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Abstract

In the era of cancer immunotherapy, there is a high interest in combining conventional cancer 

therapies such as radiotherapy with drugs that stimulate the immune system. The observation that 

ionizing radiation applied to mouse tumors could delay the growth of distant lesions (“abscopal 

effect”) and this was potentiated by immunostimulatory drugs, led to clinical trials in which 

often only one lesion was irradiated. The results of these first clinical trials combining radio 

and immunotherapy are now becoming available. These results show that, while immunotherapy 

potentiates the local effects of radiotherapy, the abscopal effect is still infrequent. Transcriptomic 

analysis of resected colorectal cancer (CRC) metastases allows to distinguish three molecular 

subtypes with distinct potential to benefit from localized therapies and/or immunotherapy; the 

subtype with characteristics consistent with the existence of preexisting immunity is the most 

likely to respond to radiation. Recent preclinical data suggests these preexistent T cells can survive 

radiation and contribute to its therapeutic effect. In this review, we discuss possible reasons for 

the preclinical/clinical discrepancies regarding the abscopal effect, and we propose irradiation of 

multiple or all tumors combined with systemic immunotherapy, patient selection based on tumor 

subtype, and rational therapeutic combinations that take into account preexisting immunity, as 

possible avenues to increase the efficacy of radio-immunotherapy.

Introduction

The discovery of the important role of the immune system in the therapeutic effect of 

ionizing radiation (IR) and the development of cancer immunotherapy has led to increased 

interest in combining the two modalities. The first clinical trials of radio-immunotherapy 

were initiated based on encouraging case reports and preclinical results but lacked a robust 

framework establishing the optimal radiotherapy dose, fractionation rate, target selection, 

and timing. Nonetheless, many clinical trials testing this combination are currently ongoing. 

Accumulating data will guide future trial design in order to optimize the therapeutic ratio of 

radio-immunotherapy in the treatment of metastatic cancer. Concomitantly, the correlation 

of patient outcomes with peripheral blood analyses and tissue biopsies from these studies 
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and further preclinical investigation may enable new mechanistic insights regarding the 

interaction between IR and cancer immunity that could potentially have far-reaching clinical 

applications. Here, we review some clinical and preclinical data that are re-shaping our 

understanding of the interaction between radiotherapy and immunotherapy.

Some lessons from the clinic

1. Local therapy improves cancer-specific outcomes in oligometastatic 
disease and this benefit may be potentiated by systemic immunotherapy—In 

1995, Hellman and Weichselbaum proposed the oligometastatic state as an intermediate 

phenotype between locoregionally confined malignancy and widespread metastatic disease, 

largely characterized by clinical features, including a numerically limited number of lesions 

and a slow pace of progression (1). The implication of this hypothesis involves the 

possibility of significantly benefitting and potentially curing a subset of metastatic patients 

with localized therapies (e.g., surgery or radiotherapy). In several recent phase II clinical 

trials, patients with oligometastatic disease received standard of care treatment including 

surveillance with or without metastasis-directed ablative radiotherapy to all visible sites of 

disease (2–5). While the primary site, number of lesions treated, and radiation dose and 

fractionation differed across these studies, they all showed an improvement in meaningful 

endpoints, including but not limited to progression-free survival (PFS) and overall survival 

(OS).

Expanding these results to the setting of radio-immunotherapy, two recently published 

prospective studies in metastatic non-small cell lung cancer (NSCLC) treated patients 

with Pembrolizumab with or without locally ablative therapy including stereotactic body 

radiotherapy (SBRT) (6, 7). The first, which treated only one metastatic site with SBRT, did 

not significantly improve PFS or OS, though there was a trend towards improved response 

rates. The second, which treated all metastatic sites as in the above oligometastatic studies, 

did demonstrate a significant increase in PFS of approximately 12 months as compared with 

historic controls; of note, this improvement was numerically greater than those seen in the 

studies investigating locally ablative therapy alone. We will discuss the implications of these 

differing conclusions within the context of our abscopal and preclinical discussions below.

2. Immunotherapy works best when tumor burden is smallest—It is becoming 

increasingly clear that cancer immunotherapy is more effective when treating patients 

with limited disease burden. Analysis of the KEYNOTE-001 trial, in which patients with 

advanced melanoma were treated with Pembrolizumab, revealed that the baseline sum of 

lesion(s) size below the median (10.2 cm) was independently associated with OS (8), and 

most complete responses occurred in patients with tumors that were smaller yet (< 5 cm) 

(9). Translational data provides a mechanistic underpinning for these findings: in stage IV 

melanoma patients treated with Pembrolizumab, it is the ratio of T-cell reinvigoration (fold 

change in %PD1+ki67+ CD8+ T cells post vs. pre-treatment) to baseline tumor burden that 

best predicts clinical outcomes, rather than either factor alone (10).

The smallest tumor burden is one that cannot be detected radiographically. Indeed, patients 

treated with immunotherapy in the adjuvant setting for malignancies with a high metastatic 
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propensity often see the greatest clinical benefits. In stage III-IV completely resected 

melanoma, adjuvant treatment with anti-PD1 agents markedly improved recurrence-free 

survival in several studies (11, 12). Similarly, patients with locally advanced NSCLC treated 

with definitive chemoradiation experienced significantly improved PFS and OS with the 

addition of adjuvant Durvalumab versus placebo in the PACIFIC trial (13).

Studies other than the PACIFIC trial in the setting of combined immunotherapy and 

radiotherapy support the assertion that less disease (fewer lesions) leads to better outcomes. 

In a trial in which patients with metastatic solid tumors were treated with radiotherapy 

to one metastatic site concurrently with daily injections of GMCSF, systemic responses 

were observed only in patients with less than six lesions (14). In another trial of metastatic 

prostate cancer patients treated with one 8 Gy fraction to a single bone lesion with or 

without systemic ipilimumab, patients were more likely to benefit from the addition of 

ipilimumab if they had one compared to two or more bone metastases (15).

3. The abscopal effect is rare—The abscopal effect (from the Latin ab- for “away 

from” and scopus for “target”) is the regression of unirradiated tumor lesions in a patient 

treated with radiotherapy and was first described in 1953 (16). In the intervening decades, 

the abscopal effect had largely been viewed by radiation oncologists as an interesting but 

exceedingly unusual phenomenon with little hope for application in the clinic. In the era 

of cancer immunotherapy, a new appreciation of the role played by the immune system 

in governing the therapeutic effect of ionizing radiation has caused a major spike in 

interest in this phenomenon. Underlying this enthusiasm is the hope that immunotherapy 

would amplify the rare systemic effects of radiotherapy, while radiotherapy would serve 

as an “in situ vaccine” (17), rendering immune-excluded tumors suddenly responsive to 

immunotherapy. Indeed, a systematic analysis of the literature on the abscopal effect (18) 

found 46 case reports described in 31 studies that spanned 50 years (1964–2014). Of those 

31 studies, 17 (55%) were published in the last nine years, with several of these case reports 

having an outsized impact on the field (19, 20).

It is currently unclear, however, that the addition of radiotherapy, at least when treating 

only one or a few sites with abscopal intent, significantly adds to the systemic 

efficacy of immunotherapy. Most available data has been presented in the form of the 

aforementioned case reports or single-arm, early phase clinical trials (21, 22) testing 

different radioimmunotherapy combinations with conflicting results. In the abscopal study 

by Theelen and colleagues (6), the addition of single-site SBRT to pembrolizumab in 

metastatic NSCLC demonstrated a trend towards improved response rates but did not 

meet its other efficacy endpoints; however, the PD-L1-negative patient subgroup did derive 

significant benefit from SBRT. Similarly, in the study by Kwon and colleagues in metastatic 

prostate cancer (15), there was no difference in OS between those treated with single-site 

radiotherapy plus ipilimumab versus those who received single-site radiotherapy alone. 

Again, a small subgroup of patients—in this case those with small tumor burden as outlined 

above—did demonstrate a benefit.

Contrast these results with the radioimmunotherapy trials using radiotherapy to treat all 

sites of known disease, e.g., eschewing the abscopal approach for a cytoreductive one. 
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The PACIFIC trial in locally advanced NSCLC demonstrated a previously unimaginable 

12-month prolongation in time to distant metastasis and death (13), while the study by 

Bauml and colleagues in oligometastatic NSCLC demonstrated a 12-month improvement in 

PFS over historical controls (7).

Taken together, the clinical observations to date strongly suggest that the most effective 

way to apply radioimmunotherapy is to treat as many sites with local therapy as possible 

(23), with the goal of increasing the potentially synergistic local and systemic effects of 

both modalities. Whereas immunotherapy can increase the local effect of radiotherapy in 

all treated sites as will be discussed below, the radiotherapeutically debulked tumor burden 

would allow immunotherapy to better eliminate micro-metastatic disease.

Preclinical evidence for the abscopal effect

Although the abscopal effect was defined in 1953, it remained largely limited to case 

reports for most of the following five decades. In 1999, Chakravarty et al. reported that in a 

metastatic mouse lung cancer model, co-administration of high-dose local IR (60 Gy) in the 

primary tumor and daily injections of Flt3L to expand dendritic cells in vivo dramatically 

increased survival due to a reduction in the number of spontaneous lung metastases (24). 

Also in 1999, the Weichselbaum and Schreiber labs showed that intratumoral injection of 

an adenoviral vector with interleukin-12 enhanced local anti-tumor effects of irradiation and 

suppressed microscopic tumor growth at a distant site (25). Demaria et al. expanded the 

early observations with IR+Flt3L to breast cancer models (26) and also pioneered the use 

of immune checkpoint inhibitors (specifically, anti-CTLA-4) in combination with IR (27). 

These early studies showed that the addition of immunotherapy was critical for increasing 

the abscopal effect of IR, and that host T cells were required for this effect. Also more 

effective local tumor control, achieved by 2 (compared with 1) consecutive doses of 12 

Gy in combination with anti-CTLA4 translated into higher survival rates (27). A widely 

cited preclinical study by Dewan et al. in 2009 reported that fractionated IR, specifically 3 

doses of 8 Gy each, was more efficacious in controlling abscopal tumors when combined 

with anti-CTLA-4 therapy than single high dose of 20 Gy in 2-flank TSA mammary and 

MCA38 colon carcinoma models (28). However, this might not be applicable to all tumor 

types and immunotherapies combined with IR. Doses as little as 2 Gy (26) and as large as 

60 Gy (24) effectively mediated abscopal responses in 67NR mammary carcinoma and LLC 

lung cancer models, respectively, and a single 12 Gy dose in combination with anti-PD-L1 

blockade was sufficient to cause an abscopal response in the TUBO mammary carcinoma 

model (29). PD-1/PD-L1 blockade combined with IR showed good results in part due to 

the IR-induced up-regulation of PD-L1 in the tumor microenvironment (29, 30). In recent 

years, attempts to potentiate the abscopal response have focused on the combination of IR 

with multiple therapies simultaneously. These therapies include T cell checkpoint blockade 

and costimulatory antibodies, e.g., anti-41BB (31) or anti-CD40 (32), TGFβ blockade (33, 

34), chemotherapy (35), and immunotherapeutics that modify macrophage function (36). 

In this context, the combination of IR with approaches that allow for localized delivery 

of immunotherapeutic drugs (37, 38) are of special interest, since they might promote 

efficacy while minimizing adverse effects of the multiple drugs used. As an example, a 

clever study by Schrand et al. used IR to induce intratumoral VEGF expression, which 
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caused accumulation of VEGF-41BB aptamer conjugates in the tumor, leading to increased 

antitumor efficacy and decreased toxicity (38).

Why the abscopal effect in patients is less frequent than expected from preclinical 
research

As discussed above, preclinical investigation led to high expectations to induce systemic 

anti-tumor effects through the combination of immunotherapy and single site-directed 

radiotherapy. However, clinically available data so far shows somewhat disappointing results 

when using this approach. One obvious reason behind these different outcomes is the limited 

ability of the mouse models used to faithfully recapitulate metastatic cancer in patients. 

Preclinical studies of the abscopal effect used most frequently “two-flank” mouse tumor 

models (26, 28, 29, 31, 32, 35) in which the same transplantable cell line is injected 

s.c in two distant locations in the mouse, and only one tumor is irradiated; the abscopal 

effects are followed in the untreated lesion. In this model, the genetic and environmental 

factors defining these “abscopal” tumors are almost identical to those of the “primary” 

tumor, and therefore, immune responses directed to antigens present in one of the tumors 

can sometimes also recognize the abscopal tumor. Some transplantable cell lines exist 

that give rise to spontaneously metastatic tumors (e.g., used in (24); however, it is likely 

that even these relatively quickly established metastases (6 weeks) fail to recapitulate the 

complexity of human metastatic cancer. Two recent studies using whole-exome sequencing 

and immunohistochemistry-derived data highlight the existence of high inter-metastases 

heterogeneity within the same patient (39, 40), to the point that each metastasis can be 

approached as a different disease based on different mutational and clonal composition 

and potential for dissemination (40). Indeed, this study of 31 metastases collected over 

11 years from two cases of stage IV CRC found that most (76%) coding mutations 

were unique to 1 metastasis, and only a few mutations were shared by all metastases in 

one of the patients, while the other patient had no mutations that were shared among 

all lesions. Not surprisingly, TCR diversity (alpha and beta V-J recombinations) was 

also high among metastases of the same patient. In each patient, a single synchronous 

metastasis expanded the metastatic lineage, proving a different dissemination potential. 

Interestingly, low recurrence risk among individual tumor clones was associated with 

high immunoscore (reflective of CD8+ T cell density), and low tumor burden, confirming 

the above discussed conclusions from both clinical cohorts and at the individual patient 

(inter-metastasis) level, that immunotherapy works best with limited tumor burden. Another 

important observation from these studies is that mutational load by itself does not determine 

T-cell reactivity against tumors. Indeed, immunoscore was not associated with mutational 

load in the two CRC patients study (40). In another study where metastatic lesions 

from a high-grade serous ovarian cancer patient that were regressing after chemotherapy 

were compared with other lesions from the same patient that were progressing (39), 

it was found that regressor vs. progressor behavior was not explained by the presence 

of specific mutations or neoepitopes. However, regressor lesions showed higher TCR 

clonotype diversity and expansion, implicating the individual metastasis microenvironments 

as possible determinants of the generation of effective T-cell responses. In this regard, it is 

interesting that irradiation of liver metastases resulted in higher T-cell activation (observed 

in the peripheral blood) when compared with irradiation of lung metastases in a study using 
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SBRT and ipilimumab (41). The patients studied in the Jimenez-Sanchez and Angelova et al. 

reports had an exceptionally long survival; this could raise questions about the universality 

of the findings discussed, in that perhaps the unusual duration of the disease allowed for 

more heterogeneity to develop, and therefore these three patients could represent an extreme 

of the spectrum. Nevertheless, mixed responses (simultaneous growth and shrinkage of 

metastatic lesions) within the same patient are relatively common, accounting for 8.6–33.8% 

of patients with CRC (42, 43), and are associated with significantly worse OS (42). Overall, 

the existence of mixed responses and in general inter-metastasis tumor heterogeneity could 

account for the low rates of abscopal responses observed in the clinic.

How to make radio-immunotherapy combinations more effective

Lessons learned from the clinical trials performed to date, and preclinical investigations into 

the interactions among IR, the tumor microenvironment, and intratumoral T cells should 

guide the design of more effective radio-immunotherapy combinations. Here we propose 

some specific ways this could be achieved:

1. Irradiate all sites

Based on the observations discussed above and other evidence, we have recently proposed 

that potential synergies between immunotherapy and radiotherapy require treatment of all 

or most sites of metastatic disease (44). This conclusion is shared by others in the field 

(23) and is based on recent technical advances that allow for delivery of high doses of IR 

with high precision and lower toxicities. Also, this approach is supported by observations 

from a exploratory subset analysis in our recent clinical trial combining Pembrolizumab 

and SBRT indicating that tumors that had to be partially irradiated (due to technical 

constraints) showed similar tumor control compared with those that were completely 

irradiated. This suggests that, even in cases where irradiation to all sites might not be 

possible, partial irradiation of all lesions could potentially suffice. One argument against this 

approach is that T cells might be radiosensitive and radiotherapy in this context might be 

immunosuppressive, which we discuss below.

2. Apply knowledge on the biology of tumors

The Pitroda and Weichselbaum labs recently performed an integrated transcriptomic 

analysis (mRNA+miRNA) of CRC liver metastases after resection (45), with the goal of 

distinguishing different molecular subtypes of CRC metastases and their relation to clinical 

outcomes. We found that molecular features associated with distinct clinical outcomes 

in primary CRC failed to do so in patients with resected liver metastases. Integrated 

transcriptomic analysis, however, defined 3 molecular subtypes of CRC metastases 

associated with different overall survival rates. Subtype 1, named “canonical” for its 

increased expression of cell proliferation and altered cell cycle and DNA repair pathways, 

was present in 33% of the samples and associated with poor survival. This subtype showed 

low expression of immune markers. In contrast, subtype 2, or “immune” (28%), had a 

high expression of T-cell activation, antigen presentation and IFN signaling genes, and 

was associated with the most favorable overall survival. Finally, subtype 3, or “stromal” 

(39%), was characterized by the expression of some immune markers together with 
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strong activation of epithelial-mesenchymal transition, angiogenesis and extracellular matrix 

remodeling pathways. The stromal subtype had low survival rates. These three subtypes are 

reminiscent of the “immune desert/inflamed/excluded” phenotypes described for patients 

treated with checkpoint inhibitors (46), (47). When a cohort of metastatic urothelial cancer 

patients treated with anti-PD-L1 with the “excluded” phenotype was investigated (47), it was 

found that lack of response to treatment in that cohort correlated with a signature of TGFβ 
signaling in fibroblasts. Previous studies had shown “sequestering” of T cells by activated 

fibroblasts producing CXCL12 in dense extracellular matrix deposits surrounding human 

lung and pancreatic ductal adenocarcinoma tumors (48, 49). Consistent with the notion that 

fibroblastic activation by TGFβ contributes to T-cell exclusion from tumor beds, by keeping 

T cells in the peritumoral stromal region, treatment of murine tumors with anti-TGFβ 
improved the therapeutic efficacy of anti-PD-L1 blockade presumably by counteracting 

the fibroblastic “barrier,” which resulted in increased intratumoral T-cell infiltration (47). 

The genetic/environmental factors that determine the “stromal”/“excluded” tumor type have 

yet to be fully elucidated; however, since tumor fibroblasts derive predominantly from 

locally available (50) normal fibroblasts (51), one possibility is that seeding of metastatic 

cells into anatomic locations that are rich in mesenchymal/stromal cells, as part of the 

normal histological composition of that organ, or even as small deposits present within 

organs to mediate repair and wound healing, could preferentially give rise to stromal/T cell 

excluded tumor lesions. In any case, these preclinical and clinical observations suggest 

that strategies directed to block TGFβ, potentially combined with immunotherapy and 

radiation, would be most effective in patients with molecular “stromal” subtypes. Patients 

with “immune” molecular tumor subtypes who benefit the most from localized therapies 

(surgery, radiotherapy) (45) might well overlap with the “inflamed” tumor patients who 

benefit the most from immunotherapy (46), and therefore either therapeutic approach, or 

even a combination of the two, would be the most logical choice for these patients. The 

“canonical” subtype and/or immune-excluded patients are the least likely to benefit from 

immunotherapy; however, the DNA repair abnormalities present in tumors of that molecular 

subtype might make them more susceptible to treatment with pharmacological agents that 

amplify the DNA damage induced by radiotherapy such as PARP inhibitors (45).

3. Consider intratumoral T cells during individual tumor radiotherapy

For tumors with the “excluded” phenotype, it has been frequently proposed that irradiation 

could attract T cells to the tumor, turning “cold” tumors that cannot respond to 

immunotherapy into “hot” tumors that can be treated with immunotherapy (52), but this has 

not been conclusively proven. Preclinical studies have convincingly shown that irradiation 

can increase T-cell infiltration of tumors (53–57). Based on the lack of clinical evidence, it 

is possible that irradiation could attract more T cells in tumors that have low but detectable 

levels of T cells, whereas it may not have the same effect in tumors that are completely 

devoid of T cells. For murine tumors that have a detectable T cell population at baseline 

(comparable to the “inflamed” phenotype), we have recently reported that many T cells 

present in the tumor before irradiation survive even after high doses of IR (58). In addition, 

we found that blockade of T-cell infiltration by the S1P1 inhibitor FTY720 did not affect 

the radiation response if the tumor was established before administration of the drug, 

but if the drug was started at the time of implantation, irradiation was ineffective. This 
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suggests that preexisting T cells are in certain conditions sufficient to mediate the local 

cytotoxic effects of radiotherapy, unlike some immunotherapeutics, which required newly 

infiltrating T cells (59). This is relevant because some investigators have proposed that 

intensity modulated radiotherapy, which “spreads the dose,” might be immunosuppressive 

by decreasing circulating T cells. The high radio-resistance of T cells in tumors is not 

the only exception to the rule that T lymphocytes are one of the most radiosensitive cells 

in the organism, since we find that also tissue-resident T cells from certain solid tissues 

(e.g., intraepithelial lymphocytes in the gut) are partially radio-resistant. It is likely that 

solid tissue/tumor residence imparts some common characteristics to the T cells that reside 

within them, and indeed, intratumoral and tissue-resident T cells seem to have more similar 

transcriptomes than intratumoral and lymphoid tissue-derived T cells (58). Behind those 

similar characteristics must lie common molecular factors present both in transplantable 

murine tumors and the epithelium of the gut. TGFβ was tested as a possible candidate 

that would explain both the general similarities and the radio-resistant phenotype, based 

on the transcriptional analysis of intratumoral T cells, which implicated TGFβ as a master 

regulator of their phenotype. Together with IL15, TGFβ present in tissues is required for the 

formation and maintenance of TRM (60). Furthermore, exposure to TGFβ has been shown 

to increase the radioresistance of non-malignant and malignant cells (61–64). Accordingly, 

we found that treatment with anti-TGFβ antibodies resulted in higher T-cell densities in 

the tumors; however, these T cells were more sensitive to irradiation than intratumoral T 

cells in IgG-treated mice (58). Not all T cells were destroyed after IR in anti-TGFβ treated 

mice, suggesting that other mechanisms might contribute to an increase radio-resistance in 

intratumoral T cells.

Examples of potential alternative mechanisms that have been implicated in increasing 

radio-resistance in the context of cancer are hypoxia and integrin-signaling. Hypoxia has 

long been known to be an obstacle to effective radiotherapy (65), and many approaches 

to radiosensitize tumors by targeting hypoxia have been developed over the years (66). In 

addition, cellular contact with extracellular matrix proteins can increase radio-resistance by 

promoting DNA damage repair and activation of Akt/MAPK signaling pathways (67). It will 

be important to discern which of these mechanisms favor radioresistance of both cancer and 

T cells or are specific for one or the other. This might be very relevant for combinatorial 

strategies where drugs with radio-sensitizing effect are used, such as anti-TGFβ agents. In 

strategies featuring TGFβ blockade, treatment has usually been initiated before radiation 

treatment, with the goal of radiosensitizing cancer cells (61). To what extent the possible 

radiosensitization of preexisting intratumoral T cells using this approach might limit the 

potential of combinatorial strategies involving radiation and TGFβ-targeting drugs remains 

to be elucidated. It will be also helpful to determine whether carefully timed treatments 

would overcome any potentially harmful interactions. Use of strategies that radiosensitize 

cancer but not T cells, if existent, would be preferable.

In summary, we propose here a model in which irradiation and immunotherapy synergize 

(Figure 1) to exert more potent local effects in the irradiated tumors, rather than to elicit 

a systemic immune response, and suggest avenues to adequately tailor clinical therapies 

based on the molecular type of the cancer being treated and lessons learned from preclinical 

investigation on the effects of irradiation on preexisting immunity.
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Figure 1. 
Mechanisms of cooperation between radiation therapy (RT) and immunotherapy (IT). Red 

arrows indicate ways RT can help IT achieve greater overall tumor control; blue arrows 

show ways IT can help RT with the same goal. TME, tumor microenvironment.
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