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ABSTRACT
Aims: HNF1B syndrome is caused by defects in the hepatocyte nuclear factor 1B (HNF1B)
gene, which leads to maturity-onset diabetes of the young type 5 and congenital organ
malformations. This study aimed to identify a gene defect in a patient presenting with
diabetes and severe diarrhea, while also analyzing the prevalence of hypomagnesemia
and its correlation with the HNF1B genotype.
Materials and Methods: Whole exome sequencing was used to identify responsible
point mutations and small indels in the proband and their family members. Multiplex
ligation-dependent probe amplification was carried out to identify HNF1B deletions.
Furthermore, an analysis of published data on 539 cumulative HNF1B cases, from 29
literature sources, was carried out to determine the correlation between the HNF1B
genotype and the phenotype of serum magnesium status.
Results: Using multiplex ligation-dependent probe amplification, we identified a de
novo heterozygous HNF1B deletion in the patient, who showed dorsal pancreas
agenesis and multiple kidney cysts, as detected by magnetic resonance imaging.
Magnesium supplementation effectively alleviated the symptoms of diarrhea.
Hypomagnesemia was highly prevalent in 192 out of 354 (54.2%) patients with HNF1B
syndrome. Compared with patients with intragenic mutations, those with HNF1B
deletions were more likely to suffer from hypomagnesemia, with an odds ratio of 3.1
(95% confidence interval 1.8–5.4).
Conclusions: Hypomagnesemia is highly prevalent in individuals with HNF1B
syndrome, and those with HNF1B deletion are more susceptible to developing
hypomagnesemia compared with those with intragenic mutations. The genotype–
phenotype associations in HNF1B syndrome have significant implications for
endocrinologists in terms of genotype detection, treatment decisions and prognosis
assessment.

INTRODUCTION
Hepatocyte nuclear factor 1B (HNF1B), also known as tran-
scription factor 2 (TCF2), plays an important role in organ
specification from endoderm and mesoderm during

embryogenesis1,2. Molecular defects of HNF1B are associated
with a variety of congenital organ abnormalities, including pan-
creatic agenesis, kidney malformation, liver abnormalities, geni-
tal tract anomalies and maturity-onset diabetes of the young 5
(MODY5)3. Additionally, affected patients might show abnor-
mal biological variables, such as impaired renal function3–5,
electrolyte disturbance6, hyperuricemia early-onset gout6,Received 25 December 2022; revised 15 August 2023; accepted 24 August 2023
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deranged liver function tests3,4 and exocrine pancreatic
dysfunction7. The disease caused by the molecular defects in
HNF1B was called HNF1B syndrome3.
To date, a total of 377 different HNF1B molecular defects

have been identified, consisting of gross deletions (21%), mis-
sense or nonsense mutations (50%), small deletions (15%)
and splice-site mutations (6%). Patients with HNF1B deletions
are usually found to have a 17q12 deletion spanning 15
genes8.
The phenotypes of HNF1B syndrome are remarkably

heterogeneous3. In patients with HNF1B syndrome, diabetes is
often the initial clinical manifestation, which is actually a form
of monogenic diabetes known as MODY5. MODY (monogenic
diabetes) is a rare autosomal dominant subtype of diabetes and
accounts for 1–3% of diabetes diagnoses9,10. The most common
MODY subtype is HNF1A-MODY3 (58%), whereas MODY5
only accounts for 2–6% of MODY diagnoses10,11. A study
showed that the frequency of Japanese MODY1-3, 5 and 6
were 7.6%, 36.3%, 39.4%, 13.6% and 3.0%, respectively12. How-
ever, the prevalence of MODY5 might be underestimated due
to its wide phenotypical variability. Along with the increasing
awareness of endocrinologists13, progressive genetic testing
methods and the emergence of the MODY clinical risk
calculator14, many more monogenic diabetes cases would be
efficiently diagnosed. Nowadays, the clinical characteristics,
treatment and complications of MODY are better understood,
including both the common (MODY1-3, 5) and rarer
(MODY4, 6–14) subtypes of MODY15.
Here, we reported a case with a heterozygous whole HNF1B

gene deletion, which rarely manifested as diabetes combined
with severe diarrhea. The diarrhea in this patient significantly
eased when the hypomagnesemia was rectified. Furthermore,
we carried out an analysis to investigate the prevalence of
hypomagnesemia in individuals with HNF1B syndrome, and
assessed genotype–phenotype correlations between hypomagne-
semia and HNF1B genotype.

MATERIALS AND METHODS
Case presentation
A 33-year-old male patient presented to the Department of
Metabolism & Endocrinology at the Second Xiangya Hospital,
Central South University, Changsha, Hunan, China, with symp-
toms of diabetes, weight loss and severe diarrhea. He had a
normal body stature (body mass index 23.1 kg/m2) before
becoming sick, and had been showing symptoms of polyuria,
polydipsia and polyphagia for over a year before seeking treat-
ment. Due to worsening symptoms, he began to experience
lower limb pain and numbness and was subsequently diag-
nosed with type 2 diabetes and diabetic neuropathy, for which
he received insulin therapy. Then, he developed severe diarrhea,
resulting in weight loss of 15 kg (body mass index 17.4 kg/m2)
and the onset of a cachectic state (Figure 1a). Negative stool
and blood cultures helped to exclude infectious enteritis and
disease. Laboratory examinations showed impaired islet

function, amylase deficiency, abnormal liver function, decreased
renal function and hypomagnesemia (Table 1). The patient
tested negative for islet autoantibodies (glutamic acid decarbox-
ylase autoantibodies, insulinoma-2 associated autoantibodies
and zinc transporter-8 autoantibodies) and had no family his-
tory of diabetes in the first degree. Magnetic resonance showed
pancreatic hypoplasia and small cysts in bilateral kidneys, with
a paucity of the distal major pancreatic duct shown by mag-
netic resonance cholangiopancreatography, as shown in
Figure 1b–d.
Given the multiorgan dysfunction and genetic factors, genetic

testing was recommended for the patient and his family mem-
bers, with written informed consent. All procedures were in
accordance with the principles of the Declaration of Helsinki,
and were approved by the Human Ethics Committee of the
Second Xiangya Hospital of Central South University (No.
2019-Research-40).

Molecular genetic testing
Peripheral venous blood was collected from the proband, his
younger sister and his parents. Deoxyribonucleic acid was
extracted using Qiagen FlexiGene DNA Kit (Cat. 512206; Qia-
gen, Hilden, Germany) according to the protocol. Whole exome
sequencing was used to identify responsible point mutations
and small indels. The genomic deoxyribonucleic acid was ran-
domly sheared into 180–280 bp fragments, which were ampli-
fied by polymerase chain reaction and sequenced by the
Illumina HiSeq X Ten platform. Meanwhile, multiplex ligation-
dependent probe amplification was undertaken to identify the
exon deletion of the MODY gene. The multiplex ligation-
dependent probe amplification kit (Cat. P241; MRC-Holland,
Amsterdam, the Netherlands) was designed to detect copy
number variations in the HNF1B, GCK, HNF1A and HNF4A
genes.

Literature search and data extraction
Literature search, study selection and data extraction were
carried out independently by two investigators (Wang and
Lin). A systematic search was carried out in PubMed for the
published literature up to March 2022, with the terms
HNF1B, TCF2, diabetes mellitus type MODY5 and 17q12
deletion. In total, 539 published cases with genetically verified
HNF1B defects were assessed, and 354 of them were with
serum magnesium status (Table 2). Hypomagnesemia is
defined as serum magnesium <0.7 mmol/L or lower than the
lower limit of reference value in each publication6,16. Finally,
data from 227 cases with both serum magnesium and
HNF1B genotype were extracted and pooled for phenotype–
genotype analysis.

RESULTS
Genetic study result
As the present patient was rather young and did not present
with metabolic syndrome, the diagnosis of type 2 diabetes was
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doubtful. Therefore, the etiology of his diabetes remained
unclear. Whole exome sequencing was used to search for gene
mutations responsible for the patient’s multiorgan dysfunction,
but no such mutations were found. However, copy number
variation analysis using CODEX and XHMM software showed
a predicted segment deletion spanning nearly the entire HNF1B
gene. Therefore, successive multiplex ligation-dependent probe
amplification was carried out to identify the MODY gene dele-
tion in the proband and his family members, which confirmed
a de novo heterozygous whole HNF1B deletion in the proband
(Figure 2b–e).

Diagnosis and treatment
As a result, the diagnosis of this patient was HNF1B syndrome,
and the diabetes type was MODY5, not type 2 diabetes. The
patient’s severe and refractory diarrhea was likely attributed to
a combination of digestive enzyme deficiency, diabetic auto-
nomic neuropathy and hypomagnesemia that increased intesti-
nal peristalsis. The treatment plan involved insulin aspart 30,
digestive enzyme capsules, neurotrophic drugs and oral magne-
sium supplements. At the 4-month follow up, hypomagnesemia
persisted; however, there was a remarkable improvement in
serum magnesium levels (Table 1). Furthermore, diarrhea was
significantly alleviated, with well-formed bowel movements and

Figure 1 | Images of the hepatocyte nuclear factor 1B deletion patient, and his magnetic resonance showing typical malformation of the visceral
organs. (a) The patient showed a thin figure, but without facial and trunk dysmorphic features. (b) The pancreatic head (white arrow) was present,
whereas the pancreatic body and tail was absent in the scan. (c) The pancreatic body and tail were not visible on serial slices, and the intestine
tissue (white arrow) was present in the expected location of the distal pancreas. (d) Magnetic resonance cholangiopancreatography showed the
short main pancreatic duct (white arrow) and small cysts in the kidney (yellow triangle).

Table 1 | Laboratory examinations of the patient with HNF1B
syndrome

Parameter First
admission

Follow up At
4 months later

Reference
interval

0 min glycemia
(mmol/L)

5.53 7.77 3.9–6.1

120 min glycemia
(mmol/L)

7.82 9.12 <7.8

0 min C-peptide
(pmol/L)

279.7 291.3 223–746

120 min C-peptide
(pmol/L)

465.7 777.1 -

HbA1c (%) 5.1 6.0 3.9–6.1
Amylopsin (U/L) 15.6 ↓ 14.6 ↓ 17–115
ALT (U/L) 116.3 ↑ 41.4 9–55
AST (U/L) 56.2 ↑ 37.6 15–40
ALP (U/L) 153.2 ↑ 105.6 45–125
Potassium (mmol/L) 4.14 3.44 ↓ 3.5–5.5
Calcium (mmol/L) 2.42 2.22 2.11–2.52
Phosphate (mmol/L) 1.12 1.1 0.85–1.51
Cr (lmol/L) 102.3 ↑ 89.2 44–92
Magnesium (mmol/L) 0.59 ↓ 0.75 ↓ 0.85–1.51

ALP, alkaline phosphatase; ALT, glutamic pyruvic transaminase; AST, glu-
tamic oxaloacetic transaminase; Cr, creatinine; HbA1c, hemoglobin A1c.
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a reduced frequency of two or three times per day. The patient
was well managed in terms of blood glucose control (hemoglo-
bin A1c 6.0%) and experienced a weight gain of 6 kg. After
being discharged for 1 year, the patient ceased taking the diges-
tive enzyme capsules and neurotrophic drugs. However, diar-
rhea remained well controlled with the use of magnesium
supplements.

Genotype–phenotype correlations
Persistent hypomagnesemia and refractory diarrhea were
observed in the HNF1B case. However, no previous systematic
study has focused on hypomagnesemia in the HNF1B genotype.
Therefore, our aim was to determine the genotype–phenotype
correlations related to hypomagnesemia in HNF1B syndrome.
After carrying out a PubMed search and independent review

by two investigators, a total of 30 publications were included in
the present study. Finally, a total of 354 cases with serum mag-
nesium status were extracted from 539 cases in 29 publications.
The frequency of hypomagnesemia was 54.2% (192/354 cases).
Among the 227 cases with both HNF1B genotype and serum
magnesium status individually (Table S1), the v2-test showed
that hypomagnesemia was more frequently present in patients
with HNF1B deletion than in those with intragenic mutations
(61.8 vs 34.1%, P < 0.001; Table 3). More specifically, patients
with HNF1B deletions were more prone to suffering from
hypomagnesemia than those with intragenic mutations, with an
odds ratio of 3.1 (95% confidence interval 1.8–5.4). Next, we
aimed to classify the genotypes into HNF1B deletion, missense
mutation, nonsense mutation and splice-site mutation for sub-
sequent analysis. Ultimately, the corresponding genotypes were
extracted from 202 cases (Table S2). The v2-test showed statis-
tical differences in magnesium ion status among HNF1B dele-
tion, missense mutation, nonsense mutation and splice-site
mutation (Table S3). Furthermore, patients with HNF1B dele-
tions were more likely to have hypomagnesemia than those
with HNF1B missense mutations, with an odds ratio of 5.2
(95% confidence interval 2.3–11.4). Subsequently, we also
extracted the corresponding magnesium ion concentrations
from 65 patients and found that diagnosing HNF1B deletion or
intragenic mutation based on serum magnesium concentration
yielded an area under the curve of 0.74 (Youden index 0.4, cut-
off value 1.6 mg/dL, sensitivity 61.1%, specificity 83.0%;
Figure 3).

DISCUSSION
The results of the present study showed that hypomagnesemia
is very common in HNF1B syndrome, especially in patients
with a whole HNF1B deletion. The various manifestations in
HNF1B syndrome can be attributable to the fact that HNF1B
acts as a promiscuous transcription factor, regulating over 25
genes in multiple systems17. In the present study, a case with
a heterozygous whole HNF1B deletion was genetically diag-
nosed with manifestations including HNF1B-MODY
(MODY5), exocrine pancreatic dysfunction, dorsal pancreatic

agenesis and extrapancreas phenotypes consisting of abnormal
liver test, hypomagnesemia, reduced estimated glomerular fil-
tration rate and renal cysts. The accurate diagnosis is of great
benefit for the treatment, and would be great help for antena-
tal genetic counseling for this patient and others with genetic
diabetes.
There have been nearly 20 genes associated with inherited

hypomagnesemia, which can be classified into four groups:
hypercalciuric hypomagnesemia, Gitelman-like hypomagnese-
mia, mitochondrial hypomagnesemia and other hypo-
magnesemia18. Combined with clinical manifestations, a
differential diagnosis strategy in a flowchart has been estab-
lished for inherited hypomagnesemia19. Hypomagnesemia was
first reported to be associated with HNF1B syndrome in
200920. It was found that 44% (8/18) of HNF1B patients had
hypomagnesemia versus 2% (1/48) of patients with renal mal-
formations, but without HNF1B defects. Analogously, but in a
larger group, we showed that hypomagnesemia was present in
54.2% (192/354) of patients with HNF1B syndrome. Given the
high prevalence of hypomagnesemia in HNF1B defects, hypo-
magnesemia is one of the sensitive features that show HNF1B
defects. Consequently, hypomagnesemia, along with diabetes
and morphological abnormalities of the kidney and other
organs, has been weighted to create the HNF1B score for select-
ing patients for HNF1B genetic screening6,21.
Previous studies have shown that serum magnesium levels

were lower in the deletion group16. Nevertheless, they found no
difference in magnesium status between patients with HNF1B
intragenic mutations and deletions16,20,22. In the present study,
we showed that patients with HNF1B deletion were more likely
to suffer from hypomagnesemia than those with intragenic
mutation by a large sample size. The contradiction might be
due to the fact that the frequency of hypomagnesemia
increased with age in pediatric patients22, and became obviously
discriminatory in the adult population, but not in the pediatric
cohort21. Therefore, previous studies with only samples of chil-
dren or small sample sizes have drawn divergent conclusions.
Therefore, a genotype–phenotype correlation exists between
HNF1B and hypomagnesemia, to the endocrinologists. Hypo-
magnesemia has a high positive predictive value for HNF1B
deletion, especially in adult patients.
HNF1B defects lead to the transcriptional inactivation of

FXYD223, a gene that encodes the c subunit of the Na+/K+–
ATPase, which mediates the reabsorption of magnesium in the
distal convoluted tubule20,24. Therefore, HNF1B mutation results
in hypomagnesemia due to renal wasting3,20,25. HNF-1a and
HNF-1b are homeoproteins, and have been found to form het-
erodimers both in vitro and in vivo over the past 30 years26–28.
HNF-1b and HNF-1a are sequentially expressed and commit-
ted to the renal tubular differentiation during
embryogenesis26,28. Meanwhile, patients with MODY3 (HNF1A
mutation) have also been observed with kidney
malformations29. A previous study showed that the epithelia of
distal convoluted tubule expressed HNF-1a, as well as HNF-
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1b20. Hence, HNF-1b probably binds to HNF-1a to form het-
erodimers in the distal convoluted tubule to regulate the mag-
nesium absorption, which indicates that haploinsufficiency is
the preponderant mechanism for hypomagnesemia in patients
with HNF1B deletion. Thus, our hypothesis about this
genotype–phenotype correlation in hypomagnesemia might be
that haploinsufficiency of HNF1B allele deletion insufficiently
activates the FXYD2 transcription and leads to decreased
absorption of magnesium in the renal. In contrast, there might
be some relationships between the other genes on chromosome
17q12 and hypomagnesemia.
As HNF1B syndrome is a multiorgan disease, individualized

treatment should be developed for patients according to the
organs affected. The clinical features of hypomagnesemia caused
by HNF1B syndrome range from asymptomatic to fatigue, tet-
any, seizures, cardiac arrhythmias and even death18,30. Diarrhea
was rarely reported in HNF1B syndrome. Physiologically, mag-
nesium inhibits the sensitivity of acetylcholine receptors on the
endplate membrane. During hypomagnesemia, the repressive
effect on the smooth muscle of digestive tract is relieved, which
enhances intestinal motility and causes diarrhea in patients31.
As previously mentioned, the lack of digestive enzyme due to
exocrine pancreatic dysfunction was another factor for diarrhea
in HNF1B patients.
The glycemia in the present patient was well controlled

with insulin administration. However, the refractory diarrhea
was not cured after receiving neurotrophic drugs and lopera-
mide. With the accurate genetic diagnosis, it has raised our
attention that besides diabetic autonomic neuropathy, defi-
ciencies in digestive enzymes and hypomagnesemia were also
major causes of the severe diarrhea. Therefore, compound
digestive enzymes (dietary advanced glycation end-products)
and magnesium salts were added to this patient’s treatment.
Other treatments for HNF1B syndrome include protecting
the liver, relieving jaundice, lowering uric acid levels and
maintaining electrolyte balance, depending on the systems
affected.
The present study had several limitations. First, the sample

size included in the study was relatively small, and future stud-
ies with larger prospective designs are needed to establish causal
relationships. Second, only English-language studies were
included, which might introduce bias due to the lack of litera-
ture in other languages. Third, many of the collected samples
lacked specific subtyping of mutation types and serum magne-
sium concentrations, potentially limiting the clinical signifi-
cance. Finally, the present study focused on investigating the
impact of HNF1B mutations on hypomagnesemia, without
extensively analyzing the effects of other genes within the
deleted segment. Further research is needed to explore the
potential impact of these genes in more detail.
In summary, the present study identified a case of MODY5

with a heterozygous HNF1B deletion. Furthermore, we showed
for the first time that HNF1B deletion, rather than intragenic
mutation, is associated with a higher susceptibility toTa
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hypomagnesemia, supported by a large sample size. When dia-
betes is concomitant with multisystem phenotypes, HNF1B syn-
drome should be taken into consideration. The utilization of
the HNF1B score is valuable for screening potential HNF1B
candidates, and the understanding of the genotype–phenotype
association provides significant assistance to endocrinologists in
selecting appropriate methods for detecting HNF1B deletion or
intragenic mutation, devising treatment plans and evaluating
prognosis.
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Figure 2 | Multiplex ligation-dependent probe amplification showed a de novo heterozygous whole hepatocyte nuclear factor 1B (HNF1B) deletion
in the proband. (a) The pedigree chart of the family. (b–e) The multiplex ligation-dependent probe amplification results of the proband and family
members. The multiplex ligation-dependent probe amplification kit contained probes detecting the maturity-onset diabetes of the young 5 gene,
GCK, HNF1A, HNF1B and HNF4A. The fluorescence signal between 0.7 and 1.33 (from the red horizontal line to blue horizontal line) was considered
to be normal. A heterozygous whole HNF1B deletion was found in the proband (the ellipse in b).

Table 3 | Genotype–phenotype correlation of hypomagnesemia in HNF1B syndrome

Hypomagnesemia Normomagnesemia Total (n) Frequency (%)† OR (95% CI) P-value

Deletion 84 52 136 61.8 3.1 (1.8, 5.4) <0.001
Intragenic mutation 31 60 91 34.1
Total (n) 115 112 227 50.7

†Frequency of hypomagnesemia. CI, confidence interval; OR, odds ratio.
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SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | The case number with both HNF1B genotype and serum magnesium status in each publication.

Table S2 | The number of cases with both HNF1B genotype (categorized as Deletion, Missense mutation, Nonsense mutation,
Splice-site mutation) and serum magnesium. status in each publication.

Table S3 | Genotypes (categorized as Deletion, Missense mutation, Nonsense mutation, Splice-site mutation)-Phenotypes of hypo-
magnesemia in HNF1B syndrome.
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