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Abstract

Background The application of artificial intelligence (Al) in the ultrasound (US) diagnosis of breast cancer (BCa) is
increasingly prevalent. However, the impact of US-probe frequencies on the diagnostic efficacy of Al models has not
been clearly established.

Objectives To explore the impact of using US-video of variable frequencies on the diagnostic efficacy of Al in breast
US screening.

Methods This study utilized different frequency US-probes (L14: frequency range: 3.0-14.0 MHz, central frequency
9 MHz, L9: frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz and L13: frequency range: 3.6-13.5 MHz, central
frequency 8 MHz, L7: frequency range: 3-7 MHz, central frequency 4.0 MHz, linear arrays) to collect breast-video
and applied an entropy-based deep learning approach for evaluation. We analyzed the average two-dimensional
image entropy (2-DIE) of these videos and the performance of Al models in processing videos from these different
frequencies to assess how probe frequency affects Al diagnostic performance.

Results The study found that in testing set 1, L9 was higher than L14 in average 2-DIE; in testing set 2, L13 was
higher in average 2-DIE than L7. The diagnostic efficacy of US-data, utilized in Al model analysis, varied across different
frequencies (AUC: L9>L14:0.849 vs. 0.784; L13>17:0.920 vs. 0.887).

Conclusion This study indicate that US-data acquired using probes with varying frequencies exhibit diverse average
2-DIE values, and datasets characterized by higher average 2-DIE demonstrate enhanced diagnostic outcomes

in Al-driven BCa diagnosis. Unlike other studies, our research emphasizes the importance of US-probe frequency
selection on Al model diagnostic performance, rather than focusing solely on the Al algorithms themselves. These
insights offer a new perspective for early BCa screening and diagnosis and are of significant for future choices of US
equipment and optimization of Al algorithms.
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Key points

1. The study explored the impact of ultrasound images with different frequencies on the diagnostic efficacy of
artificial intelligence.

2. Ultrasound images obtained with different frequency probes exhibited variable levels of average two-
dimensional image entropy, influencing the diagnostic performance of artificial intelligence models in nuanced
ways.

3. Datasets with higher average two-dimensional image entropy were associated with superior artificial
intelligence breast diagnostic efficacy.

Summary

The research on artificial intelligence-assisted breast diagnosis often relies on static images or dynamic videos
obtained from ultrasound probes with different frequencies. However, the effect of frequency-induced image
variations on the diagnostic performance of artificial intelligence models remains unclear. In this study, we aimed
to explore the impact of using ultrasound images with variable frequencies on Al's diagnostic efficacy in breast
ultrasound screening. Our approach involved employing a video and entropy-based feature breast network to
compare the diagnostic efficiency and average two-dimensional image entropy of the L14 (frequency range:
3.0-14.0 MHz, central frequency 9 MHz), L9 (frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz) linear array
probe and L13 (frequency range: 3.6-13.5 MHz, central frequency 8 MHz), and L7 (frequency range: 3-7 MHz, central
frequency 4.0 MHz) linear array probes. The results revealed that the diagnostic efficiency of Al models differed
based on the frequency of the ultrasound probe. It is noteworthy that ultrasound images acquired with different
frequency probes exhibit different average two-dimensional image entropy, while higher average two-dimensional
image entropy positively affect the diagnostic performance of the Al model. We concluded that a dataset with
higher average two-dimensional image entropy is associated with superior diagnostic efficacy for Al-based breast

diagnosis. These findings contribute to a better understanding of how ultrasound image variations impact Al-
assisted breast diagnosis, potentially leading to improved breast cancer screening outcomes.

Introduction

Breast cancer (BCa) is the most prevalent cancer and the
leading cause of cancer mortality in females worldwide
[1, 2]. Early identification and intervention of BCa lead to
significant improvements in 5-year relative survival rates
[3, 4]. Ultrasound(US) is the imaging method of choice
for the evaluation of breast disease because it is techni-
cally simple, cost-effective, and safe [5]. Also, the US is
seen as a primary measure of BCa detection and mortal-
ity reduction [3]. However, US-image-based diagnosis of
the breast greatly relies on the experiences of the sonog-
raphers [6], so it is significant to further explore the infor-
mation carried by US images to enhance the detection
rate and diagnostic accuracy of BCa in its early stages.

In recent years, artificial intelligence (AI) has brought
opportunities for the advancement of medical imag-
ing [7-10]. The algorithm is enabled to extract a large
amount of information from medical images that can-
not be observed by the naked eye for diagnosis and
improve the computer detection rate of nodules [11-13].
US-based Al studies rely on the sonographers-selected
images during the scanning process or partially on
responsibility frames selected from video [14—21]. There-
fore, the US image selection is particularly crucial in BCa
Al diagnosis.

In information theory [22], entropy is the aver-
age amount of information contained in each received

“message” Image entropy (IE) is a statistical form of
image features, reflecting the average amount of infor-
mation in the image, which can reflect the distribution
complexity of each pixel point of the image [23]. Most
previous studies were image-based that required high-
frequency probe acquisition as a dataset [24—26]. The
principle of choosing a US probe is to ensure sufficient
detection depth while maximizing the frequency to
ensure the resolution of the US image [25]. Although the
high-frequency probe images may aid the sonographer in
making a diagnosis. Whether they are favorable for the
training and diagnosis of Al models is not known yet.
Earlier works [21] demonstrated that the richer the aver-
age information content of an image, the better its tumor
classification. Thus, based on the principle that US low
frequency corresponds to high penetration [27], US data
obtained at different frequencies may carry different lev-
els of information, thereby impacting the diagnosis of the
Al model.

Therefore, this study introduces the feature entropy
of breast US to calculate the magnitude of the average
two-dimensional image entropy(2-DIE) at different fre-
quencies. Further, to investigate whether the US images
obtained at lower frequencies have higher average 2-DIE
and are more beneficial to improve Al diagnosis.
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Materials and methods

Participants

This retrospective research collected US videos examined
at Shenzhen People’s Hospital from June 2021 to Decem-
ber 2021. As a retrospective study, informed consent was
waived by the Medical Ethics Committee of Shenzhen
People’s Hospital. All patient information was handled
with strict confidentiality in compliance with ethical
guidelines. The benignity and malignancy of the nodules
obtained by the US were confirmed by pathology.

Inclusion criteria (a) Simultaneous acquisition of US
video images of tumors in the same patient with two dif-
ferent frequency probes. (b) US-detected nodules must be
classified as 0, 2, 3, 4a, 4b, 4c, or 5 following the BI-RADS.
(c) No biopsy or surgical treatment of the breast nodules
is to be evaluated before the US scan. (d) Patients were
biopsied or surgically treated within 1 week of US data
acquisition, while pathological results were obtainable.

Exclusion criteria (a) BI-RADS 6 in the US, DR (Digital
mammography), or MRI (magnetic resonance imaging).
(b) BI-RADS 1 in the US. (c) History of breast surgery. (d)
Single-frequency US video data. (e) Missing pathological
results. (f) Poor image quality.

In this study, a total of 668 breast tumors (260 malig-
nancy and 408 benign) of US videos from 167 female
patients were included and divided into 2 testing sets:
(1) In testing set 1, breast US videos were obtained from
Resona 19 (Mindray, China) with L14 (frequency range:
3.0-14.0 MHz, central frequency 9 MHz), L9 (frequency
range: 2.5-9.0 MHz, central frequency 6.5 MHz) linear
array probe. (2) Testing set 2, the data were obtained
from DC-65 (Mindray, China) with L13 (frequency range:
3.6-13.5 MHz, central frequency 8 MHz), and L7 (fre-
quency range: 3.0-7.0 MHz, central frequency 4.0 MHz)
linear array probe, which was aimed to further evaluate
our theory and discoveries.

Ultrasound examination and video acquisition

In this study, all US videos were acquired by the same
radiologist with more than 10 years of experience. The
researchers utilized 3 markers to localize the location of
the mass during the collection process. Specifically, the
largest section of the target tumor was first located using
one of the frequency probes and marked on the body sur-
face. Then a complete sweep was made horizontally along
the largest section of the tumor to find two more markers
2 2 c¢cm from the tumor margin, respectively. Finally, the
whole tumor is swept along the marked direction, and
the operation is repeated, keeping the direction and posi-
tion of the probe consistent each time, until the US video
acquisition of the four different frequencies is completed.
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Processing of US-video and use of Al model

First, we conducted this study based on the constructed
feature entropy breast network (FEBrNet), which inherits
the pre-trained backbone of the fully connected layer and
the weight-optimal model [21]. We use the AI model to
select responsibility frames to reduce subjective depen-
dence. Our method of selecting pivotal frames draws
inspiration from established applications of entropy in
information theory, such as in decision trees. Specifi-
cally, the Iterative Dichotomiser 3 (ID3) decision tree
algorithm utilizes entropy to ascertain the most suitable
parent node and its division. In our methodology, we aim
to minimize the discrepancy between the FScore of the
video and that of the chosen frame collection, where a
smaller disparity indicates that the information content
of the chosen frames closely mirrors that of the entire
video. By incrementally adding frames to this collection,
starting from one and increasing to n, and at each incre-
ment selecting the frame that least differs, we gradually
form an optimally representative set of frames, each con-
tributing unique features. Subsequently, for the final col-
lection of these optimal frames, our study computes the
two-dimensional image entropy for each frame using the
FEBrNet model. We then determine the video’s image
entropy by calculating the average two-dimensional
image entropy (2-DIE) of all the chosen frames. Finally,
pathological results were used as the gold standard to
compare the ability of using image entropy of different
frequencies in the differential diagnosis of benign and
malignant breast tumors. The processing and validation
of the data are based on the pre-trained entropy-based
model (FEBrNet). For specific information about the
model refer to this literature [21] and supplementary
materials. We investigate and verify the effect of entropy
on the diagnostic performance of Al models from the
perspective of IE. US images obtained from US probes of
different frequencies are various. The researchers com-
pared the variations by collecting US data from the same
patient at different frequencies simultaneously. This is
used to research the difference in diagnostic efficacy of
US images obtained at different frequencies for AI mod-
els. The flow chart is shown in Fig. 1.

Statistical analysis

Statistical analysis was performed using R 3.6.3 (Copy-
right (C) 2020 The R Foundation for Statistical Com-
puting). The significance level was set at P < 0.05. A
normality test was performed for each variable. T-test
is used for the normally distributed numerical variables,
the rank sum test is used for the non-normally distrib-
uted numerical variables, and the Chi-square test is used
for the disordered classification variables. The paired
sample t-test was used to compare the differences within
the group. The specificity, sensitivity, accuracy, receiver
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Patients Excluded:
1. Breast surgery or intervention history;

2. Poor image quality;
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All Available Screening Ultrasound Videos Confirmed by Puncture or Surgery

Patients: N=171 (Cancers: N=67, 39. 18%)

3.Single frequency US video data;
4.BIRADS 6 in US, MG, MRI;
5.BIRADS 1in US;

6. No pathology result.

All patients Included

Patients: N=167(Cancers: N=65, 38.92%)

Testing set 1

Patients: N=70 (Cancers: N=26, 37.14%)

Testing set 2

Patients: N=97(Cancers: N=39, 40.21%)

L9 Dataset

Patients: N=70 (Cancers: N=26, 37.14%)

Video: N=140 (Cancer: N=52, 37.14%)

L14 Dataset

Patients: N=70 (Cancers: N=26, 37.14%)

Video: N=140 (Cancer: N=52, 37.14%)

L7 Dataset L13 Dataset

Patients: N=97 (Cancer: N=39, 40.21%) | Patients: N=97 (Cancer: N=39, 40.21%)

Video: N=97(Cancer: N=39, 40.21%) Video: N=97(Cancer: N=39, 40.21%)

Fig. 1 The flow charts of this Study

operating characteristic curve (ROC), and area under the
curve (AUC) were used to evaluate models.

Results

Participant characteristics

According to the inclusion and exclusion criteria, A total
of 668 tumor videos from 167 patients were included in
this study, including 260 videos of cancerous masses and
408 videos of benign tumors. There are 280 videos in the
testing set 1 and 388 videos in testing set 2. Table 1 show
the baseline distribution characteristics of the collected
patients, respectively.

Distribution of 2-DIE in various frequencies

The values of the average 2-DIE obtained at different
frequencies are variable. For testing set 1, the 2-DIE of
the L9 linear probe was higher than that of L14 (Mean
1+ SD,11.49 £ 0.769 vs. 10.94 + 0.835); For the testing set
2, the 2-DIE of the L13 linear probe was higher than that
of L7 (Mean * SD,11.82 %+ 0.356 vs. 12.27 + 0.476). This
result is summarized in Fig. 2.

Diagnosis performance of Al models

The diagnostic efficacy of US data for Al models varies
at distinct frequencies. For the testing set 1, L9 attained
the best AUC (0.849), with a sensitivity of 76.9%, speci-
ficity of 93.2%, and accuracy of 87.1%. For the testing set
2, L13 reached the best AUC (0.920), sensitivity 89.7%,

specificity 93.8%, as well as accuracy 91.0%. The detailed
results are shown in Table 2; Fig. 3.

Discussion

In this study, we used a video and entropy-based deep
learning model [21] to compare the diagnosis perfor-
mance of breast US. The assessment effect of variable
frequencies on the AI model diagnosis validity was based
on two retrospective data sets (Mindray L7/L13 and L9/
L14). In testing set 1, compared to L14 (frequency range:
3.0-14.0 MHz, central frequency 9 MHz), the L9-had bet-
ter diagnosis performance and 2-DIE. However, in testing
set 2, compared to L7 (frequency range: 3-7 MHz, cen-
tral frequency 4.0 MHz), the L13-had better diagnosis
performance and 2-DIE. This observation suggests that
US-data derived from probes operating at varying fre-
quencies can significantly impact the diagnostic effective-
ness of Al models. Another finding is that higher 2-DIE is
accompanied by increased diagnostic efficacy.

In recent years, many Al-based studies have inves-
tigated the benign and malignant categorization of
US breast nodules [18, 28-37]. The accuracy of their
models fluctuates from 80 to 95%. While the litera-
ture recommends a frequency range of 5-17 [38] for
breast US screening, it does not specify which one to
use. Also, there is no literature examining the distinc-
tion in the diagnostic utility of Al for images acquired
by various probes. The probe frequencies used in the
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Table 1 The distribution of baseline characteristics based on
testing sets
Testing set 1

Variables Total Benign Malignant p
(n=70) (n=44) (n=26)
Age, Mean + SD 4329+ 3889 + 50.73+1199 <
129 1142 0.01
Height, Mean + SD 15917 + 15957 + 1585+385 027
3.86 3.86
Weight, Mean +SD 5749 + 5627 +642 5954+75 007
6.97
BI-RADS, n (%) <
0.001
2 14 (20) 14 (32) 0(0)
3 14 (20) 14 (32) 0(0)
4 A 11(16) 9(20) 2(8)
4B 14 (20) 7(16) 7(27)
4C 8(11) 0(0) 8(31)
5 9(13) 0(0) 9(35)
Max. size, Median 8(6,14) 7(5.75,11) 12.5(8,15) 0.001
(Q1,Q3)
Testing set 2
Variables Total Benign Malignant p
(n=97) (n=58) (n=39)
Age, Median (Q1,Q3) 40(31,50) 36(285,41) 49(43,585) <
0.01
Height, Median (Q1, 158 (155, 159 (156, 158 (155, 0.87
Q3) 162) 2.75) 162)
Weight, Median (Q1,  57(52,62) 555 (51,60) 60 (56.5, <
Q3) 64.5) 0.01
BI-RADS, n (%) <
0.01
2 20 (21) 20 (34) 0(0)
3 19 (20) 19 (33) 0(0)
4A 14 (14) 13(22) 13)
4B 15 (15) 6(10) 9(23)
4C 15(15) 0(0) 15(38)
5 14 (14) 0(0) 14 (36)
Max. size, Median 13(9,23) 11.5(7, 17(125,24) <
(Q1,Q3) 18.75) 0.01

Note: BI-RADS: Breast Imaging-Reporting and Data System

studies in the literature mentioned above ranged from
1 to 42 MHz. Therefore, one reason for the variation
in accuracy between these surveys may be the variance
in the frequency of the probes utilized. So, we did this
experience and discovered that the L9 (frequency range:
2.5-9.0 MHz, central frequency 6.5 MHz) had better
diagnosis performance and higher 2-DIE. This may be
contradicted by our clinical experience but offers another
probability. While high-frequency US probes typically
require more sophisticated technology and may be cost-
lier, their application might not always correspond to
improved diagnostic performance in AI models. Fur-
thermore, primary hospitals may be unable to afford the
purchase and maintenance of high frequency probe. The
results of this experiment may now solve this challenge

(2024) 24:1
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Fig. 2 The results of the average 2-DIE of the two testing sets. Note: 2-DIE:
two-dimensional image entropy (unless otherwise stated, the above mea-
surements are average values); L9: L9 linear array probe, frequency range:
2.5-9.0 MHz, central frequency 6.5 MHz; L14: L14 linear array probe, fre-
quency range: 3.0-14.0 MHz, central frequency 9 MHz; L7: L7 linear array
probe, frequency range: 3-7 MHz, central frequency 4.0 MHz L13: L13 lin-
ear array probe, frequency range: 3.6-13.5 MHz, central frequency 8 MHz,
P:L9vs. L14, L7 vs. L13

Table 2 Comparison of the efficacy of Al models

Model AUC Sensitiv- Specific- Accu- P

(95%Cl) ity ity racy value
(%) (%) (%)

L9 0.849 769 93.2 87.1 04185
(0.735-
0.962)

L14 0.784 654 90.9 814
(0.655-
0.913)

L7 0.887 718 934 85.0 0.0383"
(0.820-
0.953)

L13 0.920 89.7 91.8 91.0
(0.851-
0.989)

Note: AUC: area under the curve; 95% Cl: 95% confidence interval; L9: L9 linear
array probe, frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz; L14: L14
linear array probe, frequency range: 3.0-14.0 MHz, central frequency 9 MHz; L7:
L7 linear array probe, frequency range: 3-7 MHz, central frequency 4.0 MHz; L13:
L13 linear array probe, frequency range: 3.6-13.5 MHz, central frequency 8 MHz;
Pvalue #: L9 vs. L14; *: L7 vs. L13

— using Al to aid diagnosis and compensate for the low
accuracy of clinicians when using low frequency probe.
On the other hand, excessively low-frequency probes do
not enhance the diagnostic performance of AI models. In
the testing set 2, we found that the L13 (frequency range:
3.6-13.5 MHz, central frequency 8 MHz) had better diag-
nosis performance. This is inconsistent with the results of
our testing set 1. Possible reasons for this result include
(a. The penetration is excessive, resulting in images that
contain more confounding information unrelated to the
lesion. b. The high frequency probe provides excellent
spatial and soft-tissue resolution, greatly improving the
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Fig. 3 Comparison of diagnostic performance of the testing sets. Note: AUC: area under the curve; 95% Cl: 95% confidence interval; L9: L9 linear array
probe; L14: L14 linear array probe; L7: L7 linear array probe; L13: L13 linear array probe. (A): Testing 1; (B): Testing 2

differentiation of lesion saliency. However, the results for
the 2-DIE of the L13 are higher than those of the low-fre-
quency ones, which remains consistent with our previous
findings.

Also, previous studies [21] by our team demonstrated
that the richer the 2-DIE contained in US images, the
more favorable the prediction of breast tumor benig-
nity-malignancy. That is, a high 2-DIE in US images
corresponds to rich image information. Meanwhile, US
features varied depending on the pathological heteroge-
neity of the breast tumor [39]. The richer the information
contained in the US image, the more comprehensive the
information it may contain about the tumor character-
istics. Moon et al. [34] also indicated that images with
more information would help improve the diagnostic
efficacy of the model. The results of this experiment are
consistent with previous studies — both in the two sets,
the higher the 2-DIE, the better the diagnostic perfor-
mance. Because of the higher penetration of the low
frequency probe, visualization of deep posterior tissues
is made easy. More information related to the nodules
may be captured. This information may not be recog-
nized by the naked eye but facilitates machine learning.
Accompanying the development of Al and the concept
of medical-industrial integration, the application of AI-
assisted diagnosis may become more extensive. However,
previous research has focused more on the innovation
and refinement of algorithms and hardware, ignoring the
differences in images of different frequencies. Therefore,

it is necessary to investigate the diagnostic efficacy of dif-
ferent frequency datasets on Al models. Images acquired
at more appropriate frequencies will help improve diag-
nostic performance and provide a reference for future US
image acquisition for AI models.

There are some limitations in this study. First, the study
was a retrospective single-center study with smaller
sample size and uneven image quality. Second, Lack of
comparison of diagnostic efficacy of different frequen-
cies for AI models. Therefore, we will further investigate
the effect of other frequencies on AI diagnostic efficacy
in the next research plan. Finally, Variations in sensitivity
and inter-machine variability of various US devices were
not considered.

Conclusion

This study indicate that US-data acquired using probes
with varying frequencies exhibit diverse average 2-DIE
values, and datasets characterized by higher average
2-DIE demonstrate enhanced diagnostic outcomes in AI-
driven BCa diagnosis. Unlike other studies, our research
emphasizes the importance of US-probe frequency selec-
tion on AI model diagnostic performance, rather than
focusing solely on the Al algorithms themselves. These
insights offer a new perspective for early BCa screen-
ing and diagnosis and are of significant guidance for
future choices of US equipment and optimization of Al
algorithms.
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Abbreviations

BCa breast cancer

2-DIE two-dimensional image entropy

us ultrasound

Al artificial intelligence

IE Image entropy

DR Digital mammography

MRI magnetic resonance imaging

L9 L9 linear array probe (frequency range:2.5-9.0 MHz, central
frequency 6.5 MHz)

L14 L14 linear array probe (frequency range:3.0-14.0 MHz, central
frequency 9 MHz)

L7 L7 linear array probe (frequency range:3-7 MHz, central frequency
4.0 MHz)

L13 L13 linear array probe (frequency range:3.6-13.5 MHz, central
frequency 8 MHz)

BI-RADS  Breast Imaging-Reporting and Data System

ROC receiver operating characteristic curve

cl confidence interval

AUC area under the curve

IQR interquartile range
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