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ABSTRACT
Gestational diabetes mellitus (GDM) is a pathological condition during pregnancy
characterized by impaired glucose tolerance, and the failure of pancreatic beta-cells to
respond appropriately to an increased insulin demand. However, while the majority of
women with GDM will return to normoglycemia after delivery, they have up to a seven
times higher risk of developing type 2 diabetes during midlife, compared with those with
no history of GDM. Gestational diabetes mellitus also increases the risk of multiple
metabolic disorders, including non-alcoholic fatty liver disease, obesity, and cardiovascular
diseases. Lipid metabolism undergoes significant changes throughout the gestational
period, and lipid dysregulation is strongly associated with GDM and the progression to
future type 2 diabetes. In addition to common lipid variables, discovery-based omics
techniques, such as metabolomics and lipidomics, have identified lipid biomarkers that
correlate with GDM. These lipid species also show considerable potential in predicting the
onset of GDM and subsequent type 2 diabetes post-delivery. This review aims to update
the current knowledge of the role that lipids play in the onset of GDM, with a focus on
potential lipid biomarkers or metabolic pathways. These biomarkers may be useful in
establishing predictive models to accurately predict the future onset of GDM and type 2
diabetes, and early intervention may help to reduce the complications associated
with GDM.

INTRODUCTION
Gestational diabetes mellitus (GDM) is diagnosed mostly dur-
ing the second and third trimester of pregnancy, with a failure
of pancreatic beta-cells to respond appropriately to the insulin
requirements during gestation, leading to impaired glucose tol-
erance or hyperglycemia1,2. Depending on the diagnostic criteria
used, it occurs in approximately 7–8% of pregnant women, and
ranges up to 20%3–5. These diagnostic criteria encompass vari-
ous standards, such as the National Diabetes Data Group
(NDDG) criteria6, the Carpenter and Coustan criteria7, the
International Association of Diabetes and Pregnancy Study
Groups (IADPSG) criteria8, the World Health Organization
(WHO) criteria9, and the National Institute for Health and
Care Excellence (NICE) criteria10, among others.

The complications of GDM include short-term (pre-eclampsia,
cesarean section in mothers, and hypoglycemia and jaundice in
infants) and long-term (type 2 diabetes, non-alcoholic fatty liver
disease, cardiovascular, and renal diseases in mothers and obesity
in new-born children)11–20. The majority of women with a history
of GDM return to normoglycemia post-delivery, however, up to
35% of them develop glucose intolerance within the first
2 months postpartum21. It has been reported that women with a
history of GDM have a higher risk of developing future type 2
diabetes compared with those who have a normoglycaemic
pregnancy22–24. In fact, up to 50% women with gestational diabe-
tes mellitus will progress to future type 2 diabetes within 10 years
post-delivery22,25. Compared with the general population, the
women who progress to type 2 diabetes at a younger age show a
higher risk of developing renal and cardiovascular diseases, as
well as non-alcoholic fatty liver disease (NAFLD), which may lead
to early mortality4,13,15,17,18,26.
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There are several risk factors linked to the onset of GDM,
such as a higher body mass index (BMI), increased maternal
age, family history of GDM, and ethnicity27,28. Besides these
risk factors, lipids also play vital roles in the development of
GDM. Lipids exhibit various cellular functions such as energy
support, cellular structure component, and cell signaling29–32.
GDM-related traditional lipid profiles have been identified, such
as triacylglycerols (TAGs), total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), very low-density lipoprotein
cholesterol (VLDL-C), and high-density lipoprotein cholesterol
(HDL-C)33. However, these lipids can not reflect the compre-
hensive lipid metabolism status, both in physiological and path-
ological conditions. To further explore the GDM-related lipid
profiles, discovery-based omics techniques have been developed
and applied to identify potential metabolic biomarkers or path-
ways that are correlated with diseases such as GDM34–37.
This study provides a review of the relationships between

lipid metabolism and GDM, aiming to enhance the awareness
of the importance of lipid dysregulation in the onset of GDM.
Besides, we aim to highlight several plasma biomarkers that
can be used to predict GDM as early as the first trimester.
Identifying biomarkers can provide a molecular rationale to fur-
ther explore the regulation of lipid to avoid the onset of preg-
nancy disorders and further metabolic disorders at an early
stage.

MATERNAL LIPID CHANGES DURING NORMAL
PREGNANCY
Maternal lipid metabolism changes dramatically throughout the
pregnancy and can be divided into two phases: anabolic and
catabolic38,39. In the early stages of pregnancy (1st and 2nd tri-
mester), the maternal pancreatic beta-cell mass increases to
enhance insulin secretion, resulting in enhanced de novo lipo-
genesis (DNL) and leads to lipid storage38,40–42. During this
period, the activity of adipose tissue lipoprotein lipase (LPL)
can also be increased or unchanged43,44, leading to enhanced
hydrolysis of circulating triacylglycerols and the production of
lipid products such as non-esterified fatty acids (NEFAs), 2-
monoacylglycerol, and glycerol45,46. These products are then
taken up and used for re-synthesis of TAGs. Whereas in late
pregnancy (3rd trimester), it has been reported that insulin sen-
sitivity may gradually decline to 40–50% of the normal range,
both in women with normal glucose tolerance and in women
with GDM47–49. Increased insulin resistance (IR) leads to
enhanced lipolysis, decreased LPL activity, and biosynthesis of
fatty acid, facilitating the process of fat breakdown in the late
trimester of gestation38,40–43,50–52.

CIRCULATING LIPID PROFILES AND GDM
Cholesterol metabolism was reported to be involved in the
development of GDM33,53–58. Longitudinal studies have evalu-
ated the lipid profile changes throughout the normal pregnancy,
revealing that TC, LDL-C, and the TAG/HDL-C ratio increase
progressively during pregnancy, while HDL-C increases from

the 1st to the 2nd trimester along with a slight decrease in the
3rd trimester54,55. However, the ratio of LDL-C to HDL-C
remains unchanged56. In contrast, women with GDM usually
show increased insulin resistance and exhibit significantly
higher levels of TC, LDL-C, and VLDL-C, as well as lower
HDL-C levels than those with a normal pregnancy33,54,56–58.
The adipose tissue secretes multiple adipokines which are

mostly pro-inflammatory59 and are associated with various
metabolic diseases, such as GDM, type 2 diabetes, and
obesity60. Adiponectins have been shown to be negatively asso-
ciated with GDM60, whereas leptin was linked with a higher
risk of GDM61. An inverse association between the adiponec-
tin/leptin ratio and the GDM risk was found in mild to moder-
ate obese women (BMI < 35 kg/m2)62. This finding was
further supported by Ye et al.61 who discovered that the leptin/
adiponectin ratio was positively associated with GDM.
Despite these lipid species, discovery-based omics techniques

have been used for efficient biological system investigations,
including metabolic profiling63. Lipidomics comprise a major
portion of metabolomics, which allows a large proportion of
the lipidome to be analyzed. The workflow of lipidomics study
usually includes the following steps: sample collection, sample
preparation, identification and quantification of metabolites and
lipids, data pre-processing, statistical analysis, biomarker discov-
ery as well as clinical diagnosis, and early-stage prediction
(Figure 1).
Lipid metabolism has been found to be involved in the pro-

gression of GDM, and consists of different types of lipid spe-
cies, such as diacylglycerols (DAGs), TAGs, phospholipids,
sphingolipids, fatty acids, and other metabolic substances that
are converted to each other (Figure 2). Rahman et al.64 discov-
ered that women at a higher risk of developing GDM had ele-
vated plasma DAGs and short, saturated/low unsaturated
TAGs at 10–14 weeks gestation. Liu et al.65 also reported fast-
ing lipids including TAGs were positively associated with
GDM. Similarly, GDM in obese women was also associated
with elevated DAGs and TAGs66,67. Increased TAGs were cor-
related with impaired glucose metabolism in muscle tissue and
inhibited insulin signaling pathway, leading to insulin
resistance68. These findings indicate that increased de novo lipo-
genesis might be involved in the pathogenesis of GDM by
affecting glucose homeostasis.
The metabolism of phospholipids and sphingolipids are also

found to be associated with a risk of GDM. Zhan et al.69

showed that glycerophospholipids were the most prevalent
altered lipid species at the second and third trimesters, when
compared women with GDM with healthy pregnant women.
Similarly, Rahman et al.64 discovered that plasma sphingomye-
lins (SMs) and phosphatidylcholines (PCs) were negatively cor-
related with GDM risk in the early trimester. In another study,
the plasma lipid profile was measured in the early trimester,
and a lipid score consisting of 10 lipid species (mainly glycero-
phospholipids and glycerolipids) was established, which was
linked with increased GDM risk70. Dudzik et al.71 found that
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lysoglycerophospholipids (LPCs) had a close association with
the glycemic state of women. Wang et al. discovered ten lipids
that were significantly associated with GDM independent of
confounding factors, five of them (phosphatidylinositol 40:6,
alkylphosphatidylcholine 36:1, phosphatidylethanolamine plas-
malogen 38:6, DAG 18:0/18:1, and alkylphosphatidylethanola-
mine 40:5) were positively correlated and five of them
(sphingomyelin 34:1, dihexosyl-ceramide 24:0, mono hexosyl
ceramide 18:0, dihexosyl ceramide 24:1, and PC 40:7) were neg-
atively correlated with GDM72. These findings were further
supported by Liu et al.73 who showed that disturbances of gly-
cerophospholipid and sphingolipid metabolism were associated
with GDM, and may contribute to the onset of GDM through
the dysregulation of glucose homeostasis and beta-cell function.
As GDM progresses, the circulating metabolic profile includ-

ing amino acids (AAs) also undergoes corresponding changes.

By comparing the metabolome of pre-GDM and GDM,
Walejko et al.74 discovered that pre-GDM women had
increased branched-chain amino acids (BCAAs) and sugars,
whereas women with GDM showed increased lipids and
decreased AAs. A longitudinal study revealed that polyunsatu-
rated phospholipids rather than saturated phospholipids were
significantly lower in women with GDM throughout the preg-
nancy, even before the onset of GDM75. Another longitudinal
study showed the fold change (2nd trimester/1st trimester ratio)
of lysophosphatidylcholine (LysoPC(20:4)), uric acid, and six
AAs strongly differed between the GDM and control groups76.
Furthermore, the association between fatty acids and GDM

onset has been explored, but the results have not shown consis-
tent agreement across various studies. Short-chain fatty acids
(SCFAs), such as alpha-hydroxybutyric acid (alpha-HB), myris-
tic acid (beta-HB), palmitic acid, and butyric acid were strongly

Figure 1 | Schematic representation of the lipidomics study workflow. This figure illustrates the comprehensive workflow of lipidomics studies,
encompassing key stages such as sample collection, sample preparation, acquisition of lipidomics data, data pre-processing, data quality
assessment, and the identification of top candidates to serve as potential biomarkers and signaling pathways.
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associated with the risk of GDM53,77–79. Lower levels of long-
chain fatty acids, including three saturated fatty acids (SFAs)
and one unsaturated fatty acid (UFA) were found in women
with GDM, compared with healthy pregnant women80. In con-
trast, Pan et al.81 showed that SFAs were positively correlated
with GDM risk. Zhu et al.82 discovered that increased levels of
serum even-chain SFAs and decreased levels of serum odd-
chain SFA enhanced the risk of GDM in pregnant women.
Pan et al.81 indicated omega-6 polyunsaturated fatty acids
(PUFAs) were found to be negatively associated with GDM
onset. However, on the contrary, another study showed no dif-
ference in omega-6 PUFA and arachidonic acid between the
GDM and non-GDM groups83. The fatty acid composition of
cholesteryl esters and SFAs were found to be related to GDM
as well84,85. These inconsistent results may result from a differ-
ent sample size and type of lipid profiling, and further studies
with more participants are strongly warranted.

BIOMARKERS USED FOR THE EARLY PREDICTION OF
GDM
A standard test for GDM diagnosis is the 75 g 2 h oral glu-
cose tolerance test (OGTT) performed at 24–28 weeks of ges-
tation, as recommended by the International Association of
Diabetes and Pregnancy Study Groups8. While the National

Institutes of Health (NIH) recommends a ‘two-step approach’
which includes a 50 g 1 h OGTT followed by a 100 g 3 h
OGTT86. The American Diabetes Association (ADA) recom-
mends both options to diagnose GDM87. However, both tests
are usually performed in late second trimester, which is too
late to incorporate effective interventions and to prevent
potential GDM-related complications both in mothers and
infants. Hence, there is a pressing need to develop non-
invasive and precise predictive models capable of identifying
high-risk GDM populations at early gestation, to facilitate
early intervention.
Lipidomics acts as an effective tool to screen potential bio-

markers and to establish a predictive model to identify women
with high risk of developing GDM at early gestation, superior
to common clinical variables. Recent studies focused on estab-
lishing predictive models to predict GDM onset are summa-
rized in Table 1. Briefly, these studies employed metabolomics
or lipidomics to analyze the pre-onset metabolome in GDM,
and successfully identified lipid species with a strong predictive
capability for the onset of GDM, compared with traditional risk
factors of GDM. Nonetheless, the effectiveness of these predic-
tive models should be confirmed through validation in addi-
tional clinical cohorts, ensuring their applicability in real-world
scenarios.

Figure 2 | Lipid metabolism pathways involved in the onset of gestational diabetes mellitus (GDM). The interconnected metabolic pathways of
lipid biosynthesis, encompassing fatty acids, neutral lipids, phospholipids, sphingolipids, and cholesterol metabolism, all of which play pivotal roles
in the development of GDM.
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LIPID CHANGES IN THE TRANSITION FROM GDM TO
FUTURE TYPE 2 DIABETES POST-DELIVERY
Several studies have investigated the role of lipid dysregulation
in the transition from GDM to the future incidence of type 2
diabetes after delivery. The Study of Women, Infant Feeding,
and Type 2 Diabetes after GDM Pregnancy (SWIFT) is a well-
established, ethnically diverse prospective cohort that enrolled
1,035 women with GDM pregnancy who delivered a singleton,
live-born infant from 2008 to 2011. Participants have been fol-
lowed up for the onset of type 2 diabetes for up to 10 years99.
By using this clinical cohort, Allalou et al.34 conducted targeted
metabolomics on a subset of the SWIFT cohort (N = 244),
and identified 22 metabolites significantly differentiating
women who developed type 2 diabetes after a GDM pregnancy
from those who did not. These metabolites include 8 amino
acids, 6 sphingolipids, 3 phospholipids, 3 biogenic amines, and
1 fatty acid34. Lai et al.35 also applied targeted metabolomics in
a larger subset (n = 658) of the SWIFT study, and showed an
overall increase in diacyl-PCs, as well as a decrease in sphingo-
lipids and acyl-alkyl-PCs among women with a history of
GDM who progressed to future type 2 diabetes. To further
investigate the lipid profiles associated with the transition from
GDM to type 2 diabetes, Lai et al.36 used targeted lipidomics
to detect up to 1,008 lipid species, and found that upregulation
of glycerolipid metabolism (including DAGs and TAGs) as well
as impaired sphingolipid metabolism (including sphingomye-
lins, hexosylceramide, and lactosylceramide) were associated
with future type 2 diabetes risk, and these changes were pre-
sent years prior to the onset of diabetes and were revealed dur-
ing the early postpartum period. Lappas et al.100 reinforced
these findings by highlighting that the cholesteryl ester species,
alkenyl phosphatidylethanolamine species, and phosphatidylser-
ine species exhibited the strongest associations with the risk of
type 2 diabetes following GDM pregnancy. Khan et al.101 pro-
vided additional evidence supporting the previous findings that
diminished sphingolipid metabolism was linked to the progres-
sion from GDM to type 2 diabetes. Additionally, their study
demonstrated that blocking sphingolipid metabolism impaired
pancreatic beta-cell function in a mouse model101.
Besides phospholipid and sphingolipid dysmetabolism, there

are other metabolites involved in the development of type 2
diabetes after GDM pregnancy. In a pilot study, significant
alterations were observed in the levels of 2-hydroxybutyrate,
3-hydroxybutyrate, and stearic acid when comparing women
with GDM who subsequently developed type 2 diabetes after
delivery with those who did not102. Liu et al.65 discovered a
group of metabolites (such as TAGs, glycerol, long-chain acyl-
carnitines, 3-hydroxybutyrate, NEFA) that mediated the rela-
tionship between GDM and postpartum abnormal glucose
metabolism (AGM) postpartum. Batchuluun et al.103 also
found that short-chain acylcarnitines were associated with the
onset of type 2 diabetes following a GDM pregnancy. Addi-
tionally, in a Singapore cohort, Wang et al.104 identified 23
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metabolites that were associated with postpartum abnormal
glucose metabolism.
Despite lipid dysregulation, amino acid metabolism was also

found to be involved in the transition from GDM to type 2
diabetes. This was highlighted by studies conducted by Lai
et al.35 and Allalou et al.,34 where they found that activation of
amino acid metabolism was strongly associated with the devel-
opment of type 2 diabetes in women with a recent history of
GDM. Similarly, Andersson-Hall et al.105 discovered that in
women with GDM with future incident type 2 diabetes, levels
of BCAAs and 3-hydroxyisobutyrate were elevated, which were
linked with insulin resistance and lipid metabolism (Table 2).
To predict the future transition from GDM to type 2 diabe-

tes, Lai et al.35,36 established two predictive models using
metabolites and lipid species, respectively, which both achieved
superior performance compared with common clinical variables
such as fasting plasma glucose and 2 h plasma glucose. Simi-
larly, one study also established a predictive model including
three lipid species (CE 20:4, the alkenylphosphatidylethanola-
mine species PE(P-36:2) and the phosphatidylserine species PS
38:4) which could accurately predict the onset of type 2 diabe-
tes in women with previous GDM100. Liu et al.65 found that
the addition of leucine/isoleucine, valine, 3-hydroxybutyrate,
and acetylcarnitine (AC C2) to clinical factors improved the
prediction of later glucose dysregulation following GDM preg-
nancy, with the area under the curves (AUCs) ranging from
0.707–0.725. Wang et al.104 identified five metabolites [p-cresol
sulfate, linoleic acid, glycocholic acid, lysoPC(16:1), and
lysoPC(20:3)] that predicted postpartum abnormal glucose
metabolism with an AUC value of 0.92–0.94, along with tradi-
tional risk factors.
Overall, these findings suggest that lipid and AAs dysregula-

tion both contribute to the progression from GDM to type 2

diabetes, and the shift from glycerolipid to phospholipid and
sphingolipid metabolism appears to be a possible mechanism
involved in this transition, as illustrated in Figure 2. However,
additional research conducted in well-established clinical
cohorts is warranted to identify the type 2 diabetes-related
metabolome at the early stage.

DISCUSSION AND CONCLUSION
Human maternal lipid metabolism during normal pregnancy
is well understood, but there are still questions regarding the
pathogenesis of GDM and the transition to future type 2
diabetes. Several studies have attempted to use different
methodologies to measure lipid profiles and have identified
lipid biomarkers or metabolic pathways associated with
GDM and type 2 diabetes. These lipid biomarkers include
certain types of fatty acids, glycerolipids, phospholipids,
sphingolipids, cholesterol, and lipoproteins. However, the
findings are inconsistent across studies and quite inconclu-
sive, which could be due to the heterogeneities in cohort
and study design, as well as study populations (race/ethnic-
ity), sample sizes, diagnostic criteria, potential confounding
factors, and statistical methods used during the analysis.
Additionally, the regulation and interactions among the lipid
metabolism pathways are quite complex and not entirely
known. Functional studies that interfere with specific target
proteins/genes to regulate lipid metabolism and to prevent
the onset of GDM and type 2 diabetes are strongly recom-
mended. However, while predictive models consisting of dif-
ferent lipids have been established and are superior to the
common clinical variables, further verification in other
cohorts is necessary for clinical translation. With the rapid
development of artificial intelligence, more methods can be
used to build predictive models and to facilitate early

Table 2 | Summary of lipid changes in the transition from GDM to future type 2 diabetes.

Year Author Technique Sample Lipid biomarkers

2015100 Lappas et al. HPLC–MS Plasma CE 20:4, PE(P-36:2) and PS 38:4
201634 Allalou et al. LC–MS/MS Plasma 2-AAA, Gly, Ile, Leu, Thr, Trp, Tyr, Val. xLeu+, Hexoses, SM(OH)C16:1, SM(OH)C22:2,

SM C18:0, SM C18:1, SM C20:2, SM C24:1, PC ae C40:5, PC ae C42:5, PC ae C44:5,
AC10, AC3, Palmitoleic acid (C16:1 n9)

2018105 Andersson-Hall et al. NMR Plasma BCAAs and 3-hydroxyisobyturate
2019101 Khan et al. LC–MS/MS Plasma Increased TAG and decreased CE, Cer, NEFA, LCer, LPC, LPE, PE, and SM in women

with future type 2 diabetes
202035 Lai et al. LC–MS/MS Plasma Increased AAs as well as diacyl-glycerophospholipids and decreased sphingolipids

and acyl-alkyl-glycerophospholipids among women with future type 2 diabetes
202036 Lai et al. LC–MS/MS Plasma Increased TAG, DAG, and decreased SM, HCer, and LCer among women with

future type 2 diabetes
2021104 Wang et al. LC–MS Serum P-cresol sulfate, linoleic acid, glycocholic acid, lysoPC(16:1) and lysoPC(20:3)

2-AAA, 2-aminoadipic acid; AA, amino acid; AC, acylcarnitine; AGM, abnormal glucose metabolism; BCAA, branched-chain amino acid; CE, cholesteryl
ester; Cer, ceramide; DAG, diacylglycerol; GDM, gestational diabetes mellitus; Gly, glycine; HCer, hexosylceramide; HPLC, high-performance liquid
chromatography; Ile, isoleucine; LCer, lactosylceramide; LC-MS, liquid chromatography-mass spectrometry; Leu, leucine; LPC, lysophosphatidylcholine;
LPE, lysophosphatidylethanolamine; MS, mass spectrometry; NEFA, non-esterified fatty acid; NMR, nuclear magnetic resonance; PE, phosphatidyletha-
nolamine; PS, phosphatidylserine; SM, sphingomyelin; TAG, triacylglycerol; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine.
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recognition of high-risk populations for early intervention to
prevent severe diabetic complications.
Overall, this review has summarized recent findings over the

past few decades, and has identified the role that lipids play in
the pathogenesis of GDM and progression to type 2 diabetes.
Additional research on the liver/pancreatic cell/muscle cell/adi-
pocyte function and related molecular biology would provide a
better understanding of lipid metabolism under diabetic
conditions.
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