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SUMMARY
Ebola virus (EBOV) causes Ebola virus disease (EVD), marked by severe hemorrhagic fever; however, the
mechanisms underlying the disease remain unclear. To assess the molecular basis of EVD across time, we
performed RNA sequencing on 17 tissues from a natural history study of 21 rhesus monkeys, developing
new methods to characterize host-pathogen dynamics. We identified alterations in host gene expression
with previously unknown tissue-specific changes, including downregulation of genes related to tissue con-
nectivity. EBOV was widely disseminated throughout the body; using a new, broadly applicable deconvolu-
tionmethod, we found that viral load correlated with increasedmonocyte presence. Patterns of viral variation
between tissues differentiated primary infections from compartmentalized infections, and several variants
impacted viral fitness in a EBOV/Kikwit minigenome system, suggesting that functionally significant variants
can emerge during early infection. This comprehensive portrait of host-pathogen dynamics in EVD illumi-
nates new features of pathogenesis and establishes resources to study other emerging pathogens.
INTRODUCTION

Ebola virus disease (EVD), caused by infection with Ebola virus

(EBOV), is among the most severe infectious diseases, with

case fatality rates (CFRs) ranging from 40% to 50% in patients.1
Ce
This is an open access article und
Since 1976, over 30 outbreaks of EVD have been recorded,

claiming tens of thousands of lives.2,3 While new vaccines4 and

treatments5 are available, CFRs remain high, especially among

patients who present late in the disease course.6 Recent out-

breaks of EVD in the Democratic Republic of the Congo and
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Uganda and of other filovirus diseases, such as Marburg virus

disease, underscore the importance of addressing filovirus

threats. EVD is a prototypical viral hemorrhagic fever (VHF)

with clinical manifestations including fever, severe gastrointes-

tinal involvement, hemodynamic dysfunction, and multiorgan

failure leading to death.7 Notably, the host-pathogen determi-

nants of this severity remain relatively obscure, and we lack

comprehensive insight into the molecular pathobiology underly-

ing severe EVD.

Genomic technologies let us better understand the molecular

basis of infection, but their application has been centered on a

fewwell-studiedpathogens. Transcriptomic approaches in partic-

ular enable quantification of host transcripts and pathogen se-

quences, shedding light on relevant host factors, tissue pathol-

ogies, cellular targets of infection, and emerging genetic

variation.8–11 Comparative analyses of these signals between

pathogens and populations can identify pathogen-agnostic and

pathogen-specific responses, thereby indicating pathways of po-

tential evolutionary and therapeutic significance.12 Despite the

important roles genomics and transcriptomics have played in our

understanding of diseases, including coronavirus disease 2019

(COVID-19),8–11 many severe viral threats have not been studied

as extensively, in particular high-containment pathogens. Thus,

there is a need for improved datasets and analyticalmethods inte-

grating transcriptomics data to build a comprehensive under-

standing of molecular factors involved in diverse pathologies.

Previous studies of EBOV infection in non-human primate

(NHP) models have largely focused on immune-related organs,

with limited temporal or spatial resolution and overlooking path-

ogen dynamics. These studies have found that EVD is character-

ized by lymphocyte depletion and reduction in platelet counts,7

while interferon-stimulated genes (ISGs), pro-inflammatory cyto-

kines, and apoptosis-related genes have been identified as

blood biomarkers that predict EVD severity and fatality.13–15 An

extended time course further identified early and conserved

blood transcriptional responses,16 with tissue-specific and tem-

poral-specific gene expression changes observed in some solid

tissues.17 Single-cell RNA sequencing (scRNA-seq) and protein

quantification by mass cytometry (CyTOF) of peripheral immune

cells revealed emergency myelopoiesis and suppression of anti-
2 Cell Genomics 3, 100440, December 13, 2023
viral responses in infected cells.18 RNA viruses, including EBOV,

have a high mutation rate, allowing better resolution of inter-tis-

sue viral spread and evolution. Emerging variations may allow

the virus to better infect and replicate in a host;19 biologically

meaningful EBOV variants have emerged during animal studies20

and recent outbreaks,21,22 and varying levels of evolutionary

constraint and adaptive potential have been described across

the viral genome.23 In patients, these variants are generally iden-

tified from blood, which likely reflects only a subset of viral diver-

sity as tissues present different selective pressures.24–27 Deter-

mining the shared and specific host dynamics across tissues

and associating them with the corresponding viral dynamics

promises to yield a more holistic view of disease progression.

Here, we present the first comprehensive spatiotemporal

characterization of host and viral dynamics in a key NHP model

of severe EVD. This dataset—the largest of its kind for any

maximum-containment pathogen—provides novel insights into

the establishment and progression of EVD and a rich resource

for understanding host-pathogen interactions. To explore this

dataset, we developed and applied ternaDecov, a computational

tool to infer cell type proportions from bulk RNA-seq datasets

with continuous covariates, and demonstrated its broader appli-

cability. This study elucidates global and tissue-specific changes

that may contribute to pathogenesis and illuminates potential

routes of viral adaptation, circulation, and compartmentalization

in peripheral tissues.

RESULTS

Multiorgan RNA-seq of rhesusmonkeys with EVD shows
widespread viral distribution and transcriptional
changes
We established an extensive viral genomic and host transcrip-

tomic dataset from a natural history study in 21 NHPs exposed

to a lethal dose of EBOV. In this study, described in depth

previously,18,28 rhesus monkeys were sacrificed at baseline or

3–8 days post infection (DPI). Over 400 bulk RNA samples

were collected at necropsy from 14 solid tissues and 3 tissue

fluids (Figure 1A). Additionally, blood draws on alternate days

were collected for a subset of animals. We quantified viral load
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by qRT-PCR and attempted bulk RNA-seq on all samples (Fig-

ures 1B and 1C).

We observed high EBOV viral loads across fluids and tissues,

indicating widespread viral dissemination (Figure 1D and

Table S1). Viral loads were under a detectable threshold across

tissues in uninfected animals but ranged from undetected to

greater than 106 copies/mL in EBOV-exposed animals and

were detectable in all tissues by 6 DPI. Viral loads were generally

highest in the blood, serum, liver, lymph nodes, spleen, and ad-

renal gland. Viral loads in some tissues, such as kidney, skin,

ovary/testis, and brain, were high in select animals after 6 DPI

by qRT-PCR and sequencing-based viral read counts, which

were highly correlated (Figure S1).

We obtained high-quality sequencing data from over 300 sam-

ples despite variable RNA quality, likely arising from challenges

intrinsic to biosafety level 4 (BSL-4) containment conditions.

We employed rigorous filtering and quality control methods to

ensure the accuracy of this large dataset (Table S2). Briefly, we

removed 13 samples that had insufficient total reads (<0.5million

reads), and eight additional samples that did not match the ex-

pected animal or tissue from NHP genotype fingerprinting, chro-

mosome X:Y read ratios, or dimensionality reduction clustering

(Figure S2). Host gene expression patterns across the sample

set were driven primarily by the tissue identity (Figure 1C), and

within each tissue group, host expression clustering patterns

were driven by DPI (Figures S3 and S4).We assembled complete

EBOV genomes from many tissues and identified variants in

samples with high coverage depth (Figure 1E).

Host-virus analysis, using time-regularized
deconvolution, reveals the contribution of direct
infection and monocyte infiltration to tissue-specific
viral loads and host responses
The host and virus data from this study provide a spatiotemporal

picture of howEBOVestablishes infection and spreads tomultiple

organ systems. Viral loads increased over time across all tissues,

but the rate of increase differed (Figure 2A). Spleen and liver had

the sharpest rise in viral load; these tissues were likely the primary

sites of infection and replication after intramuscular exposure, pu-

tatively seeding infections throughout the body.14,29,30 Lymph no-

des, whole blood, and serum had high terminal viral loads (�105

copies/mL) but peaked later in infection (Figure 2A); these tissues

likely accumulated infected cells. Other tissues (including brain,

ovary/testis, skin, lung, kidney, and adrenal) had generally lower

peak viral loads (<103 copies/mL) and slower rates of increase in

viral RNA burden. In most tissues, we found that several host

genes were correlated with viral RNA load. The top genes that
Figure 1. Study overview

(A) Description of the animal study and dataset, including the number of animals

(B) Schematization of study design and experimental and analytical workflow.

(C) t-distributed stochastic neighbor embedding (tSNE) plot of transcriptional sign

controls of the same type.

(D) Viral load across time in whole blood (top) and across tissues and other fluids

necropsy. Colors represent viral RNA as log10(copies/mL), as assessed by qRT-

(E) Viral variants across the EBOV genome identified in infecting viral stock and in

stock (top) and frequency in infected animals (bottom).

Images were created with BioRender.
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correlated with viral load were interferon gamma and alpha ISGs

(such as CXCL10/11, IF16, and IFI27) and those thought to be

involved in viral defense (KCNH, OASL, and OAS2) (Figure 2B).

The top genes anticorrelated with viral load included epigenetic

and cell division-related genes, such as a H3K27 methyltransfer-

ase (EZH1) and a Yippee-like protein (YPEL) as well as a cell adhe-

sion protein (NCAM1) involved in cell-matrix interactions and

expansion of lymphocytes.31

We sought to further determine the factors driving differences

in viral load across tissues. The viral load of a given tissue is

determined by the efficiency with which EBOV infects and

spreads within that tissue, the propensity of infected mono-

cytes—the main infected immune cell population in vivo18—to

infiltrate the tissue during infection, and/or the virus load present

in circulating blood. We noted that the expression of canonical

monocyte genes demonstrated a trend toward positive correla-

tion with viral load in most tissues (Figure 2C) but not in tissues in

which monocytes/monocyte-derived-macrophages are either

normally abundant (blood and spleen) or a low viral load is de-

tected (brain). We observed no consistent correlation (correla-

tion < 0.45) between non-monocyte blood cell marker genes

and viral load (Figure S5), suggesting that recruitment of infected

monocytes is a significant driver of the viral load. This finding led

us to investigate the role that intra-tissue changes in cell type

proportion may play during pathogenesis.

Despite the availability of several deconvolution methods,

which allow inference of cell type composition in bulk RNA-seq

samples based on an scRNA-seq reference set,32–35 most ap-

proaches are computationally inefficient. Furthermore, existing

approaches provide only single-point estimates and do not use

continuous covariates (such as time, age, developmental stage,

or location) that are common features of large sequencing data-

sets. To address these limitations, we developed and applied a

novel computational method to characterize tissue-specific

changes in cell type proportions over the course of disease.

We reasoned that continuous processes result in smooth

trajectories that can simultaneously improve deconvolution (by

sharing information between samples in close temporal prox-

imity) and provide more information about the underlying biolog-

ical process by inferring a specific parametric form of the cellular

change trajectory. In our generalizable model for trajectory-

based deconvolution, ternaDecov (temporal RNA deconvolu-

tion), the cellular proportions at each data point for every sample

are drawn from a continuous function (Figure 2D). The form of the

continuous function is not fixed and can be derived from alterna-

tive parametric and non-parametric trajectory models (STAR

Methods).
, time points, and samples collected.

atures, demonstrating that unique tissues cluster together and with commercial

at necropsy (bottom) for each animal, ordered by time between infection and

PCR; gray represents no data.

fected animals. Variants, designated by lines, are colored by their presence in

http://BioRender.com
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Figure 2. Correlating viral dynamics and host response to infection

(A) Viral loads, as determined by qRT-PCR, plotted versus time. The trajectories for different tissues were separated into three distinct patterns using K-means

longitudinal data clustering, yielding groups of tissues with similar viral load dynamics.

(B) Gene expression across tissues (separated by the clusters in A) for the top 8 correlated and anti-correlated DEGs and 3 representative viral genes. Samples

are ordered along the x axis by tissue and DPI. On the y axis, DEGs are clustered and labeled by direction.

(C) Correlation between viral load and canonical monocyte marker expression across each tissue.

(D) Overview of modular deconvolution framework used in ternaDecov. The output proportions from the models are then used to draw observed sample counts

from a negative binomial distribution based on the provided single-cell profiles.

(legend continued on next page)
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We confirmed the accuracy and biological relevance of terna-

Decov’s cellular proportion estimates and showed that trajectory

models have advantages over individual point estimates made

by existing methods. We benchmarked ternaDecov using a pub-

lished bulk RNA-seq dataset from human pancreatic islets36 and

an scRNA-seq reference dataset.37 We used expression of

HbA1C as the covariate for trajectory regularization because

levels of this gene are known to be related to changes in cell pro-

portions.32 Estimated cell proportions from ternaDecov showed

a high correlation with results from an established deconvolution

method, MuSiC,32 including a negative correlation of b cell abun-

dance with HbA1C levels (Figure S6). To further assess the bio-

logical relevance of ternaDecov’s outputs, we used the whole-

blood samples in our study. Deconvolution of bulk whole-blood

RNA sequencing with ternaDecov identified an increase in the

proportion of neutrophils that peaked at 4 DPI (Figure 2E). This

peak mirrored the observed increase in neutrophils as measured

by fluorescence flow cytometry28 (Figure 2F), scRNA-seq (0.2%–

65.1% of cells between baseline and late EVD),18 and CyTOF

(9.3%–49.8%).18 Results were again consistent between terna-

Decov and MuSiC (Figure S6), but ternaDecov showed faster

runtimes. In addition, the trajectory models used by ternaDecov

allow inference of unmeasured time points and reduce L1 error of

estimates for measured time points (STAR Methods).

We next applied ternaDecov to estimate monocyte infiltration

across tissues. For each tissue, we created a joint atlas of tis-

sue-specific cell types and blood cell types (STAR Methods),

and deconvolved their blood monocyte, blood non-monocyte,

and tissue-specific cell type fractions. The proportion of mono-

cytes/monocyte-derived macrophages varied across tissues,

with the highest peak occurring in the lymph nodes following

infection. Several tissues—most notably the lymph node, lung,

kidney and liver—showed a sharp increase in the proportion of

monocytes beginning around 4 DPI (Figure 2G). In contrast, the

proportions of other blood cell types remained stable, and this

change was not observed in tissues that are large reservoirs of

monocytes at baseline (Figures 2E and S6), indicating a specific

increase in monocytes in certain tissues and not an increase in

circulating blood. This finding suggests that infiltrating mono-

cytes influence the transcriptional signatures observed at this

stage of infection. Deconvolution further illuminated changes in

tissue-specific cell types during infection (Figure S6), such as

the decrease of chromaffin cells in the adrenal gland (Figure 2H),

a cell type that is infected duringEVD.38 Chromaffin cells produce

epinephrine, an essential hormone for the host response to infec-

tion, whose depletion could be associated with severe disease.

A tissue atlas illuminates the spatiotemporal dynamics
of interferon and cytokines during EVD
To further discover molecular signatures of infection, we identi-

fied genes whose expression changed upon infection in at least

one tissue or fluid. We identified differentially expressed genes
(E) Deconvolution of whole blood using scRNA-seq data18 confirms the detected

(F) Proportion of neutrophils across samples using Sysmex XT-2000iV automate

(G) Deconvolution of monocyte composition across time for each tissue based o

(H) Deconvolution of predicted cell type proportion across time for adrenal gland

6 Cell Genomics 3, 100440, December 13, 2023
(DEGs) between infected and non-infected samples (DPI % 0)

independently for every tissue (false discovery rate [FDR] <

0.05 and log2 fold change (FC) > 2), resulting in the identification

of between 35 and 974 DEGs per tissue (Figure 3A; Table S3). To

avoid tissue sampling effects, we excluded tissue marker genes

when interpreting genes across tissues (Figure S7; STAR

Methods). Principal component analysis (PCA) using the log2

FCs of DEGs showed separation of tissues, indicating tissue-

specific differences in response to infection (Figure 3B). Interest-

ingly, the primary axis of variation (PC1; 12.3% variance ex-

plained) across tissues is driven by several genes related to

the interferon response (Figure 3B).

We confirmed the key role of interferons and cytokines in the

host response during EVD across tissues. Past studies have

shown that expression of genes associated with the type I inter-

feron response generally increases in blood and several tissues

during EVD.14,17,39–41 Similarly, we found that interferon and

related genes were upregulated in EVD and demonstrate that

this trend is recapitulated in our extensive set of 15 distinct tis-

sues (Figures 3C and S4). We observe a similar increase in

some cytokine genes, especially in the whole blood, spleen,

and skin (Figure 3C). These responses are common to viral infec-

tions in general, and their increased expression across multiple

tissues is present in the well-established clinical manifestation

of ‘‘cytokine storm/cytokine release syndrome,’’ which occurs

during EVD.42,43

While these genes were upregulated across distinct tissues,

the degree and temporal dynamics of this upregulation differed.

Indeed, althoughmany of these genes were globally upregulated

across tissues, they were also represented as the top genes

driving the separation of tissues, underscoring the distinct dy-

namic profiles (Figure 3B). To further explore differences in the

interferon and cytokine response across tissues, we examined

DEGs changing over time in each tissue. Among these genes

globally upregulated in response to infection, ISGs and cytokines

had different dynamics between tissues across time, with an

early increase in spleen, lymph nodes, liver, and whole blood

and a delayed increase in secondary organs such as the brain

(Figures 3D and S8). This indicates a broadly conserved inter-

feron and cytokine response across tissues, albeit with distinct

dynamics likely associated with the circulation of the virus and

recruited immune cells during pathogenesis.

Tissue-specific transcription profiles reveal novel genes
and pathways dysregulated in EVD
We uncovered novel transcriptional signatures of disease, iden-

tifying differences in the host responses across tissues and inter-

tissue heterogeneity (Figures 3D, 3E, and S8). Among the DEGs

with the greatest fold change in each tissue, several genes were

differentially expressed in only a subset of tissues. For example,

we observed changes in apoptosis- and inflammation-related

genes particularly in the whole blood and kidneys. We also
increase in neutrophils at 4 DPI.

d hematology by flow cytometry28.

n an scRNA-seq reference of Macaca fascicularis.

s.
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Figure 3. Host transcriptomics across tissues and time

(A) Number of DEGs between non-infected and infected samples; tissues with more than 5 DEGs are shown in the plot.

(B) PCA of log2 fold changes of significantly DEGs between infected and uninfected samples. Top contributing genes for PC1 and PC2 are highlighted.

(C) Heatmap of fold-changes of top DEGs across tissues, stratified by meaningful gene categories; stars marks significant differential expression (FDR < 0.05).

(D) Left: heatmap of genes changing significantly across time for brain. Right: gene expression changes across time for selected genes. Colors atop plots

designate gray (light red) and white matter (dark red).

(E) Same as (D) but for lymph nodes (shades of orange) and spleen (purple); colors atop plots designate tissues.

(F) Gene Ontology (GO) term analysis of genes differentially expressed (top 100 FDR < 0.01) across time as determined by ImpulseDE2. Enriched terms were

determined per tissue, and the top 3 GO terms, as determined by Kolmogorov-Smirnov (KS) test, per tissue were selected for display. Colors of circles

correspond to �log10(KS pval) of the enriched term within tissue, and sizes of circles correspond to odds ratio.
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noted increased expression of PARP-family genes (PARP12,

ZC3HAV1, PARP15, PARP6, and PARP11) in kidney and skin

(Figure 3C). Members of the PARP family are responsible for

functions including DNA repair and chaperoning44,45 and can

have pro-viral effects. For instance, PARP11 acts as a pro-viral

factor in vesicular stomatitis virus infection by inhibiting the

strength of interferon (IFN)-I-activated signaling.46 It is possible,

therefore, that the PARP family may contribute to pathogenesis

during EVD.

To nominate underlying pathogenic processes of EVD that

might be indicated by DEGs, we used Gene Ontology enrichment

analysis to interpret tissue-conserved and tissue-specific signals.

We identified common pathways enriched across tissues during

infection, including ‘‘negative regulation of viral genome replica-

tion’’ and ‘‘defense response to virus’’ (Figure 3F). These path-

ways likely represent an enrichment of general antiviral defense

genes common to all tissues, including genes related to the

conserved IFN and cytokine responses we identified previously.

Additionally, we identified enriched tissue-specific pathways,

including cell migration, matrix formation, and organization (Fig-

ure 3F). These pathways suggest differential remodeling of tissues

as a driver or consequence of EVD progression.

We observed significant changes in expression of genes en-

coding tissue connectivity- and extracellular matrix (ECM)-related

proteins. Specifically, we saw a significant decrease in expression

over time for tissue connectivity-related genes such as laminin,

cartilage, and collagen (CILP, LAMA3, andCOL17A1) in lymphno-

des and spleen (Figures 3E and S9). These genes have not been

reported as molecular signatures of disease but are consistent

with the histological changes in vascular structure and function

observed during EVD.42 We observed similar changes in ECM-

related genes in other organs, specifically in skin/muscle samples,

as well as an increase in the expression of genes encodingmetal-

lopeptidases proteins (MMP2, MMP3, and MMP8) in the skin,

brain, and whole blood (Figure S9). These results suggest that

onset of multiorgan failure, increase in vascular permeability,

and internal bleeding associated with EVD may be related to

weakening of tissue connectivity associated with a downregula-

tion of ECMgenes, in addition to the known increase of tissue fac-

tor (F3) in the blood30 (Figure S9).

Viral variants reveal patterns of compartmentalization
and circulation among tissues
Given the high viral loads in several tissues in this study and the

promiscuous tropism of EBOV,47 we sought to elucidate how the

virus spreads in vivo using viral variants that emerge over infec-

tion. We attempted viral genome assembly on all sequenced

samples and obtained complete (>95% unambiguous nucleo-

tides) viral genomes from 95 samples for further comparisons.

Among all complete genomes, there was a single consensus-

level (>50% variant frequency) mutation. The variant, which fell

at position 10,343 (in the viral protein 24 [VP24] 50 UTR), was de-

tected in the sex organ of an animal sacrificed 6 DPI. The lack of

consensus-level variants was expected, given the short duration

of infection and absence of specific selective pressure. We also

profiled minor variants in 45 samples that had sufficient viral

coverage (>400x mean depth) (Figure S10; Table S4). Across

the sample set, minor variants ranged from 2%–22% frequency
8 Cell Genomics 3, 100440, December 13, 2023
and fell at a total of 111 unique nucleotide positions. Of these 111

variants, 5 variants were present in the infecting stock at more

than 2% frequency, and an additional 3 variants were present

at a more conservative threshold of 0.5% frequency (Figure 1E).

To focus our analysis only on variants that arose within animals,

we filtered out these 8 variants, leaving variants at 103 nucleotide

positions for further study.

We first assessed global patterns in the number and frequency

of variants in different tissues. We analyzed all samples available

but specifically focused on whole blood, spleen, and the three

distinct lymph nodes because high-coverage viral genomes

were available for many animals in each of these tissues. The

lymph nodes had a large number of variants that emerged within

animals with high frequency; 37% of variants in the inguinal

lymph node and 43% of variants in the axial lymph node had

more than 5% frequency (Figure 4A). The number of variants

was also consistently high in the lymph node samples across an-

imals but with variable DPI (Figure 4B). Conversely, spleen and

whole blood consistently had the fewest variants detected

across animals (Figure 4B). We observe that, compared with

spleen and whole blood, lymph nodes harbor more variants,

and these variants also tend to be observed at higher fre-

quencies. We find an apparent skew in the ratio of nonsynony-

mous to synonymous mutations in high-frequency (>5%) vs.

low-frequency (<5%) variants in the inguinal lymph nodes by per-

mutation test (5 vs. 0.11 in inguinal, p = 0.006; 1 vs. 1.36 in

mesenteric, p = 0.58; 1.3 vs. 1.7 in axial, p = 0.43), suggesting

that selective pressure may contribute to differences in variant

frequencies between tissues.

We probed further to investigate the cause of the higher viral

population diversity observed in the lymph nodes compared

with that of the whole blood and spleen. For the 6 animals (2 an-

imals from each of the 6-, 7-, and 8-DPI cohorts), we assessed

the overlap of all variants observed across tissues. Globally,

we found that samples from each of the three lymph nodes

had several variants that were unique to that tissue, while spleen

and whole blood variants were almost always shared with at

least one other tissue (Figure 4C). In fact, many of the variants

identified in the whole blood and spleen samples were identified

in every other tissue profiled (Figure 4D). Generally, we observed

a high degree of similarity between variant profiles in the whole

blood and spleen and more similarity between these two tissues

and each lymph node than among the lymph nodes (Figure 4D).

To investigate the source of viral diversity in the lymph nodes,

we considered all tissues, noting that the sex organ samples

have variant profiles that are most distinct from other tissues.

For example, in the animal with a consensus-level (>50% fre-

quency) variant, we found that there were multiple high-fre-

quency variants in the sex organ and ovary samples, which

were at an elevated frequency in the mesenteric lymph node

sample, but were not detected or at low frequency (<5%) in

any other sample from that individual. Previous studies have sug-

gested that infection can be compartmentalized to the sex or-

gans and ovaries.48,49 Our data more directly confirm the occur-

rence of compartmentalized infections in these tissues. The

variants rising to high frequency in these sites were likely spread

to themore proximal mesenteric lymph node (Figure 4E). This hy-

pothesis may be generalized to explain why lymph nodes harbor
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Figure 4. Minor viral variants show compartmentalization and circulation

(A) Frequencies of all nonsynonymous (red) and synonymous/noncoding (gray) variants that emerged during infection, plotted and separated by tissue; the

percentage of variants above 5% frequency (dotted line) is given above each tissue.

(B) For each animal (ordered by DPI), the number of variants that emerged in every tissue (samples with >4003 mean viral coverage).

(C) Violin plot showing the proportion of shared viral variants, separated by tissue; each point represents a unique animal, and symbols demonstrate DPI.

(D) Schematic representing variants that are shared (numbers displayed in overlapping circles) and not shared (numbers displayed in non-overlapping circles) in

all tissues available for 6 animals (2 of each the D6, D7, and D8 cohorts).

(E) Left: schematic of viral circulation among tissues, based on the variant profiles (image created with BioRender). Right: a Spearman correlation of different

tissues’ variant profiles, concatenated across animals.
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many high-frequency, unshared variants; they likely traffic be-

tween a subset of peripheral tissues with high-frequency variants

that have emerged in compartmentalized infections.

Viral variants and functional analysis suggest
adaptation during EBOV infection
The viral variants that emerged over the course of infection can

also help us understand viral evolution and dynamics. Emergent

variants may positively or negatively impact virus biology,

including altering tropism, infectivity, and escape potential.20,50
We examined the distribution and types of emerging muta-

tions across the viral genome. UTRs showed a higher number

of variants per 1,000 bp than coding regions (8.1 versus 5.9),

consistent with findings of intra-host diversity in human cases.23

Among genes, we observed the highest number of mutations per

1,000 bp in VP40 (14.3), which is involved in virion assembly and

immune evasion,51 and glycoprotein (GP) (6.9), which is immuno-

genic and critical for infectivity52 (Figure 5A). VP40 and GP also

had the highest proportions of nonsynonymous variants. We

observed narrower regions of other genes that, with high
Cell Genomics 3, 100440, December 13, 2023 9
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Figure 5. Viral adaptation and fitness effects

(A) Top: number of emergent variants per 1,000 bp

(gray) were quantified for each gene-coding region

as well as proportion of nonsynonymous variants

(red). Bottom: accumulation of total (gray) and

nonsynonymous (red) variants in specific gene re-

gions was quantified using a sliding window of

200 bp.

(B) Genomic locations of variants selected for

further functional testing (red) among all variants

identified across the EBOV genome (black).

(C) Schematic of the EBOV/Kikwit transcription-

and replication-competent virus-like particle (trVLP)

minigenome system that recapitulates the wild-type

and variant viral life cycle in a host cell (image

created with BioRender).

(D) Flow cytometry analysis of the percentage of

GFP+ cells 48 h post minigenome transfection as a

percentage of infected host cells by seed stock

(wild type [WT]) or viral variants in GP, RNP, and

VP24. Error bars represent standard deviation.
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proportions of nonsynonymous variants, including the C-termi-

nal end of the nucleoprotein (NP) and N-terminal end of the viral

polymerase (L), which are each part of the ribonucleoprotein

(RNP) complex that performs viral replication and transcription

(Figure 5A). We find evidence of negative selection in the L

gene by binomial test (p = 2.6 3 10�5) but no evidence of ratio

skew in VP40, GP, or NP (respective p values of 0.24, 0.53,

and 0.13). Across the genome, A-to-G and T-to-C mutations

were more frequent than G-to-A or C-to-T mutations, with a

particularly high proportion of thesemutations in two specific an-

imals (Figure S11). We did not observe clear tissue-specific

trends in variant location or type (Figure S12).

We adapted a well-established transcription- and replication-

competent virus-like particle (trVLP) minigenome system53 to

assess the functional effects of eight coding mutations (in

GP, L, and VP30) and four non coding mutation (in the UTR

of VP24) across the complete viral life cycle (Figure 5B). This

system allows the study of EBOV genes outside of BSL-4 lab-

oratories by separating the RNP complex into three separate

plasmids (L, NP-P2A-VP35, and VP30) that drive replication

of a T7-driven minigenome composed of reporter genes and

the remaining three EBOV genes (VP40, GP, and VP24) (Fig-

ure 5C). We recloned the entire system to encode the EBOV/

Kikwit backbone, as established previously trVLP systems en-

coded EBOV genes from variants that diverge in sequence

from Kikwit by hundreds of nucleotides. Co-transfection of all
10 Cell Genomics 3, 100440, December 13, 2023
four plasmids into mammalian host cells

results in transcription and replication of

the multicistronic minigenome, including

a fluorescent marker, which we detected

by flow cytometry. These cells also pro-

duce GP-coated trVLPs, which can infect

any target cell that expresses the viral

RNP complex. For testing, we prioritized

variants that emerged in multiple animals

or rose to high frequency or changed in

frequency relative to the infecting stock
and were in genes or regions likely to be important for viral

fitness (Figure 5B).

Because mutations in viral glycoproteins are often under se-

lection, we prioritized these variants for functional effects. Of

the five GP variants we tested, four had a significant effect on

viral fitness (Figures 5D and S13). Consistent with the role GP

plays during viral entry, additional testing with a GP-pseudotyp-

ing assay that specifically models this step suggests that this

fitness difference is likely due to a difference in productive

host-receptor interactions (Figure S13). The convergent muta-

tions at amino acid position 65 (S65A and S65P) resulted in an

increase in infectivity. Notably, a mutation at this position was

present in viral sequences from a human case (GenBank:

MH121168.1) and has been shown previously to be important

for establishing mouse-adapted variants of EBOV/Mayinga and

EBOV/Makona,54–56 further supporting a key role played by

this position. On the other hand, the variants H139R and

N506T resulted in a significant loss of infectivity. Interestingly,

a published crystal structure of GP bound to the human receptor

NPC1 showed that H139R is proximal to this interaction,57 and

the region surrounding N506T is the binding site of the neutral-

izing antibody KZ52, derived from a human survivor of the

1995 Kikwit outbreak.58

Next, we leveraged our ability to simulate the full viral life cycle

with the trVLP minigenome system to study mutations in genes

that impact transcription and replication. Functionally relevant



Resource
ll

OPEN ACCESS
mutations have emerged during human outbreaks of EBOV in

genes involved in viral replication and transcription as well as

in regulatory regions.22,23,59,60 Of the four VP24 UTR variants

we tested, only G10243A showed a slight impact on viral fitness,

potentially because of the more subtle ways in which UTR vari-

ants could affect viral fitness, which are outside the limit of

detection for this system. Among the three variants we tested

in the RNP complex, we found that mutations in VP30 showed

no significant effect on viral fitness; however, a mutation

(N1649T) on the viral polymerase (L) has a significant effect on

viral fitness (Figures 5D and S13). N1649T is located in the pre-

dicted MTase domain of the viral RNA dependent RNA polymer-

ase (RdRp)61 and decreased viral fitness. Despite recent elucida-

tion of the complete RdRp structure,61 the MTase domain has

yet to be experimentally resolved. Our results suggest that it

might play a role in maintaining viral fitness, warranting further

studies of its structure and function.

DISCUSSION

Here, we apply high-depth, unbiased sequencing, comple-

mented by newly established experimental and computational

approaches, to a large natural history study in rhesus monkeys

to provide insights into the molecular basis of disease. We

describe detectable levels of EBOV RNA in most tissues, with

the earliest infection in the liver and spleen and particularly

high viral loads in the blood, lymph nodes, and adrenals, consis-

tent with previous reports of tropism and pathology.47,49,62–66 By

following these dynamics over time, we can further observe how

infection drives disease progression and virus adaptation.

Together, these perspectives show widespread, systemic

changes during acute disease.

Emerging variants at over 100 positions across the viral

genome illuminated potential sites of adaptation and compart-

mentalization during acute infection. Shared patterns of minor

variants suggest a model where the spleen and blood spread

virus systemically, likely mediated by recruitment of infected

monocytes, while the lymph nodes traffic virus among locally

compartmentalized infections. Compartmentalized infections in

EVD, particularly in immune-privileged sites like the reproductive

tract, could promote persistent infection and sustained evolution

and pose a risk for reactivation and onward transmission.67

Using genomic data, we show that, after viral dissemination in

EBOV-exposed NHPs,48,68,69 viral populations are actively main-

tained and compartmentalized in these tissues, distinct from

infection in other organs. Several features of this emerging viral

variation, including a higher frequency of T-to-C mutations,

have been observed in human outbreaks23,70,71 and in response

to therapeutic agents.20 The higher frequency of T-to-C and

A-to-G mutations relative to G-to-A mutations may suggest

host RNA editing activity, and past studies indicate that T-to-C

mutations are clustered in specific regions.70 In contrast,

VP40, which here had the highest frequency of nonsynonymous

mutations (Figure 5A), has been suggested previously to be

strongly conserved in human outbreaks.23 The differences in

the distribution of mutations across some viral genes may reflect

rapid initial adaptation of the virus, similar to that seen immedi-

ately after zoonotic spillover. The number of unique viral variants
we detect in tissues highlights the importance of animal models

for providing insights into selective pressures in different

compartments.

Of the 12 variants we tested in our minigenome system, six

were found to significantly alter viral fitness, with the majority

of these (4 of 6) falling in the GP gene, indicating viral entry as

a mechanism. Half of the variants we tested did not have any

observed impact on viral fitness. This is unsurprising because

variants could have increased in frequency by chance because

of genetic drift, further highlighting the importance of experi-

mental assays that can rapidly and easily screen for functional

effects of mutations. The filovirus GP, RdRp, and RNP com-

plexes have long been considered promising targets for broad

antiviral therapy.72–76 Although further mechanistic and struc-

tural studies are needed to determine the impact the emerging

mutations detected in this study have on viral fitness, our results

support the potential of trVLPs to uncover novel mutations that

affect viral entry, replication, and infection, which could guide

future rational design approaches in drug discovery.

Our analysis of host transcriptional responses across tissues

adds further dynamic and tissue-specific context to known fea-

tures of pathogenesis and identifies intriguing novel responses

related to tissue connectivity. Beyond expected changes in

ISG and cytokine expression,14 the comprehensive nature of

our dataset enabled us to identify differential dynamics across

tissues. This study also revealed previously unknown features

of disease. We observed changes in ECM genes in most tissues,

with widespread dysregulation of collagen-, laminin-, and carti-

lage-related gene families in several tissues as well as an in-

crease in collagen cleaving enzymes such as metallopeptidase

(MMP8, MMP3, and MMP2) in the blood, skin, and brain. These

findings provide new molecular insight into the etiology of

vascular endothelial and connective tissue disruption (i.e.,

vascular leak syndromes, characteristic of severe EVD) and

may suggest molecular pathobiology common to other hemor-

rhagic fevers; for example, similar dysregulations in ECM have

been reported in other hemorrhagic fevers, such as dengue virus

infection,77 and ECM cleaving enzymes play a key role in venom-

induced hemorrhage.78 Interestingly, these enzymes have also

been reported to play a role in cell-to-cell viral transmission in

West Nile virus79 and influenza virus,80 warranting further inves-

tigation into the roles of these genes in EVD.

Characterizing host and pathogen dynamics in this large serial

sacrifice study required establishing new computational and

experimental tools that we believe will be of broad use in future

studies. ternaDecov fills a key gap among available deconvolu-

tion tools32–35 when time-series bulk RNA-seq data are available.

By incorporating time as a variable in its deconvolution model of

bulk data from a single-cell reference, ternaDecov better models

gene expression dynamics. While studying changes over the

course of infection was our primary motivation in developing

ternaDecov, any continuous covariates can be used, demon-

strating the broader applicability of this method. Similarly, exist-

ing trVLP minigenome systems were not adapted to the EBOV

variant used in this and many other animal studies of EVD.

TrVLP minigenomes are powerful systems because they allow

the full viral life cycle to be modeled at lower levels of biosafety

containment and have been used previously to functionally
Cell Genomics 3, 100440, December 13, 2023 11



Resource
ll

OPEN ACCESS
characterize mutations in other EBOV variants.22,53 Because

the EBOV Kikwit variant is recognized as the standard challenge

virus for testing clinical countermeasures in animal studies,

we believe that the EBOV/Kikwit trVLP system we adapted will

be a valuable community resource for future assessment of

emerging mutations.

Through this study, we add further spatial and temporal gran-

ularity to known signatures of EVD while also suggesting new

molecular drivers of pathogenesis.We illustrate relationships be-

tween host and viral signatures during EVD and propose poten-

tial mechanisms that may generate these signatures. Finally, we

provide computational and experimental tools to not only facili-

tate further investigations of EBOV infections but also provide

a model for future studies seeking to nominate and validate mo-

lecular bases of disease progression.

Limitations of the study
The major limitations of this study arise from the constraints

inherent to working in maximum containment, and there are

several areas where the study could be expanded to increase

the breadth and depth of characterization. In particular, many

liver samples had low RNA quality, restricting the insights we

could obtain for this tissue. The liver harbors many enzymes

that degrade RNA, and degradation was likely exacerbated by

the constraints of working in maximum containment. Improved

preservation methods as well as even broader sampling of clin-

ically relevant tissues, such as the gastrointestinal tract,81,82

would be of interest for future investigations. Additionally, the

timing of host transcriptional changes suggests that the recruit-

ment of infected circulating monocytes is a major contributing

factor to the spread of the virus to secondary organs. Future

studies using scRNA-seq on tissue samples would allow

changes in cell type proportions and the impact of infection on

specific cell types to be measured more directly, as shown pre-

viously in peripheral blood mononuclear cells from this study.18

Finally, uniformly lethal animal models like the one used here

restrict the study of persistence, acute recovery, and long-term

effects of the infection. New experimental challenge models

with different routes of inoculation and heterogeneity in out-

comes could enable a better understanding of these features

in surviving NHPs.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Ebola virus/H. sapiens-tc/COD/1995/Kikwit-9510621

(EBOV/Kikwit; GenBank accession MG572235.1;

Filoviridae: Zaire ebolavirus)

BEI Resources Cat#NR-50306

Biological samples

Monkey Adrenal Total RNA, Rhesus Zyagen UR-501

Monkey Brain Total RNA, Rhesus Zyagen UR-201

Monkey Kidney Total RNA, Rhesus Zyagen UR-901

Monkey Liver Total RNA, Rhesus Zyagen UR-314

Monkey Lymph nodes Total RNA, Rhesus Zyagen UR-703

Monkey Skin Total RNA Total RNA, Rhesus Zyagen UR-101

Monkey Spinal cord Total RNA, Rhesus Zyagen UR-230

Monkey Spleen Total RNA, Rhesus Zyagen UR-701

Chemicals, peptides, and recombinant proteins

X-tremeGENE 9 DNA Transfection Reagent Sigma-Aldrich 6365787001

Actinomycin D Millipore Sigma A1410-2MG

20-Deoxyuridine 50-triphosphate sodium salt (dUTP) Millipore Sigma D0184-25UMO

NEBNext Ultra II End Repair/dA-Tailing Module NEB E7546L

Instant Sticky-end Ligase Master Mix NEB M0370L

Thermolabile USER II Enzyme NEB M5508L

Critical commercial assays

Q5 Site-Directed Mutagenesis Kit New England Biolabs E0554S

Deposited data

EBOV NHP infection RNA-Seq reads This study GSE226106

Macaca fascicularis single-cell reference data 83 https://db.cngb.org/nhpca/download

RNA-seq data for healthy and diseased pancreatic

islet samples

36 GSE50244

pancreatic islets scRNA-seq RNA-seq data 37 E-MTAB-5061

Peripheral blood data from the same EBOV-infected

rhesus monkeys

18 GSE158390

Experimental models: Cell lines

HEK293T ATCC CRL-3216

U2OS ATCC HTB-96

Oligonucleotides

See Table S5 N/A

Recombinant DNA

See Table S5 N/A

Software and algorithms

Bulk RNA-seq Processing This study https://github.com/broadinstitute/

EbolaNaturalHistory/

ternaDecov This study https://doi.org/10.5281/zenodo.8411808

STAR 84 https://github.com/alexdobin/STAR

python Python core team https://www.python.org/

R R Core Team https://www.r-project.org/

UMI-tools 85 https://github.com/CGATOxford/UMI-tools

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

BioMart 86 https://github.com/grimbough/biomaRt

viral-ngs https://viral-ngs.readthedocs.io/

en/latest/index.html

https://github.com/broadinstitute/viral-ngs

DESeq2 87 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

go.db.df 88 https://bioconductor.org/packages/release/

data/annotation/html/GO.db.html

topGO 89 https://bioconductor.org/packages/release/

bioc/html/topGO.html

ImpulseDE2 90 https://github.com/YosefLab/ImpulseDE2

MuSiC 32 https://xuranw.github.io/MuSiC/articles/

MuSiC.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to Katherine Siddle (katherine_siddle@brown.edu).

Materials availability
Plasmids generated in this study are available upon request.

Data and code availability
The RNA-Seq datasets reported in this paper are available in GEO under accession GSE226106. The scripts used in this

study are available at https://github.com/broadinstitute/temporal-rna-seq-deconvolution/and https://github.com/broadinstitute/

EbolaNaturalHistory/. The version of ternaDecov used in this study is available at https://doi.org/10.5281/zenodo.8411808.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study included a subset (21 of 27) outbred rhesusmonkeys (Macacamulatta) of Chinese origin described recently,18,28 balancing

age, weight, and sex (8 males and 13 females). All work was approved and performed in accordance with the Guide for the Care and

Use of Laboratory Animals of the National Institute of Health, the Office of Animal Welfare, and the US Department of Agriculture.

HEK293 (human [Homo sapiens] fetal kidney) and U2OS (human [Homo sapiens] osteosarcoma) were obtained from the ATCC

(https://www.atcc.org/). Cells were maintained in DMEM containing 10% fetal bovine serum, 1% non-essential amino acids, 1% so-

dium pyruvate, and 1% penicillin-streptomycin at 37�C with 5% CO2 and seeded onto coated plates for transfection experiments

described in details below.

METHOD DETAILS

Natural history study
The details regarding the infecting viral stock and animals used have been published previously.28 Briefly, 18 rhesus monkeys were

inoculated intramuscularly with 1 mL of 1000 plaque-forming units/mL EBOV/Kikwit (Ebola virus/Homo sapiens-terminal control-

COD/1995/Kikwit-9510621 from BEI Resources, Manassas, VA) in the left lateral triceps muscle at study day 0. Animals were hu-

manely euthanized at either a predetermined time point (3 animals on each of days 3, 4, 5 and 6 post-infection) or at terminal endpoint

(N = 6). Sequential blood draws under general anesthetic were collected for the 6 animals in the terminal endpoint group. Three un-

infected control monkeys (2 female, 1 male) were sham-exposed with 1mL phosphate-buffered saline at the same anatomic location

before sacrifice on day 0. Baseline blood draws at approximately 30 and 14 days prior to infection were collected for all 21 animals.

Tissue samples were collected from each animal at necropsy in bead beater tubes and homogenized in TRIzol and inactivated in

TRIzol LS.

All monkeys used in this research project were cared for and used humanely according to the following policies: the U.S. Public

Health Service Policy on Humane Care and Use of Animals (2000); NIH’s Guide for the Care and Use of Laboratory Animals; and the

U.S. Government Principles for Utilization andCare of Vertebrate Animals Used in Testing, Research, and Training (1985). All National

Institute of Allergy and Infectious Diseases Integrated Research Facility animal facilities and programs are accredited by the Asso-

ciation for Assessment and Accreditation of Laboratory Animal Care International. This study was performed in the Biosafety Level 4

Laboratory at theNIH/National Institute of Allergy and Infectious Diseases, Integrated Research Facility at Fort Detrick (Fredrick, MD).
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Sample extraction and RNA purification
Tissue homogenates inactivated in TRIzol were phase-separated with chloroform at the Broad Institute, and total RNAwas extracted

from the aqueous phase using the MagMAX MirVana total RNA kit (ThermoFisher) on a KingFisher FLEX instrument. DNA was

removed by TURBO DNase treatment following RNA extraction. A TRIzol-inactivated aliquot of the viral seed stock injected into an-

imals from this study was also obtained and extracted with the Direct-zol-96 MagBead RNA (Zymo Research).

Quantification of viral RNA
Ebola viral load in all extracted RNA samples was measured by qRT-PCR using an SYBR Green assay with previously published

primers targeting the EBOV NP gene.83 A standard curve of a DNA gBlock (IDT) encoding the target region was used to calculate

viral copy numbers. Curves of temporal change in viral load in each tissue were clustered using iterative K-means longitudinal

data clustering with the R package KLM with maximum number of NA tolerates per trajectory of 1.

Library construction and sequencing
We depleted ribosomal RNA from purified RNA using an RNase H-based approach,84 then performed strand-specific ligation-based

library construction.85 Briefly, we heat-fragmented RNA, performed reverse transcription, labeled second-strand cDNA with dUTP,

then ligated xGen UDI-UMI adapters86 at a concentration of 0.04 mM for fluid samples and viral seed stock, and 0.2 mM for tissue

samples. We then USER-digested the dUTP-labeled strand, and PCR amplified libraries. Libraries were quantified with

TapeStation high-sensitivity DNA assay (Agilent). Samples were pooled at equimolar ratios and sequenced on a NovaSeq SP (Illu-

mina) with 2x146bp cycles for the cDNA and 17 cycles of Index Read 1 to sequence the 9-base UMI.

Pentacistronic minigenome assay
We constructed a EBOV/Kikwit pentacistronic (5MG) minigenome system based on a previously published EBOV/Mak-C15 tetracis-

tronic (4MG) minigenome system22 but cloned in EBOV/Kikwit sequences either amplified by RT-PCR from viral seed stock or or-

dered as dsDNA gBlocks (IDT) to replace EBOV/Mak-C15 genes. The EBOV/Kikwit 5MG plasmid includes eGFP and nano luciferase

as reporter genes and VP40, GP, and VP24 CDS and UTRs. EBOV/Kikwit L and VP30 were cloned into pcDNA3.4 vectors to facilitate

site directed mutagenesis (SDM) experiments as pCAGGs vectors from the published system have GC-rich regions that are difficult

to amplify under standard PCR conditions. SDM was performed to create single nucleotide variants following manufacturer’s pro-

tocol (NEB) with custom designed primers (Table S5). Full plasmid sequences are in Data S1.

We followed an existing protocol for the multicistronic minigenome assay53 with some modifications. We seeded HEK 293T cells

into collagen-coated 24-well plates, grew to 60% confluency, and transfected cells following the xtremegene9 transfection protocol

with the previously described plasmid ratio (31.25 ng of NP-P2A-VP35, 18.75 ng of VP30, 250 ng of L, 62.5 ng of 5MG plasmid en-

coding eGFP, 62.5ng of T7pol). We harvested cells 48 h post-transfection with trypsin, washed once with PBS and stained with DAPI

for cell viability.We thenmeasured the percentage of eGFP positive live cells for each condition whichwe considered as infected host

cells.

GP-pseudotyped lentivirus and infectivity assays
The following mutants were selected for a GP-pseudotyping assay: S65A, S65P, H139R, N278Y, and N506T. A gBlock for the EBOV

GP seed stock (GenBank: KU182908.1) was designed and synthesized (IDT) with a deleted mucin like domain from amino acid po-

sitions 309–489 and an additional adenosine at nucleotide position 890 to produce the full length glycoprotein.21,87,88 This gBlock

was cloned into the pGL4.23 backbone expression plasmid described in Diehl et al. using restriction enzymes with the GP sequence

placed under the control of a cytomegalovirus immediate-early (CMV IE) promoter/enhancer.21 Q5 Site directed mutagenesis (NEB)

was used to introduce the mutations in the backbone.

GP-pseudotyped lentiviral virions carrying an EFS driven H2B-mCherry reporter gene were produced in triplicate by transfecting

HEK293FT cells (Takara, Cat# 632180) using polyethylenimine (PEI, Polysciences Cat# 24765–1) with 800 ng GP envelope, 866 ng

psPAX2, and 1,333 ng H2B-mCherry reporter plasmid. Media was exchanged 4 h after transfection and viral supernatants were

collected 2 days later. The viral supernatant was filtered through a 0.4mm filter (Pall, Cat# 8129), treated with Benzonase-nuclease

(Sigma-Aldrich, Cat# E1014-25KU) for 1 h at 37�C after which viral RNA was extracted using a Zymo RNA extraction kit according

to manufacturers protocols (Zymo, Cat# R1041). An qRT-PCRwas run to determine the titer of each sample using the Takara Lenti-X

Quant RT-qPCR kit (Takara Bio, Cat#: 631235). Viral supernatants were normalized to the same multiplicity of infection for infectivity

assays.

U2OS cells were maintained in DMEM containing 10% fetal bovine serum, 1% non-essential amino acids, 1% sodium pyruvate,

and 1%penicillin-streptomycin at 37�Cwith 5%CO2. U2OS cells were plated in 96-well plates at 7,500 cells per well and the normal-

ized viral supernatant was added to the plate in duplicate. Media was exchanged 24 h later and then cells were analyzed by flow

cytometry after 4 days.

Sequencing data preprocessing and quality control
Host transcriptomics data was processed using the umiRNAseq custom pipeline for Bulk RNA-seq Processing with UMI correction

on Terra (https://github.com/broadinstitute/EbolaNaturalHistory/blob/main/00-bulk-rna-seq/umiRNASeq.wdl). Briefly, we merged
Cell Genomics 3, 100440, December 13, 2023 e3
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and tagged raw Fastq files with their corresponding UMI barcode, and mapped, using the STAR aligner,89 to the rhesus monkey

(Macaca mulatta) reference genome and annotation (Mmul_10). Resulting BAM files were filtered for multiple mapped reads, sorted

and indexed using samtools. Then, PCR duplicates were removed by UMI-tools90 using the UMI barcodes of each transcript, and

featureCounts were used to quantify expression from the aligned and processed RNA-Seq BAM files. We used the BioMart R pack-

age91 to annotate the gene type, gene name, and gene function using the ensemblM.mulatta database ‘‘mmulatta_gene_ensembl’’.

Quality control over the sample was performed removing samples with low sequencing quality and mismatched sex assignment.

Viral genomic analyses
Viral genomic analyses were performed using viral-ngs pipelines (https://github.com/broadinstitute/viral-ngs) implemented on the

Terra platform (app.terra.bio). We assembled EBOV genomes using the assemble_refbased workflow (viral-ngs version 2.0.21),

with the EBOV/Kikwit reference GenBank: KU182908.1. Genomes with >95% unambiguous bases were considered complete.

On all genomes with >400x mean depth of coverage, we used LoFreq with -q 20 and -Q 20 to identify minor variants, relative to

the EBOV reference GenBank: KU182908.1.92We filtered out variants that were present in <2%or >98%of readsmapping to a given

position (relative to reference), as well as those at sites with depth of coverage <100 and variant reads <5.

Viral mutation statistics
A one-tailed exact binomial test with p = 0.75 was used to determine whether the ratio of nonsynonymous to synonymous mutations

in a given analysis differed from the expected 3:1 ratio for neutral selection.These analyseswere donewithin a tissue across all genes,

and also with respect to a particular gene across all tissues. A one-tailed permutation test (with 10,000 trials) was used to determine

whether the ratio of nonsynonymous to synonymous mutations differed between high-frequency and low-frequency variants.

Differential expression analysis
The raw read counts of all samples were normalized using the DESeq2 R package.93 In order to identify tissuemarkers, we compared

counts from samples at time zero and 3 days post infection (DPI) using a model matrix to compare each tissue against all others.

Genes with an adjusted p-Value and a log2 fold change higher than one in each comparison were selected as tissue markers for

that specific tissue.

To identify differentially expressed genes between not infected (samples at 0 DPI) and infected conditions, samples were further

analyzed with the DESeq2 package.93 For tissues lacking samples at 0 DPI (lung, liver and testis) samples at 3 DPI were used instead.

For each tissue, genes previously identified as tissue markers were excluded from downstream interpretation. We considered differ-

entially expressed genes (DEGs) to be those genes with a p-adj <0.05 and a log2 fold change higher than 2. Genes meeting these

criteria were stratified into ISGs, Cytokines, Inflammatory response, PARPs, apoptosis, and extracellular matrix related genes using

the go.db.df R package and custom lists.

GO term enrichment analysis and correlation analysis
Enrichment analysis was performed on DEGs using the R package topGO94 with the ‘‘Biological Process’’ ontology. For each tissue,

we selected the top 100 DEGs across time (FDR <0.01) for this analysis. We selected the top 3 enriched terms for each tissue as

defined by the p values of the Kolmogorov-Smirnov test. Correlation between host genes and viral counts was performed using

the normalized DESeq2 counts and the total viral read counts using Spearman rank correlation analysis as implemented in the stats

R package. A similar approach was performed for the correlation between viral load and monocyte markers (mean of CTSS, VCAN,

FCN1, CD14, S100A9, MS4A1 normalized counts) and whole-blood non-monocyte markers (mean of CD3D, HBA, SELL, PPBP,

HBA, CD8A, GNLY normalized counts).

Genes expression changes across time
To identify genes changing across time, we used the ImpulseDE2 package95 to perform a time-series differential expressed gene

analysis of each tissue across the 8 days of infection. ImpulseDE2 includes a DEseq2 normalization step, thus, the raw gene read

counts from FeatureCounts were used as input data. The function ‘‘runImpulseDE2’’ was applied to each tissue independently, sig-

nificant genes were selected as those with a p-adj <0.05. Furthermore tissue marker genes corresponding to each tissue were

excluded from downstream analysis.

The data analysis mentioned before were performed in R version 4.1.2, using the aforementioned R packages. Visualization was

performed using the Packages ggplot2, Pheatmap96 and ComplexHeatmap.

Time-regularized deconvolution of bulk RNA sequencing (ternaDecov)
Wedeveloped ternaDecov as a time-regularizedmethod for deconvolution of bulk sequencing data using scRNA-seq reference data.

Briefly, ternaDecov uses stochastic variational inference to simultaneously identify an underlying trajectory of cellular composition

change in terms of user-specified covariates (e.g., days post infection) and deconvolve individual sample compositions using anno-

tated single-cell profiles. The code for the ternaDecov software is available from github at https://github.com/broadinstitute/

temporal-rna-seq-deconvolution as an installable python package and several introductory tutorials are provided.
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TernaDecov offers a modular model structure in which the cell type proportions of each sample are obtained from one of several

alternative trajectory modules. The trajectory modules take as input the sampling time covariate and return a draw of sample-specific

cell proportions (pnc) as a result in different ways depending on their internal structure. Trajectory modules currently implemented in

ternaDeCov include: (1) simple polynomial trajectories, (2) Legendre polynomial trajectories, (3) Gaussian process with different

kernel functions, and (4) a ‘‘trivial’’ trajectory model that does not take into account sample collection time, effectively producing in-

dependent deconvolution of samples similar to traditional deconvolution algorithms.

The cell-type proportions (pnc) are multiplied with the summarized single-cell reference (.) after scaling by learnable gene specific

capture rate coefficients (bg) to produce location parameter for a Negative Binomial distribution from which the observed count ma-

trix is sampled from using gene specific dispersion parameters (4g).

The full model is specified as follows:

n : sample index
c : celltype index
g : gene index
Nn : total library size
tn : sampling times
cWgc : summarized single � cell reference
mg : gene � specific dispersion mean
sg : gene � specific dispersion variance
sb : gene � specific capture rate variance
Wgc = bg
cWgc
4g = N
�
mg;sg

�

bg = N
�
0;sb

�

pnc = Trajectory ModuleðtnÞ
Xng = NB
�
Nnpnc

cWcg;4g

�

ternaDecov: Trajectory models
TernaDecov offers two trajectory models, described below.
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Polynomial trajectory model

The polynomial trajectory model is shown in Figure S14A (left). To obtain the prior cell proportions for a given sample n at time tn, we

evaluate a specified polynomial function basis 4kð:Þ for k = 1;.;K on tn to obtain a polynomial feature matrix 4kðtnÞ. At the same

time, we (globally) sample a set of weights zkc � N ð0;ak
� 1Þ, where ak is the precision of prior Gaussian and controls the usage of

basis function 4k . We matrix multiply the global weights with the sample polynomial feature matrix to obtain the unnormalized cell

population ync =
PK

k = 1zkc4kðtnÞ. We normalize the latter by applying the softmax function along the last dimension to obtain

bpnc = softmaxðyncÞ. To allow sample-specific deviations from this prior trajectory, we finally sample pnc from a Dirichlet distribution

pnc � Dirichletðadir bpncÞ. Here, adir is the global Dirichlet concentration parameter which controls how sample trajectories can deviate

from the prior trajectory.

Gaussian process (GP) trajectory model

In contrast to the polynomial model, the GP model (Figure S14A, right) allows for more flexible trajectories. The function space of

trajectories is specified by the kernel function, and the parameters of the kernel function are optimized to obtain the maximum likeli-

hood trajectory fit. To obtain the prior cell proportions for a given sample n at time tn, we draw unnormalized cell proportions ync
independently for each cell type using a cell-type-specific GP and sample collection time tn as the covariate. We specifically

used radial basis function (RBF) kernel function with added white noise kðt; t0Þ = s0 expð� jt � t0j2=2T2Þ+ s1 dðt; t0Þ, where

qGP = fs0; s1;Tg constitute the set of GP kernel parameters to be optimized. Intuitively, a larger choice of s1 allows for more sam-

ple-to-sample trajectory deviation, a larger choice of s0 couples adjacent times more strongly together (i.e., stronger time regulari-

zation), and T sets the trajectory correlation timescale. Like before, we normalize the unnormalized cell population ync by applying the

softmax function along the last dimension to obtain pnc = softmaxðyncÞ. In contrast to the polynomial model, ync is already a latent

variable which accommodates for sample-to-sample deviation from the trajectory. Therefore, sampling from the Dirichlet distribution

is no longer needed in this approach.

ternaDecov: Implementation
TernaDecov is implemented in python as a hierarchical model using the pyro97 probabilistic programming framework. When avail-

able, ternaDecov can utilize underlying CUDA graphics processors for acceleration. Parameter estimation is performed using the

Adam with a learning rate of 1e-3 optimizer and an ELBO loss; 20,000 learning iterations are utilized unless noted otherwise.

TernaDecov can be run using a CLI interface or via API calls using a jupyter notebook. Inputs for ternaDecov execution encompass

two scanpy AnnData objects: one for the single-cell reference (that requires a cell type annotation column) and one for the bulk data

that requires a column annotating the time of collection of each sample. The results can be exported in tabular format as well as

plotter in raster and vector formats.

The package provides facilities for simulating random sample proportion trajectories using different basis functions that are

different in functional form from the bases used to estimate trajectories and include softmax normalized sigmoid, sinusoidal and

linear (first degree polynomial) trajectories, using the Simulator module. Furthermore, the package allows for automated scanning

of prior parameters and configuration options for assessing stability of results with respect to these values, using the

SensitivityAnalyzer module.

ternaDecov: Technical benchmarking
Run time

We benchmarked runtime performance using simulated samples from a fixed random trajectory (Figure S14B). Furthermore, decon-

volution of 10 adrenal samples with ternaDecov required 4.7 min, MuSic accomplished the same task in 57.9 min. Although scaling

with the number of samples is exponential, running time for 1000 samples is sufficiently short to be run interactively. Scaling of the

polynomial trajectory module is more linear that the full GP shown here. We anticipate that memory limitations will be more important

than execution time when utilizing the GP model. We found that executing the model using a GPU processor accelerated execution

(data not shown).

Accuracy

We assessed the value of i) increasing sample number and ii) trajectory estimation on improving sample composition estimates with

ternaDecov. Using the built-in simulator we assessed the ability of ternaDecov to recover underlying trajectories from which bulk

samples are derived as function of the number of equidistant temporal samples obtained. We generated a single random fixed pe-

riodic type of trajectory (Figure S14C) and increasingly sampled N equidistant samples from it. After learning the underlying trajectory

we evaluated composition values as 1000 points and scored trajectory reconstruction quality by means of normalized L1 error. L1

error declined with increasing sample numbers, indicating that larger sample sizes improve trajectory estimation (Figure S14D).

Sample proportion and simultaneous trajectory estimation is expected to reduce the error of individual sample proportion estima-

tion as information between samples is shared. In order to confirm that, we deconvolved fixed trajectory using the ’gp’ and the ’non-

trajectory’ deconvolution models. The ’nontrajectory’ model does not impose any trajectory structure between samples and there-

fore does not share any information between samples. It is therefore expected to reflect the performance of all general methods for

deconvolution that do not make use of covariate information. The normalized L1 error for 10 independent deconvolution runs on the

same dataset was markedly higher without trajectory estimation (Figure S14E), supporting the value of this approach.
e6 Cell Genomics 3, 100440, December 13, 2023
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Robustness

We extensively evaluated the robustness of ternaDecov to perturbations of the prior parameters and gene selection algorithm. For

example, using an increasingly stringent parameter for the overall abundance of genes in the single-cell dataset the results remain

stable well beyond the values used for the analysis (Figure S14F).

ternaDecov: Biological benchmarking and application to EBOV RNAseq data
To benchmark the method on independent biological datasets, we first used the bulk RNA-seq data from Fadista et al.36 which

contain RNA-seq data for healthy and diseased pancreatic islet samples simulated based on pancreatic islets scRNA-seq RNA-

seq data from Segerstolpe et al.37 We ran ternaDecov with HbA1C as the covariate to use for trajectory regularization. We compared

cell proportions estimated by ternaDecov to those reported for MuSiC32 and established quantitative agreement between the two

methods. Moreover, ternaDecov inferred cell type composition trajectories were concordant with the results reported earlier.98

In order to assess blood infiltration in peripheral tissues during EBOV infection we applied ternaDecov to bulk RNAseq data with

two alternative datasets as a single-cell reference; Macaca fascicularis single-cell atlas data,99 and peripheral blood data from the

same EBOV-infected rhesus monkeys.18 We performed summarization of the deconvolved cell type proportions to ’Monocytes’,

’non-Monocyte blood’ and tissue-specific cell types. In all cases, we ran ternaDecov for 20,000 iterations for each analysis in the

’GP trajectory’ mode with default settings for gene selection. Stability analysis with respect to the most salient input parameters

was performed using 5,000 iterations. We validated the finding of a decrease in Chromaffin cells in adrenal tissue with MuSiC32

run using the default parameters and identical single-cell reference.
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