attain a target product porosity of ε = 0.146 (i.e., 

an in-die porosity of εid = 0.05) are studied, namely (i) the punch separation at peak force 

is kept constant, and (ii) the compaction force is kept constant. Next, the impact of weight 

variability on CQAs of lomustine tablets is investigated using the formulae established in 

this work.

For the state of control where the punch separation at peak force is kept constant and 

equal to Hid = 2.78 mm, the relative frequency distribution of in-die porosity (Fig. 22(b)) is 

determined from the weight variability (Fig. 22(a)) as follows

εid = 1 − 4W /πD2Hidρt

where ρt is the true density of the blend. The relative frequency distribution of compaction 

force (Fig. 22(c)) follows from Eq. (31), and the relative frequency distribution of tablet 

potency (Fig. 22(d)), porosity (Fig. 22(e)) and tensile strength (Fig. 22(f)) from W xAPI, Eq. 

(30), and Eq. (29), respectively. The relative frequency distribution of tablet height (Fig. 

22(g)) is estimated by assuming that the diameter of the tablet does not change significantly 

upon ejection and, thus,

H = 4W /πD2ρt(1 − ε)

Lastly, the relative frequency distribution of time to release half of the target product dosage 

(Fig. 22(h)) and the relative frequency distribution of the similarity factor with respect to the 

target product profile (Fig. 22(i)) are determined to aid RTRT.

For the state of control where the compaction force is kept constant and equal to F = 3.48kN, 

the in-die porosity is in turn also kept constant and equal to εid = 0.05, and the relative 

frequency distribution of punch separation at peak force (Fig. 23(b)) is determined from 

weight variability as follows

Hid = 4W /πD2ρt 1 − εid

While tablet potency and tablet height follow the relative frequency distributions shown in 

Figs. 23(c) and 23(d), the tablet porosity and tensile strength are kept constant and equal to 

ε = 0.146 and σt = 0.64MPa. Despite all tablets having the target product porosity, both the 

time to release half of the target product dosage and the similarity factor with respect to the 

target product profile vary, and the corresponding relative frequency distributions are shown 

in Figs. 23(e) and 23(f).
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RTRT in continuous manufacturing aims to reduce production cost and time by eliminating 

the need for extensive end-product quality testing, but not without embracing the need 

for sophisticated PATs and ROMs (Markl et al., 2020). For example, uncertainty in the 

measurements due to CPPs disturbance or CMAs variance is inevitable and, hence, model-

based data reconciliation emerges as an effective real-time process management tool to 

accomplish robust process monitoring and control. Specifically, redundancy in the PAT 

sensor network and data correlation based on process understanding (e.g., on mechanistic 

and semi-mechanistic ROMs) can be exploited to (i) design a process control structure 

effective in reducing product quality variability (Su et al., 2018, 2019b), (ii) facilitate 

data reconciliation in real-time (see, e.g., Moreno et al. (2019), Su et al. (2019a)), and, 

eventually, (iii) mitigate control degradation due to plant-model mismatch (Huang et al., 

2021). Figs. 22 and 23 illustrate that, for the same weight variability conditions, different 

control strategies naturally result in different product quality variability (cf. Fig. 22(f) 

and σt = 0.64MPa, or Figs. 22(i) and 23(f)). It is worth noting that some of the CPPs 

and CQAs presented in these figures, such as tablet weight (Su et al., 2019a), punch 

separation, in-die porosity, compaction force, tablet potency (De Leersnyder et al., 2018; 

Ward et al., 2013), tablet dimensions (Moes et al., 2008), and tablet porosity (Bawuah et 

al., 2020, 2021; Donoso et al., 2003; Hakulinen et al., 2008), can be directly or indirectly 

measured in real-time to estimate relative frequency distributions; whereas other CQAs, 

such as tablet tensile strength and dissolution, require destructive at-line or off-line testing 

(see Fig. 1). The latter, however, can be estimated by proxy of a non-destructive test, such 

as an ultrasound measurement of Young’s modulus which correlates with tensile strength 

for known CMAs Razavi et al. (2016). Similarly, it has been shown that the dissolution 

profile can be estimated from near-infrared spectroscopy data for known CMAs Pawar 

et al. (2016b). Ultimately, one can envision that these advanced PATs will be integrated 

with a (semi-)mechanistic dissolution ROM, such as the formulae presented in this work, 

a (semi-)mechanistic tableting ROM that estimates weight variability and incorporates 

lubricant, glidant, and API concentration effects (Bachawala et al., 2022; Bommireddy and 

Gonzalez, 2022), to realize RTRT from a plan-wide model-based data reconciliation module.

7. Future directions

We close by pointing out some limitations of our approach and possible avenues for 

extending this line of work. First, we have restricted attention to direct compaction and 

investigated the effect of tablet porosity and the total amount of shear strain imparted to the 

blend during lubrication. The systematic extension of the model to other CPPs and CMAs of 

relevance, such as the lubricant concentration, is a worthwhile direction for future research. 

Second, the crystal size distribution of poorly water-soluble drugs is strongly related to 

dissolution rate (Chu et al., 2012; Hintz and Johnson, 1989; Anderberg, 1994). The semi-

mechanistic nature of the presented approach can only capture these effects by recourse of 

extensive training with experimental data using, e.g, machine learning algorithms (Galata 

et al., 2021). A mechanistic dissolution model of API crystals and its integration with a 

(semi-)mechanistic model of tablet wetting, swelling, and disintegration are desirable, if 

beyond the scope of this paper. Third, the integration of this approach with in-line and 

at-line PAT available in continuous manufacturing lines and the realization of QbC and 

Ferdoush and Gonzalez Page 22

Int J Pharm. Author manuscript; available in PMC 2024 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RTRT frameworks remain the ultimate goal of this line of work and a promising research 

direction.

8. Conclusion

We have proposed a generalization of the Weibull dissolution model, referred to as 

generalized Weibull dissolution model, that seamlessly captures all three fractional 

dissolution rates experimentally observed in pharmaceutical solid tablets, namely 

decreasing, increasing, and non-monotonic rates. This is in contrast to traditional reduced 

order models, which capture at most two fractional dissolution rates and, thus, are not 

suitable for a wide range of product formulations hindering, for example, the adoption 

of knowledge management in the context of Industry 4.0. Using the Akaike information 

criterion, we have shown that the proposed model greatly outperforms the traditional 

Weibull dissolution model when the formulation exhibits a non-monotonic fractional 

dissolution rate. Furthermore, we have extended the generalized Weibull dissolution model 

to capture the relationship between CPPs, CMAs, and dissolution profiles to, in turn, 

facilitate RTRT and QbC strategies. Specifically, we have endowed the model with 

multivariate rational polynomials that interpolate the mechanistic limiting behavior of 

tablet dissolution as CPPs and CMAs approach certain values of physical significance 

(such as the upper and lower bounds of tablet porosity or lubrication conditions), thus the 

semi-mechanistic nature of the ROM. Lastly, we have developed a parameter identification 

method based on a nonlinear multivariate maximization problem of the f2 similarity factor 

between dissolution experimental data and model predictions. Restricting attention to direct 

compaction and using various case studies from the literature, we have demonstrated 

the versatility and the capability of the semi-mechanistic ROM to estimate changes in 

dissolution due to process disturbances in tablet porosity, lubrication conditions (i.e., the 

total amount of shear strain imparted during blending), and moisture content in the powder 

blend. Finally, we have formulated and fabricated lomustine solid tablets, characterized 

their tableting and dissolution behavior, and estimated model parameters for a tableting-

dissolution ROM to illustrate the applicability of the proposed work to QbC and RTRT in 

continuous manufacturing. In all of the cases considered in this work, the estimations of 

the proposed semi-mechanistic reduced order model of pharmaceutical dissolution are in 

remarkable agreement with experimental data.
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Fig. 1. 
Continuous solids processing pilot plant at Purdue University: (i) the API and excipients are 

fed through K-Tron and Schenck feeders, respectively, and uniformly blended in a Gericke 

GCM-250 blender, (ii) depending on the manufacturing process, namely direct compaction 

or dry granulation, the powder blend is next sent to a K-Tron MT12 micro-screw lubricant 

feeder or an Alexanderwerk WP120 roller compactor for dry granulation, and (iii) solid 

tablets are produced by a Natoli NP-400 rotary tablet press.
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Fig. 2. 
Typical shapes of cumulative dissolution profiles, M t /M∞ (left) and their corresponding 

fractional dissolution rate profile, K t  (right).

Ferdoush and Gonzalez Page 29

Int J Pharm. Author manuscript; available in PMC 2024 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The three types of fractional dissolution rates of the generalized Weibull dissolution model. 

(a) Decreasing fractional dissolution rate type, for 0 < k ≤ 1 and any value of s. (b) Non-

monotonic fractional dissolution rate type, for k > 1 and any finite value of s. (c) Increasing 

fractional dissolution rate type, for k > 1 and s ∞.
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Fig. 4. 
Performance of the generalized Weibull dissolution model in reproducing dissolution 

profiles that exhibit non-monotonic fractional dissolution rates (see Table 2 for R-squared 

and AIC values). Formulations consist of 9% acetaminophen (APAP), 45% lactose 

(Pharmatose), 45% microcrystalline cellulose (Avicel PH 102), 1% magnesium stearate 

(MgSt), all % w/w, mixed in a Couette shear cell at a rate of 80rpm for (a) 40rev, (c) 

160rev, and (e) 640 rev (Pingali et al., 2011). The corresponding non-monotonic fractional 

dissolution rates are shown in (b), (d), and (f), respectively.
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Fig. 5. 
Performance of the generalized Weibull dissolution model in reproducing dissolution 

profiles that exhibit non-monotonic fractional dissolution rates (see Table 3 for R-squared 

and AIC values). Formulations consist of Atorvastatin Innovator tablets characterized in 

a buffer media of (a) pH 1.2 and (c) pH 6.8 (Prihapsara, 2020). The corresponding non-

monotonic fractional dissolution rates are shown in (b) and (d), respectively.
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Fig. 6. 
Summary of Tables 2 and 3. Out of 20 dissolution profiles, fitting the generalized model 

is better for 11 dissolution profiles. For the other nine profiles, the generalized model and 

Weibull model gives the same fitting, but as the Weibull model has only two parameters, it is 

a better model for these 9 cases.
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Fig. 7. 
Effect of lubrication on acetaminophen tablets. (a) Model parameters and limiting behavior 

at full lubrication and no lubrication conditions. The nonlinear multivariate minimization 

problem additional yields γ0 = 20 rev. (b) Predictions of calibrated ROM (solid curves), 

experimental dissolution data (symbols), and similarity factor f2 between each set of 

predicted and measured dissolution profiles. (c) Time to release 50% of the API over a 

range of lubrication conditions. The vertical dotted line represents the transition of fractional 

dissolution rate from decreasing to non-monotonic trend with changing total shear strain 

imparted to the blend. Dashed curves represent the 68% confidence interval.
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Fig. 8. 
Effect of lubrication on acetaminophen tablets. Trend of (a) λ, (b) k, and (c) s. Dashed 

curves represent the 68% confidence interval.
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Fig. 9. 
Effect of porosity on amylodextrin tablets. (a) Model parameters and limiting behavior for 

fully compacted powder and loose powder blend. The nonlinear multivariate minimization 

problem additional yields εc = 0.30. (b) Predictions of calibrated ROM (solid curves), 

experimental dissolution data (symbols), and similarity factor f2 between each set of 

predicted and measured dissolution profiles. (c) Time to release 50% of the API over a range 

of tablet porosity. The vertical dotted line represents the transition of fractional dissolution 

rate from non-monotonic to decreasing trend with changing tablet porosity.
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Fig. 10. 
Effect of porosity on amylodextrin tablets. Trend of (a) λ, (b) k, and (c) s.
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Fig. 11. 
Combined effect of porosity and moisture content on amylodextrin tablets (Steendam et 

al., 2001). (a) Compaction curves using five different moisture fractions. (b) Relationship 

between time to release 50% of the API t50  and tablet porosity.
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Fig. 12. 
Effect of porosity on riboflavin tablets. (a) Model parameters and limiting behavior for 

fully compacted powder and loose powder blend. The nonlinear multivariate minimization 

problem additional yields εc = 0.26. (b) Predictions of calibrated ROM (solid curves), 

experimental dissolution data (symbols), and similarity factor f2 between each set of 

predicted and measured dissolution profiles. (c) Time to release 50% of the API over a range 

of tablet porosity. The vertical dotted line represents the transition of fractional dissolution 

rate from non-monotonic to decreasing trend with changing tablet porosity.
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Fig. 13. 
Effect of porosity on riboflavin tablets. Trend of (a) λ, (b) k, and (c) s.
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Fig. 14. 
Effect of lubrication and porosity on acetaminophen tablets. (a) Model parameters and 

limiting behavior for fully compacted powder, loose powder blend, at full lubrication and 

no lubrication condition. (b) Predictions of calibrated ROM (solid curves), experimental 

dissolution data (symbols), and similarity factor f2 between each set of predicted and 

measured dissolution profiles. (c) Time to release 50% of the API over a range of tablet 

porosity and lubrication conditions. The first dotted curve represents the transition of 

fractional dissolution rate from increasing to non-monotonic trend with changing tablet 

porosity and shear and the second dotted line represents decreasing fractional dissolution 

rate at critical porosity and any shear.
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Fig. 15. 
Tensile strength as a function of tablet porosity, circles represent experimental data and lines 

represent model prediction. The tensile strength was affected by both compaction force and 

shear strain.
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Fig. 16. 
Effect of porosity on indomethacin tablets. (a) Model parameters and limiting behavior for 

fully compacted powder and loose powder blend. The nonlinear multivariate minimization 

problem additional yields εc = 0.25. (b) Predictions of calibrated ROM (solid curves), 

experimental dissolution data (symbols), and similarity factor f2 between each set of 

predicted and measured dissolution profiles. (c) Time to release 50% of the API over a range 

of tablet porosity. The fractional dissolution rate is non-monotonic for any tablet porosity.
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Fig. 17. 
Effect of porosity on indomethacin tablets. Trend of (a) λ, (b) k, and (c) s.
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Fig. 18. 
Lubrication effects in lomustine crystals. (a) Lomustine crystal size distribution. (b) 

Lubricated and unlubricated loose crystals show similar dissolution profile. (c) Lomustne 

tablets of 0.25% lubrication and 2% lubrication show similar dissolution profile. (d) 

Lomustne tablets of no lubrication and 2% lubrication show similar dissolution profile.
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Fig. 19. 
Lomustine tablets fabricated in a Gamlen D Series bench-top compaction simulator. (a) 

Tensile strength as a function of tablet porosity. (b) Elastic recovery as a function of in-die 

tablet porosity. (c) Compaction plots.

Ferdoush and Gonzalez Page 46

Int J Pharm. Author manuscript; available in PMC 2024 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 20. 
Effect of porosity on lomustine tablets. (a) Model parameters and limiting behavior for fully 

compacted powder and loose powder blend. The critical porosity (εc = 0.23) used for this 

nonlinear multivariate minimization problem was obtained from the Leuenberger model (Eq. 

(29)) fitting. (b) Predictions of calibrated ROM (solid curves), experimental dissolution data 

(symbols), and similarity factor f2 between each set of predicted and measured dissolution 

profiles. (c) Time to release 50% of the API over a range of tablet porosity. The vertical 

dotted line represents the transition of fractional dissolution rate from non-monotonic to 

increasing trend with changing tablet porosity. Dashed curves represent the 68% confidence 

interval.
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Fig. 21. 
Effect of porosity on lomustine tablets. Trend of (a) λ, (b) k, and (c) s. Dashed curves 

represent the 68% confidence interval.
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Fig. 22. 
Impact of weight variability on CQAs of lomustine tablets under an idealized state of control 

of the tableting process where the punch separation at peak force is kept constant. Relative 

frequency distribution of (a) weight, (b) in-die porosity, (c) compaction force, (d) tablet 

potency, (e) tablet porosity, (f) tensile strength, (g) tablet height, (h) time to release half of 

the target product dosage, and (i) similarity factor with respect to the target product profile. 

Vertical lines represent the mean value and standard deviation bounds, with RSD being the 

relative standard deviation.
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Fig. 23. 
Impact of weight variability on CQAs of lomustine tablets under an idealized state of control 

of the tableting process where the compaction force is kept constant. Relative frequency 

distribution of (a) weight, (d) punch separation at peak force, (d) tablet height, (c) potency, 

(e) time to release half of the target product dosage, and (f) similarity factor with respect 

to the target product profile. Vertical lines represent the mean value and standard deviation 

bounds, with RSD being the relative standard deviation.
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Table 5

Dissolution specifications for lomustine tablets.

Medium 0.05 M phosphate buffer, 1% sodium lauryl sulfate (surfactant)

pH 6.8

Media volume 900 mL

USP apparatus II

Paddle speed 75 rpm

Quantitative procedure UV (231 nm)
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