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Abstract 

There are an estimated 300,000 mammalian viruses from which infectious diseases in humans may 
arise. They inhabit human tissues such as the lungs, blood, and brain and often remain undetected. 
Efficient and accurate detection of viral infection is vital to understanding its impact on human 
health and to make accurate predictions to limit adverse effects, such as future epidemics. The 
increasing use of high-throughput sequencing methods in research, agriculture, and healthcare 
provides an opportunity for the cost-effective surveillance of viral diversity and investigation of 
virus-disease correlation. However, existing methods for identifying viruses in sequencing data 
rely on and are limited to reference genomes or cannot retain single-cell resolution through cell 
barcode tracking. We introduce a method that accurately and rapidly detects viral sequences in 
bulk and single-cell transcriptomics data based on highly conserved amino acid domains, which 
enables the detection of RNA viruses covering over 100,000 virus species. The analysis of viral 
presence and host gene expression in parallel at single-cell resolution allows for the 
characterization of host viromes and the identification of viral tropism and host responses. We 
applied our method to identify putative novel viruses in rhesus macaque PBMC data that display 
cell type specificity and whose presence correlates with altered host gene expression.  

Introduction 

There are an estimated 1031 virions on Earth, which amounts to 10 million virions for every star in 
the known universe1,2. Viruses inhabit oceans, forests, deserts, and human tissues such as the lungs, 
blood, and brain. There are an estimated 300,000 mammalian viruses3 from which infectious 
diseases in humans may arise4. However, only 261 species have been detected in humans5. Many 
of these have been implicated in complex diseases such as heart disease and cancer. Recent studies 
suggest that viruses also play a major, unexpected role in common neurodegenerative disorders 
such as Alzheimer’s, Parkinson’s, and multiple sclerosis6-8. Accurate detection of viral infections 
is crucial to understanding viral impact on human health. 

Of the 261 known disease-causing viruses, 206 fall into the realm of Riboviria5, which includes 
all RNA-dependent RNA polymerase (RdRP)-encoding RNA viruses and RNA-dependent DNA 
polymerase (RdDP)-encoding retroviruses. Amongst many others, these include Corona-, Dengue, 
Ebola-, Hepatitis B, influenza, Measles, Mumps, Polio-, West Nile, and Zika viruses. Most existing 
workflows for detecting viruses in transcriptomics data rely on the availability of pre-assembled 
reference genomes. Currently, NCBI RefSeq hosts 8,694 Riboviria reference genomes—a 
diminutive fraction of Riboviria viruses. Pioneering work by Edgar et al.9 leveraged a well-
conserved amino acid sub-sequence of the RdRP, called the ‘palmprint’, to identify RNA viruses 
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in 5.7 million globally and ecologically diverse sequencing samples from the Sequence Read 
Archive (SRA). Their method’s independence from pre-computed indices allowed alignment to 
diverged sequences, leading to the discovery of thousands of novel viruses. This effort resulted in 
a consensus of 296,623 unique RdRP-containing amino acid sequences, henceforth referred to as  
‘PalmDB’. Clustering palmprints into species-like operational taxonomic units (sOTUs) yielded 
146,973 known as well as novel sOTUs9. Compared to the 8,694 Riboviria reference genomes 
currently available on NCBI, this translates to a more than 16x increase in the number of viruses 
that can be detected. The actual number of virus species that can be detected using the PalmDB is 
likely even higher due to RdRP sequence conservation across Riboviria (Extended Data Fig. 1). 
sOTUs serve to approximate taxonomic assignment9,10 and allow species-level virus identification 
for 40,392 sequences in the PalmDB. 

The increasing use of high-throughput next-generation sequencing (NGS) methods in molecular 
biology research, agriculture, and healthcare provides an opportunity for the cost-effective 
surveillance of viral diversity and the investigation of virus-disease correlations11,12. Specifically, 
single-cell genomics technologies make possible, in principle, the characterization of viruses at 
single-cell resolution. We expanded the RNA sequencing data preprocessing tool kallisto13 to 
support the detection of viral RNA using the amino acid database PalmDB. To our knowledge, 
this is the only existing method capable of translated alignment while retaining single-cell 
resolution. The small size of PalmDB (36 MB) enables efficient detection of orders of magnitude 
more viruses than detection based on (NCBI) reference genomes. Moreover, operating in the 
amino acid space yields a method robust to silent nucleotide mutations. 

 
  

Fig. 1: Schematic overview of the kallisto translated search front- and back-end. The front-end is similar to 
kallisto-bustools workflows as previously described43,44. The user provides sequencing data, usually in the form 
of FASTQ files, as well as a reference FASTA file containing amino acid sequences to align the nucleotide 
sequencing data against. The novel argument ‘--aa’ activates the translated search alignment. In the example 
shown here, the reference file consists of the PalmDB amino acid RdRP sequences contained in 
‘palmdb_rdrp_seqs.fa.’ The ‘palmdb_clustered_t2g.txt’ file groups virus IDs with the same taxonomy across all 
main taxonomic ranks like transcripts of the same gene (see Methods). Both files are available here: 
https://tinyurl.com/4wd33rey. During the generation of the reference index with ‘kb ref’, the D-list option may 
be used to mask host genomic and/or transcriptomic sequences, as further discussed in this manuscript. Here, 
human genomic sequences fetched from Ensembl using gget45 are masked using the D-list. The reference index 
only needs to be generated once, and precomputed PalmDB reference indices for human and mouse hosts are 
available here: https://tinyurl.com/aaxyy8v8. Following the generation of a reference index, the sequencing 
reads are pseudoaligned to the reference index, and a count matrix is generated using the ‘kb count’ command. 
The ‘-x’ argument is used to define the sequencing technology. In the example code, the minimum required user 
input is marked in orange (amino acid space) and blue (nucleotide space). In the kallisto translated search back-
end, the reference amino acid sequences and the nucleotide sequencing reads are translated into a non-
redundant comma-free code. For the nucleotide sequences, the translation occurs in all six possible reading 
frames (three forward and three reverse frames). The pseudoalignment is performed in the comma-free code 
space and is compatible with the kallisto cell barcode tracking which enables analysis at single-cell resolution. 
The workflow generates a cell barcode by virus ID count matrix. 
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Results 

Translated alignment of nucleotide sequences to an amino acid reference with kallisto 
enables efficient, accurate detection of RNA viruses at single-cell resolution 

Most existing methods to detect viral sequences either (i) rely on and are limited to (NCBI) 
reference genomes14–23, (ii) are not able to perform translated alignment of nucleotide data to an 
amino acid reference24–26, or (iii) are unable to retain single-cell resolution through cell barcode 
tracking27,28 (Fig. 2b). We expanded the bulk and single-cell RNA-seq preprocessing tool kallisto13 
to allow translated search and validated its use in combination with PalmDB for the detection of 
virus-like sequences in single-cell and bulk RNA sequencing data. PalmDB is a database of 
296,623 unique RdRP-containing amino acid sequences, representing 146,973 virus species9. Fig. 
2a provides an overview of the number of entries per taxonomy in the NCBI and PalmDB 
databases. The figure can also be viewed interactively here: tinyurl.com/4dzwz5ny. 

The translated alignment is performed by first reverse translating the amino acid reference 
sequences and all possible reading frames (three forward and three reverse) of the nucleotide 
sequencing reads to comma-free code (Fig. 1)29. A comma-free code is a set of k-letter ‘words’ 
selected such that any off-frame k-mers formed by adjacent letters do not constitute a ‘word’, and 
will thus be interpreted as ‘nonsense’. For k=3 (a triplet code) and 4 letters (e.g., ‘A’, ‘T’, ‘C’, and 
‘G’), this results in exactly 20 possible words (theorem shown in Fig. 1), which equals the number 
of amino acids specified by the universal genetic code. Due to the serendipity of these numbers, 
Crick et al. hypothesized the genetic code to be a comma-free code in 195730. The impossibility 
of off-frame matches makes comma-free codes highly appropriate for translated alignment 
(Extended Data Fig. 10, Methods). The de Bruijn graph generated from the reverse translated 
PalmDB sequences groups viruses of the same taxonomies, indicating that within-taxonomy 
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similarity is conserved in comma-free space as expected (Extended Data Fig. 4d). Finally, the six 
reading frames of the sequencing reads translated to comma-free code are pseudoaligned to the 
reference sequences reverse translated to comma-free code. If several reading frames of the same 
read produce alignments, the best frame is chosen (Fig. 1, Methods).  

The workflow can be executed in three lines of code, and computational requirements do not 
exceed those of a standard laptop (Fig. 1). Building on kallisto’s versatility, the workflow is 
compatible with all state-of-the-art single-cell and bulk RNA sequencing methods, including but 
not limited to 10x Genomics, Drop-Seq31, SMART-Seq32, SPLiT-Seq33 (including Parse 
Biosciences), and spatial methods such as Visium. 

Validation testing was performed using different bulk and single-cell RNA sequencing datasets 
with known infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or 
Zaire ebolavirus (ZEBOV)34–38. In these tests, translated search with kallisto and PalmDB was 
able to detect the viral RNA and correctly assign species-level taxonomy at counts correlating with 
viral loads measured by RT-qPCR or RNA-ISH, regardless of the technology used to generate the 
data (Fig. 3a). Fig. 3b provides an overview of the robustness of the taxonomic assignment across 
all available taxonomic ranks after reverse translated RdRP sequences were aligned to the PalmDB 
with kallisto translated search. At the species level, 96.76 % of 296,561 sequences were assigned 
the correct taxonomy, 0.007 % were assigned an incorrect taxonomy, 0.37 % could not be 
unambiguously matched to a single virus (they were multimapped), and 2.86 % were not aligned. 
This confirms that the sequence transformation introduced by the kallisto translated search pipeline 
retains taxonomic assignments with up to species-level specificity. 

Next, we sought to confirm that kallisto translated search with PalmDB correctly identifies 
sequences that originate from the RdRP gene. To this end, we selected a subset of 100,000,000 
reads obtained using Seq-Well sequencing of macaque peripheral blood mononuclear cell (PBMC) 
samples obtained at 8 days post-infection with ZEBOV37 (see Methods). We aligned the reads to 
the PalmDB amino acid sequences with kallisto translated search. We also aligned the reads to the 
complete ZEBOV nucleotide genome using Kraken2 (standard nucleotide alignment)27. Aligned 
reads from both alignments were extracted and realigned to the ZEBOV genome using bowtie239, 

Fig. 2: a, Phylogenetic tree of the taxonomies of viral sequences/genomes included in the PalmDB sOTUs and 
NCBI RefSeq databases from phylum to genus. Barplots indicate the number of sequences/species available for 
each taxonomy in each database. The tree was generated with iTOL46. This plot can also be viewed interactively 
here: tinyurl.com/4dzwz5ny. b, Overview of available tools for the detection of viral sequences in next-
generation sequencing data14–26,28,47, and their ability to align to NCBI RefSeq nucleotide genomes, perform 
translated alignment of nucleotide data against an amino acid reference, and retain single-cell resolution 
through cell barcode tracking. c, Mutation-Simulator48 was used to add random single nucleotide base 
substitutions to 676 ZEBOV RdRP sequences obtained by Seq-Well sequencing37 at increasing mutation rates. 
We performed 10 simulations per mutation rate. The sequences were subsequently aligned using kallisto 
translated search against the complete PalmDB, Kraken2 translated search against the RdRP amino acid 
sequence of ZEBOV with a manually adjusted NCBI Taxonomy ID to allow compatibility with Kraken2, and 
kallisto standard workflow against the complete ZEBOV nucleotide genome (GCA_000848505.1). The plot 
shows the recall percentage of the 676 sequences for each of the 10 simulations at each mutation rate. Each 
was fitted with an inverse sigmoid for mutation rates > 0.  
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a BAM file was created using SAMtools40 and the alignment was subsequently visualized NCBI 
Genome Workbench41. The visualized alignments are shown in Extended Data Fig. 2 and 

Fig. 3: a, Sequencing data from samples with a known viral infection and sequenced using different bulk and 
single-cell RNA sequencing technologies was aligned to PalmDB using kallisto translated search. Viral load 
obtained through alternative methods, such as RNA-ISH and qPCR, is compared to the target virus counts 
returned by kallisto. From left to right: 1. RNA-ISH (%) over total raw kallisto counts for SARS-CoV for 23 lung 
autopsy samples from COVID-19 patients obtained by bulk RNA sequencing34. Error bars show min-max values 
for each read in a pair; the dot shows the mean. 2. SARS-CoV-2 viral load by RT-qPCR (copies/mL) over total 
raw kallisto counts for SARS-CoV species obtained by bulk RNA sequencing of 16 saliva (circle), nasal swab 
(triangle), and throat swab (star) specimens from patients with acute SARS-CoV-2 infection35,36. Each specimen 
underwent duplicate library preparation and paired-end sequencing; points indicate the mean among the paired 
reads and duplicates, and error bars show min-max values. 3. Total raw kallisto counts for SARS-CoV species 
for 3 human iPSC-derived cardiomyocytes infected with SARS-CoV-2 and 3 control samples obtained by 
SMART-Seq38. 4. RT-qPCR (copies/mL) over total raw kallisto counts for ZEBOV for 19 rhesus macaque blood 
samples obtained during different stages of infection with ZEBOV and sequenced with Seq-Well37. b, To validate 
the mapping of nucleotide sequences to an amino acid reference with kallisto translated search and assess the 
robustness of the taxonomic assignment, we reverse translated all amino acid sequences in the PalmDB using 
the ‘standard’ genetic code (see Methods). The reverse translated PalmDB RdRP sequences were subsequently 
aligned to the optimized PalmDB amino acid reference (see Methods) with kallisto translated search. For each 
sequence, we differentiated the mapping result at each taxonomic rank into four categories: ‘correct’ or 
‘incorrect’ taxonomic assignment based on the sOTU to virus ID mapping, ‘multimapped’ (the sequence aligned 
to multiple targets in the reference and could not unambiguously be assigned to one), or ‘not aligned’ (the 
sequence was not aligned). The plot shows the fraction of sequences falling into each mapping result category 
assessed at each taxonomic rank. The numbers above the bars indicate the total number of sequences per rank. 
Family names and numbers were omitted, and genera and species ranks were combined for readability.  
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confirmed that kallisto translated search accurately and comprehensively detected ZEBOV RdRP 
sequences.  

We then tested whether our translated search method is robust to single nucleotide mutations, 
which occur at a relatively high rate in RNA viruses of up to 10−4 substitutions per nucleotide site 
per cell infection42. We added random single nucleotide base substitutions to 676 ZEBOV 
nucleotide RdRP sequences identified during the alignment described in the previous paragraph37, 
then assessed the frequency of correct taxonomic classification (recall percentage) by kallisto 
translated search, in comparison to the current state-of-the-art translated search tool, Kraken2 
(translated search). kallisto translated search correctly recalled up to 27.5 % more viral RdRP 
sequences than Kraken2 (translated search) (Fig. 2c). Moreover, kallisto translated search was 
more robust than aligning to the complete nucleotide genome with the standard kallisto workflow 
at mutation rates > 4 % (Fig. 2c), which emphasizes the advantage of operating in the amino acid 
space. While the Kraken2 (translated search) and the kallisto standard workflow were given only 
the correct virus as a reference (here, ZEBOV), kallisto translated search had to distinguish 
between all viruses contained in the PalmDB and identify the correct taxonomy. kallisto translated 
search was able to maintain > 90 % precision in the species-level taxonomic assignment at 
mutation rates up to 12 % (Extended Data Fig. 4b). 

We next sought to investigate whether viral species not included as species-like operational 
taxonomic units (sOTUs) in the reference PalmDB database could be detected based on the 
conservation of the RdRP gene. To do this, we removed all Ebolavirus species, all Ebolavirus 
genera, and all members of the Filoviridae family from the reference, and subsequently aligned 
the 676 ZEBOV RdRP sequences obtained by Seq-Well sequencing37. In each scenario, a subset 
of sequences aligned to the nearest remaining relative based on the main taxonomic rank (Extended 
Data Fig. 1). This suggests that kallisto translated search can detect the highly conserved RdRP of 
a large number of viral species, beyond the number of sequences in the PalmDB database, while 
still providing reliable sOTU-based taxonomic assignment of lower-rank taxonomies. 

Read and virus filtering 

A common problem that arises during the identification of microbial sequences is the cross-species 
contamination of reference genome databases, such as the ubiquitous contamination of bacterial 
genomes with human DNA49–51. The PalmDB is not a curated database, and it is possible that some 
virus-like sequences in the PalmDB are not derived from viruses. This can lead to the 
misclassification of host reads as bacterial or viral, suggesting the presence of microbes that were 
not truly present. The misclassification of host reads as viral can be prevented by removing host 
reads prior to the alignment to the viral reference. However, conservatively removing host reads 
will also remove sequences of endogenous viral elements, which are very abundant in vertebrate 
genomes52 and may lead to the removal of viral sequences that were truly present. Hence, there 
are two goals: (i) removing host reads to prevent the misclassification of host reads as viral while 
(ii) comprehensively identifying the virome within a sample.  

In some instances, it is impossible to unambiguously determine whether a read originated from the 
host or a virus/microbe during the alignment. For example, an analysis of cancer microbiomes by 
Poore et al.55 identified the presence of several bacterial genera. While the reanalysis of this data 
by Gihawi et al.49 using highly conservative host sequence masking led to a significant decrease 
in the number of reads identified for each bacterial genus, many bacterial genera remained 
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identified. We found that conservative host masking can lead to the removal of sequences 
originating from a confirmed viral infection, as was the case for ZEBOV here (Fig. 4c and 5a). 
Hence, it is unclear whether removing all ambiguous reads prior to downstream analysis is correct 
or results in biologically relevant data being thrown out. Thus, we developed easy-to-use, flexible, 
and efficient sequence masking methods, which allow the identification of reads that align to both 
host and virus/microbe while also preserving these reads for downstream analysis. We used these 
masking methods in combination with PalmDB for the identification of viral sequences. However, 
they can be applied to mask any nucleotide or amino acid reference and are able to retain single-
cell resolution. 

We first evaluated the impact of different host masking options on the resulting virome. We used 
kallisto translated search with PalmDB to map the virus profiles of peripheral blood mononuclear 

Fig. 4: a, Schematic overview of the different host masking options discussed in this manuscript. Reads that 
align to PalmDB and are considered viral are marked in orange and reads that align to the host genome or 
transcriptome are marked in black or grey, respectively. The barplot shows the number of distinct sOTUs, 
defined by distinct virus IDs observed in ≥ 0.05 % of cells for each workflow. b, Schematic overview of masking 
the host genome with the D-list argument when used in combination with translated search. The D-list genome 
consists of nucleotide sequences and hence is translated to comma-free code in all six possible reading frames, 
similar to the translation of the nucleotide sequencing reads. c, Masking host sequences with the kallisto read 
capture workflow generates two distinct virus count matrices: The first contains viral reads that only aligned to 
the PalmDB, and the second contains viral reads that aligned to the host transcriptome in addition to the 
PalmDB. The majority of viruses detected above the quality control (QC) threshold (observed in ≥ 0.05 % of 
cells), had reads that aligned to the host transcriptome as well as the PalmDB. The barplot shows the fraction 
of reads for each virus that aligned to the PalmDB only (‘virus only’) and those that aligned to the host 
transcriptome in addition to the PalmDB (‘also in host’).  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2025. ; https://doi.org/10.1101/2023.12.11.571168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.11.571168
http://creativecommons.org/licenses/by/4.0/


 
9 

cell (PBMC) RNA sequencing samples from 19 rhesus macaques and applied different host 
masking workflows. The approach to masking host versus microbe reads and the handling of 
overlap between reference sequences can affect the downstream result. For example, sequences 
with varying sizes of virus-host overlap, sequences that span the junction of two exons, and entirely 
ambiguous sequences can influence the outcome of the masking and generate highly variable 
results depending on the method used (Extended Data Fig. 4a and 5). Depending on the research 
question and design, any one or a combination of different masking options might be appropriate. 
We explored the following masking options, listed from least to most conservative: 

No mask 
We aligned the sequencing reads to the PalmDB with kallisto translated search without masking 
or previously removing host sequences. For the macaque PBMC dataset, this masking option 
resulted in 243 distinct sOTUs detected (Fig. 4a). 

D-list genome + transcriptome 
To incorporate host read masking into our kallisto workflow, we quantified the reads while 
masking the host genome and transcriptome using an index created with the D-list (distinguishing 
list) option53. This option identifies sequences that are shared between a target transcriptome and 
a secondary genome and/or transcriptome. k-mers flanking the shared sequence on either end in 
the secondary genome are added to the index de Bruijn graph. During pseudoalignment, the 
flanking k-mers are used to identify reads that originated from the secondary genome but would 
otherwise be erroneously attributed to the target transcriptome due to the spurious alignment to the 
shared sequences. In our experiments, the target transcriptome consisted of the viral RdRP amino 
acid sequences contained in the PalmDB, and the secondary genome consisted of transcriptomic 
and genomic macaque and dog nucleotide sequences. When combining D-list with translated 
search, the secondary genome is translated to comma-free code in all six possible reading frames 
(Fig. 4b). This masking option can be easily added to the kallisto translated search workflow 
without any additional commands (Fig. 1). Masking the host transcriptome and genome with D-
list resulted in 150 distinct sOTUs detected (Fig. 4a). Note that masking both the transcriptome 
and the genome, or either one will generate different results because masking only the genome 
will not mask sequences that span exon-exon junctions (Extended Data Fig. 4a and 5). 

Host read capture with kallisto 
To imitate prior alignment to the host genome, as performed with bwa (described below), within 
a simple, efficient kallisto workflow, we captured all reads that pseudoaligned to the host 
transcriptome with kallisto. Masking by capturing these host reads resulted in the same number of 
distinct sOTUs detected as masking with D-list (Fig. 4a).  

Host read capture with kallisto + D-list genome + transcriptome 
Although masking with D-list and capturing reads that aligned to the host transcriptome resulted 
in the same number of distinct sOTUs detected, the two methods masked different reads and 
resulted in different virus profiles (Fig. 5a, Extended Data Fig. 5). We decided to combine the D-
list and host read capture masking approaches to achieve a conservative result similar to that 
achieved by prior alignment with bwa. In this approach, the sequencing reads were aligned to the 
PalmDB index with a D-list containing the host genome and transcriptome, and subsequently reads 
that pseudoaligned to the host transcriptome were captured. Combining the D-list and host read 
capture masking options reduced the number of detected sOTUs to 80 (Fig. 4a). 
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Prior alignment to host with bwa 
We aligned the sequencing reads to the macaque and dog genomes using the highly sensitive 
alignment algorithm bwa54 and removed all reads that aligned anywhere in the host genomes 
before alignment to PalmDB with kallisto translated search. This achieved very conservative 
masking of the host genome. However, this workflow is complex, time-consuming, and 
computationally expensive (~4.5 days using 60 cores for the macaque ZEBOV PBMC dataset). 
This workflow resulted in the detection of 53 distinct sOTUs (Fig. 4a). 

There are inherent differences between these masking methods which are illustrated in Fig 4a and 
Extended Data Fig. 4a. Although the genome is passed to the software, the standard kallisto 
workflow builds an index based on the host transcriptome, not the entire host genome, since for 
genomes as large as the macaque genome, building the index on the entire genome would require 
a large amount of memory. Hence, masking by capturing reads that pseudoaligned to the host with 
kallisto will only capture host reads from mature mRNA molecules. If the D-list is passed both the 
transcriptome and the genome, it will be able to mask mature and nascent RNA molecules as well 
as RNA molecules originating from intergenic regions. The D-list index avoids excessive memory 
requirements by restraining the index to distinguishing sequences between viral and host 
sequences. As a result, reads that contain non-flanking host and viral sequences will not be filtered. 
Moreover, the D-list will favor viral assignment in the case of an entirely ambiguous read. Neither 
of these issues applies to masking with bwa since the alignment with bwa was performed against 
the host genome. Since bwa uses a smaller seed length than kallisto’s default k-mer size of 31, bwa 
provides more sensitive alignment of sequencing reads against the host genome and provides the 
most stringent filtering. 
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To confirm that reads identified as viral were not misaligned macaque reads, we extracted 
randomly selected sequencing reads from 11 virus IDs and aligned them against the nucleotide 
sequence database with BLAST+56 (Fig. 5b). The reads associated with virus IDs identified by all 
masking workflows (u202260, u103829, u102324, u102540, and u1001) BLAST-aligned with 
relatively low coverage and identity to several superkingdoms, including viruses. For u202260, 
approximately ⅔ of the extracted reads yielded no BLAST results. Given that the majority of RdRP 
sequences in the PalmDB originate from unknown viruses lacking reference genomes, it was 
expected that these sequences would not yield confident BLAST results. However, given the 
comprehensiveness of the macaque genome57, misaligned macaque sequences should BLAST to 
the macaque genome with high coverage and identity. The next two virus IDs, u39566 and u11150, 
were filtered out by the bwa workflow and did not BLAST to the viruses superkingdom. However, 
their BLAST results displayed relatively low coverage and identity, which would not be expected 
from macaque sequences. Below, we provide further evidence that u11150 sequences might have 
originated from an ongoing viral infection. This was likely an instance where filtering with bwa 
was too conservative and threw out viral sequences. u41991 was identified as viral by the bwa 
workflow but filtered out by the D-list + host capture workflow. Based on the BLAST results for 
u41991, which include high coverage and identity matches for eukaryotes, it is likely that filtering 
is the appropriate action. u164445 and u162905 were filtered by either capturing the host reads or 
using the D-list, respectively, and BLAST to eukaryotes with high coverage and identity, 
illustrating that a combination of the two methods leads to more robust results. Finally, sequences 
identified as u149397, which were filtered by all masking options and are only retained without 
masking, BLAST to eukaryotes with high coverage and identity.  

Separately from exploring the results of different read masking options, we also investigated the 
question of virus filtering. Host read capture with kallisto generates two separate count matrices: 
One contains counts for reads that are solely viral, and a second contains counts for viral reads that 
also pseudoaligned to the host transcriptome. The distinction between filtering reads and filtering 
viruses becomes evident when examining the two count matrices: for the macaque PBMC dataset, 
we found that most viruses found in ≥ 0.05 % of cells had at least some reads that also mapped to 
the host transcriptome, including reads for ZEBOV (Fig. 4c and 5a). Moreover, aligning without 
host masking often led to the detection of more positive cells (Extended Data Fig. 5). Hence, naive 
masking of reads can lower the detection sensitivity of viruses that seem truly present. Our masking 
workflows facilitate the identification of viruses with a high likelihood of being truly present based 
on conservative host read masking, while also obtaining unmasked reads for these viruses to 
prevent the decrease in sensitivity inherent to masking host reads. We applied this approach when 

Fig. 5: a, The number of positive cells obtained for 12 different virus IDs by each masking workflow. Each 
masking workflow is described in detail in the Methods section. The cell counts for all viruses detected above 
the QC threshold for all masking workflows are shown in Extended Data Fig. 5. b, pyCirclize plots showing the 
BLAST+56 results of randomly selected sequencing reads for each of the novel viruses shown in a (excluding 
the known virus ZEBOV which corresponds to virus ID ‘u10’). Each circular plot corresponds to the results for 
one virus ID. Each light grey sector corresponds to one sequencing read that links to the superkingdoms (red 
(eukaryotes), yellow (bacteria), orange (viruses), and dark grey (archaea) sectors) based on its BLAST+ 
alignment results. The width of the connecting link indicates the BLAST+ alignment coverage percentage, and 
its color indicates the identity percentage. For u202260, approximately ⅔ of the extracted reads yielded no 
BLAST results.  
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training the logistic regression models described below to minimize the occurrence of false viral 
absence. 

The presence of novel putative viruses perturbs host gene expression in macaque blood cells, 
allowing prediction of viral presence based on host gene expression at single-cell resolution 

We used kallisto translated search and the PalmDB to map the viral profiles of PBMC samples 
from 19 rhesus macaques sequenced at different stages of Ebola virus disease (EVD)37 (Fig. 6a) at 
single-cell resolution. The dataset consisted of 30,594,130,037 reads in total. After alignment to 
both the host genome (using the standard kallisto workflow) and PalmDB (using kallisto translated 
search with D-list + host capture masking), and quality control using the host count matrix 
(Extended Data Fig. 3a, Methods), we retained 202,525 PBMCs. We used the Leiden algorithm58 
to partition the PBMC transcriptomes into 18 clusters of similar macaque gene expression, of 
which 16 could be assigned cell types based on common marker genes (Extended Data Fig. 3d).  

The obtained cell types, their marker gene expression and relative abundance over time are 
consistent with the results reported by Kotliar et al.37, including the emergence of a cluster of 
immature neutrophils and decreased lymphocyte abundance, especially natural killer cells, during 
EVD (Fig. 7a). While density based PBMC isolation typically removes neutrophils, immature 
neutrophils are less dense than mature neutrophils and can co-isolate with PBMCs during 
infections37. Clusters of the same cell type were often separated by time point (Fig. 7a), indicating 
changes in macaque gene expression within the same cell type over the course of the EVD. This 
is in agreement with results obtained by mass cytometry in Kotliar et al.37.  

ZEBOV count data from this analysis workflow was also consistent with previously reported 
results. Since only a small fraction of the RNA molecules in these tissue samples are viral and of 
those, we only detect the RdRP, the measured absolute RNA counts for any one virus per cell are 
low (Extended Data Fig. 3e). As a result, we converted the virus count matrix into a binary matrix 
where each virus was recorded as being either present or not present in each cell. This approach 
has been previously validated for sparse single-cell RNA, specifically viral, sequencing data24,59, 
and prevented the need for further normalization by individual cellular viral load, which may 
introduce biases49. The presence of virus in each cell was then used to determine the viral 
abundance among populations of cells composed of clusters, cell types, or tissues. First, we used 
the binary virus count matrix to validate the detection of ZEBOV. Samples obtained during 
incubation displayed the highest abundance of ZEBOV-positive cells, and ZEBOV-positive cells 
remained detectable at all following time points (Fig. 7b, top left). These trends are consistent with 
the results reported by Kotliar et al.37. 

The parallel analysis of viral and host gene counts at single-cell resolution allowed the 
identification of infected cell types based on host gene expression to reveal that ZEBOV-positive 
cells consisted predominantly of monocytes (Fig. 7b, top right). These results are consistent with 
previous literature on ZEBOV tropism60 and reproduce the ZEBOV abundance trends obtained by 
alignment to the ZEBOV genome37. This indicates that while the total viral counts obtained by 
kallisto translated search with PalmDB are low due to only detecting the RdRP, comparative trends 
are captured accurately. All Ebolavirus reads were identified correctly as ZEBOV with no counts 
detected for other Ebolavirus species (Extended Data Fig. 6). 
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Our analysis workflow identified virus-like sequences with sOTUs other than ZEBOV in this 
dataset. These virus-like sequences may be present due to, amongst others, viral infection of the 
host, host endogenous viral elements, infection of microbes residing in the host, infection of food 
ingested by the host, or laboratory contamination. Fig. 7b (bottom left and right) shows the total 
number of distinct sOTUs (corresponding to distinct virus IDs) detected over time and per cell 
type. We observed a slight increase in the number of distinct sOTUs detected per cell during the 
later stages of EVD, driven by T cell, B cell, and neutrophil clusters with high fractions of cells 
during later EVD stages (Fig. 7a). Neutrophils showed the highest numbers of distinct sOTUs per 
cell (Fig. 7b, bottom right). Since neutrophils fulfill their microbicidal function through 

Fig. 6: a, Schematic overview of the single-cell RNA sequencing data collected by Kotliar et al.37. Kotliar et al. 
performed single-cell RNA sequencing of  peripheral blood mononuclear cell (PBMC) samples from 19 rhesus 
macaques at different time points during Ebola virus disease (EVD) after infection with Zaire Ebolavirus 
(ZEBOV) using Seq-Well74 with the S3 protocol75. A subset of the PBMC samples were spiked with Madin-Darby 
canine kidney (MDCK) cells. This schematic was adapted from the original design by Kotliar et al. b, For each 
virus-like sequence, the percentage of positive MDCK cells is plotted against the percentage of positive macaque 
cells. Virus IDs were categorized into ‘shared’, ‘macaque only’, ‘MDCK only’, and ‘undefined’ as described in 
the Methods section. The insert shows the same plot without log scale axes such that zero counts are included. 
A red edge marks contaminating virus-like sequences also observed in sequencing data obtained from blank 
sequencing libraries containing only sterile water and reagent mix (Extended Data Fig. 9c). c, Bar plot showing 
the fraction of positive cells obtained for each viral order, as defined by the PalmDB sOTUs, for each category. 
d, Fraction of positive cells for all ‘macaque only’ and ‘shared’ virus IDs. Each row corresponds to one animal 
at a specific EVD time point. The fractions were scaled to range from zero to one for each virus ID. The raw 
total fraction of positive cells for each virus ID across all samples is shown in blue below.   
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phagocytosis and pinocytosis, it is possible that viral RNA was picked up by these cells through 
ingestion. In the following paragraphs, we explore different approaches to interpret the presence 
of these virus-like sequences.  

Among the samples in this dataset, we detected a total of 11,176 virus-like sequences with at least 
one read that aligned to the PalmDB and did not align to the host (Fig. 4c), including many sOTUs 
from genera known to infect rhesus macaques (Extended Data Fig. 6)61. However, the majority of 
these virus-like sequences were expressed in less than 0.05 % of cells, which we defined as a 
quality control (QC) threshold (Fig. 6b, Methods). All of the virus-like sequences with positive 
cell fractions above the QC threshold in macaque cells that passed quality control can be explored 
in this interactive Krona plot62 broken down by animal, timepoint, taxonomy, and fraction of cells 
occupied by each virus: https://tinyurl.com/23h6k36u. 

A subset of samples included a spike-in of Madin-Darby canine kidney (MDCK) cells, resulting 
in a total of 23,500 MDCK cells after quality control and species separation (Extended Data Fig. 
3b and c, Methods). We used the spike-in to further break down the viruses into ‘macaque only’, 
‘MDCK only’, and ‘shared’ viruses (Fig. 6b, Methods). We expected that shared viruses occurring 
in both macaque and MDCK cells would include viruses introduced by the contamination of 
laboratory reagents used during sample preparation and sequencing63, cell-free RNA 
contamination, endogenous retroviruses52,64, and widespread latent infections. After filtering and 
categorization of viruses, we detected 4 (including ZEBOV) macaque only, 7 MDCK only, 15 
undefined, and 54 shared viruses. This result suggests that the majority of virus-like sequences 
detected in this dataset were introduced through contamination. Indeed, many virus-like sequences 
that fell into the shared category could also be detected in ‘blank’ sequencing libraries containing 
only sterile water and reagent mix, providing evidence for their origin in widespread laboratory 
reagent contamination63 (Fig. 6b, Extended Data Fig. 9c). The sOTUs of the macaque only and 
shared virus IDs, when available, are listed in Extended Data Table 1. Fig. 6c shows the fraction 
of reads occupied by each viral order (as defined in the sOTU for each virus ID) for macaque only, 
MDCK only, and shared viruses. Among viruses shared between macaque and MDCK cells, 
Levivirales (recently renamed to Norzivirales65), Articulavirales (which include the family of 
influenza viruses), and viruses of unknown taxonomy made up the largest fractions. Norzivirales 
are an order of bacteriophages, the majority of which were discovered in metagenomics studies66. 
They might have been introduced through bacterial contamination during sample preparation and 
sequencing. The shared viruses also included orders such as Herpesvirales, which are widespread, 
sometimes spreading through cross-species infections, and are known to persist in their host as 
latent infection67,68. Virus-like sequences detected in MDCK cells included sOTUs from the order 
of Bunyavirales, which infect a wide range of hosts, including MDCK cells69, as well as virus-like 
sequences of unknown order. Virus-like sequences found only in macaque cells were of unknown 
order, in the order Mononegavirales, which includes ZEBOV, and in the order Nidovirales, which 
are known to infect mammals and include the family Coronaviridae. Virus-like sequences of 
known order (based on the sOTU) for each group are reasonably expected to be present in the 
respective sample types and the context of the hosts, which supports the biological validity of these 
viral read classifications. 

To visualize the virus profiles of individual animals and over time, we plotted the fraction of 
positive cells for each macaque only and shared virus ID per animal and time point (Fig. 6d). The 
relative viral abundances varied, both between individual monkeys and time points. Notably, in 
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some instances where the same animal was measured across several time points, the viral profile 
of this animal was reproduced in the later time point (Fig. 6d, Fig. 8a). The viral profiles of animal 
NHP08 at -4 days pre-infection and 6 days post-infection with ZEBOV are highlighted in the 
heatmap (Fig. 6d). Animals NHP1 and NHP2 each had two samples sequenced 20 hours apart 
which displayed highly similar viral profiles for each animal over time (Fig. 8a). This suggests 
that viral profiles sampled and sequenced within a short time window are coherent over time and 
across samples which is consistent with expectation. Several virus-like sequences, including 
u102324, were present in all animals and time points with relatively similar abundance (Fig. 6d, 
Extended Data Fig. 7a), coherent with their classification as shared sequences likely originating 
from contamination. 

We then attempted to further determine which virus-like sequences were likely present due to viral 
infection of the host based on cell-type specificity and a coinciding host antiviral response. We 

Fig. 7: a, The fraction of cells occupied by each EVD time point is shown per Leiden cluster. Each Leiden 
cluster was assigned a cell type based on previously defined marker genes (Extended Data Fig. 3d). On the 
right, the number of distinct sOTUs detected in each cell is shown. Each grey dot corresponds to one cell, and 
the black dot corresponds to the mean across all cells. b, The number of ZEBOV (u10) positive cells per 10,000 
cells is plotted per EVD time point (left) and per cell type (right). For each time point and cell type, the number 
of distinct sOTUs found per cell is plotted at the bottom. Each grey dot corresponds to one cell, and the black 
dot corresponds to the mean across all cells. c, The number of positive cells per 10,000 cells is shown per cell 
type for the remaining three (excluding ZEBOV) macaque only virus IDs and two shared virus IDs. Virus IDs 
that show relatively high cell type specificity are shown on the left, and virus IDs with relatively even detection 
across all cell types are shown on the right.  
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visualized the viral tropism of the remaining three (other than ZEBOV) macaque only viruses. 
Two of them, u102540 and u11150, displayed relatively high sample-specificity while u39566 was 
abundant across all samples, similar to the shared viruses u134800 and u102324 (Extended Data 
Fig. 7a). The sOTU of u102540 indicates that it is an Alphacoronavirus sp., which are known to 
infect rhesus macaques61. u102324 is predicted to belong to the family Iflaviridae (Extended Data 
Table 1), which is a family of viruses that infect insects70, and the viral reads from this virus ID 
were likely not the result of an ongoing viral infection. The remaining virus IDs, u11150, u39566, 
and u134800, are of unknown taxonomy across all taxonomic ranks. 

Two virus-like sequences exhibited cell-type specificity suggestive of viral infection. Of the three 
macaque only virus IDs excluding ZEBOV, we found that u102540 and u11150 showed high cell 
type specificity, while u39566 was expressed more evenly across all cell types (Fig. 7c). While 
u39566 was categorized as ‘macaque only’ above, it is likely a contaminating sequence given its 
presence in the blank sequencing libraries (Extended Data Fig. 9c). The lack of cell-type specificity 
coincides with u39566 sequences originating from reagent contamination and illustrates the 
importance of combining several different approaches, as described here, when interpreting the 
presence of virus-like sequences. u102540 (Alphacoronavirus sp.) exhibited high fractions of 
positive cells in neutrophils, while u11150 also displayed lower expression in monocytes, B cells, 
and T cells. Neutrophils play an important role in the innate immune response and promote virus 
clearance through phagocytosis. During phagocytosis, neutrophils engulf virions and apoptotic 
bodies. It is possible that the cell type specificity towards neutrophils observed here was due to 
neutrophils engulfing viral RNA during phagocytosis rather than viral tropism. As expected, the 
shared viruses u134800 and u102324 did not display cell type specificity (Fig. 7c). 

The simultaneous analysis of the host and virus count matrices supported that several viruses 
identified were likely infecting the host and revealed virus-induced host gene expression. We 
hypothesized that viral presence in individual cells may be predicted based on the host gene 
expression. Since our workflow maintains single-cell resolution, we can analyze viral presence 
and host gene expression at single-cell resolution in parallel and investigate whether the presence 
of a virus affects host gene expression. We trained logistic regression models for all macaque only 
and shared (present in both MDCK and macaque cells) virus-like sequences to predict viral 
presence or absence in individual cells based on the cell’s host gene expression. The models were 
either trained on all or only highly variable macaque genes and with or without the donor animal 
and time point as covariates. After training models using a random selection of virus-positive and 
an equal number of virus-negative cells, we tested the model predictions on held-out test cells (Fig. 
8b, Extended Data Fig. 8a and e). Given the cell type specificity of several of the virus-like 
sequences, virus-negative training cells were selected to be of the same cell types as virus-positive 
cells to ensure that we were not simply predicting cell type rather than viral presence. 

We found that the presence or absence of virus-like sequences that displayed cell type- and sample-
specificity (u10 (ZEBOV), u102540, and u11150) could be predicted at > 70 % accuracy (Fig. 8b 
and c), although for u11150, the sensitivity decreased with the inclusion of the covariates donor 
animal and EVD time point (Extended Data Fig. 8a). The sensitivity and specificity are shown in 
Extended Data Fig. 8a. By contrast, the presence of viruses that did not display cell type-specificity 
(u39566, u134800, and u102324) could not be predicted better than random chance (50 %) (Fig. 
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8b and c, Extended Data Fig. 8a). As a negative control, we scrambled the binary virus count 
matrix used for model training, effectively randomizing the presence or absence of a virus in each 
cell. As expected, the prediction accuracies dropped to those expected at random (50 %) (Fig. 8b 
and c). We also confirmed that the different virus-like sequences with high prediction accuracy, 
including the known infection with ZEBOV (u10), were not present in the same cells (Extended 
Data Fig. 7b). 

Fig. 8: a, Several animals included in the macaque PBMC dataset were sampled twice, at two different time 
points. Here, for each virus-like sequence, the percentage of positive cells occupied by the later time point is 
shown. The number of positive cells for each virus-like sequence was first normalized to the total number of 
cells in the sample. Only virus-like sequences for which at least one time point had positive counts were included 
for each animal. A percentage of 50% indicates that the number of positive cells for that virus-like sequence 
remained stable between the two time points. b, We trained logistic regression models to predict the presence 
of specific virus-like sequences based on host gene expression at single-cell resolution. The accuracy of the 
logistic regression model trained on all macaque genes with donor animal and EVD time point as covariates is 
shown for the known virus ZEBOV (u10) and five novel virus IDs. The presence of virus-like sequences that 
displayed high cell type specificity could be predicted with >70 % accuracy, while virus-like sequences with low 
cell type specificity could not be predicted above random chance (50 %, marked by the red dashed line). As a 
negative control, viral presence and absence labels were scrambled at random in the training data, causing the 
prediction accuracy to drop to random chance (50 %), as expected. The error bars indicate the standard 
deviation between models initialized with different random seeds. The bottom bar plots show the number of 
testing and training cells for each virus (also see Extended Data Fig. 8c). c, Heatmap of the prediction accuracy 
(averaged across models initialized with different random seeds) across all possible modeling combinations 
(training on all macaque genes versus only highly variable (HV) genes, and with or without covariates donor 
animal and EVD time point).  
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This learnable relationship between viral presence and host gene expression provides further 
evidence that reads from u10, the known infection with ZEBOV, as well as novel virus-like 
sequences u102540 and potentially u11150, originated from an ongoing viral infection and/or viral 
clearance which perturbed host gene expression at the single-cell level.  

The only other virus-like sequence which displayed prediction accuracies > 70% was u202260 
(Extended Data Fig. 8e). This was surprising, as u202260 was categorized as shared between 
macaque and MDCK cells and was also present in the blank sequencing libraries (Fig. 6b, 
Extended Data Fig. 9c), indicating that it likely originated from laboratory reagent contamination. 
However, although its prediction accuracies were relatively high, the gene weight correlation 
between different models was low for u202260 (Extended Data Fig. 8b) and the standard deviation 
of gene weights within the same model generated with different random seeds was comparatively 
high (Extended Data Fig. 9a), indicating that genes were weighted differently between models and 
seeds for u202260. This suggests that a shared feature across genes, such as cell health or 
sequencing depth, was learned rather than the expression of specific genes.  

To explore virus-induced host gene expression, we identified macaque genes with the largest 
predictive power and smallest variation (across models initialized with different random seeds), 
for the regression models trained on highly variable genes with the donor animal and time point 
as covariates (Extended Data Fig. 9a). Approximately one third of the macaque Ensembl IDs did 
not have annotated gene names, which is a common problem for genomes from non-model 
organisms. We used gget45 to translate annotated Ensembl IDs to gene symbols and to perform an 
enrichment analysis on the returned gene symbols using Enrichr71 against the 2023 Gene Ontology 
(GO) Biological Processes database72. The highly weighted genes for u10 (ZEBOV) returned 
significant enrichment results for several virus-associated GO terms including ‘Negative 
Regulation Of Viral Entry Into Host Cell (GO:0046597)’, ‘Negative Regulation Of Viral Life 
Cycle (GO:1903901)’, and ‘Regulation Of Viral Entry Into Host Cell (GO:0046596)’, validating 
our approach for the identification of genes associated with a virus-related host gene response. 
Similarly, the enrichment analysis of highly weighted genes for the novel virus ID u11150 mapped 
to ‘Receptor-Mediated Endocytosis Of Virus By Host Cell (GO:0019065).’ For virus ID u102540, 
several highly ranked GO terms were indicative of an inflammatory response, such as ‘Positive 
Regulation Of Type II Interferon Production (GO:0032729)’ and ‘Positive Regulation Of Cytokine 
Production (GO:0001819)’. Several predictive genes were associated with the positive regulation 
of cytokine production and modulation of inflammation (e.g., FCN1 for u 10, MAPK11 for 
u11150, and CD14 for u102540). Overall, these results provide further evidence that the novel 
virus-like sequences u102540 and u11150 originated from an ongoing viral infection or clearance 
resulting in a host gene response.  

Discussion 

Our work provides a method for extracting a ‘virome’ modality from any bulk or single-cell RNA-
seq data by leveraging a new method that maps and quantifies species-level viral RdRP sequences 
against an amino acid reference. We built on the existing alignment software kallisto44 and 
bustools76 and expanded them for translated alignment by (reverse) translating both the amino acid 
reference and the nucleotide sequencing reads into a common, nonredundant comma-free code. 
While we validated kallisto translated search in combination with PalmDB for the identification 
of viral RNA, our novel workflow can be applied in combination with any amino acid reference. 
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kallisto translated search permits the alignment of nucleotide sequencing data to any amino acid 
reference at single-cell resolution. For example, amino acid sequences of antimicrobial peptides77 
can be used as a reference to identify these peptides in bulk and single-cell RNA sequencing data. 
Moreover, amino acid transcriptomes of homologous species may be used as a reference for 
species with missing or incomplete reference genomes. In this case, operating in the amino acid 
space will increase similarity due to the robustness to single-nucleotide mutations. 

We validated kallisto translated search in combination with PalmDB for the detection and 
identification of viral RNA in next-generation sequencing data at single-cell resolution. As we 
noted in the introduction, the number of viruses expected to cause human infectious disease is 
eclipsed by the comparatively few viruses with complete reference genomes and the even smaller 
number of viruses that have been detected in humans. It is important to monitor the presence of 
viruses in the human population, both to prevent pandemic outbreaks and to further understand the 
role of viruses in various diseases. We have shown that such monitoring and novel virus discovery 
can be performed using single-cell RNA-seq data. Moreover, our work provides a platform for 
characterizing omnipresent virus-like sequences associated with different environments, hosts, and 
laboratory reagents.  

The virus count matrix, which is obtained using kallisto translated search in combination with 
PalmDB, is an entirely new modality that we have begun to explore in this paper. We found that 
this matrix is sparse with relatively low molecule counts per cell (Extended Data Fig. 3e). While 
using the highly conserved RdRP to identify viruses makes our workflow very efficient and is the 
key to being able to detect over 100,000 distinct viruses, RdRP RNA only makes up ~1 % of the 
total viral RNA present in the sequencing data analyzed here (Extended Data Fig. 2) resulting in 
the sparsity of the virus count matrix. We anticipate that this number varies between virus species 
and sequencing technology, making it difficult to define a general detection limit. To normalize 
this sparse and low-count matrix, we binarized the virus count matrix such that each cell was either 
positive or negative for each virus. Given the low counts, we expect that there is a high occurrence 
of false negatives in the virus count matrix while the confidence in positive cells is high. However, 
we have shown that relationships between viral presence and host gene signatures can be learned 
regardless.  

A common problem in the identification of microbial sequences is the misidentification of host 
sequences as microbial. The PalmDB is not a curated database, and it is possible that some virus-
like sequences in the PalmDB are not derived from viruses. In addition, differentiating between 
ongoing infections, reagent or sample contamination, cell-free RNA contamination, endogenous 
retroviruses, and widespread latent infections is a challenge. The kallisto translated search method 
computes both the virus count matrix and the host gene expression matrix at single-cell resolution, 
providing unique opportunities for parallel analysis of viral signatures and their effect on host gene 
expression. We describe different approaches to evaluate the nature of viral sequences identified 
by kallisto translated search, including taxonomic assignment of viruses based on the sOTU, 
analysis of viral tropism, extraction and BLAST alignment of raw sequencing reads identified as 
viral, and using a sample spike-in to categorize viruses into shared and sample-specific viruses. 
Moreover, we describe and evaluate different workflows to mask the host genome and/or 
transcriptome, allowing different levels of conservativeness and the quantification of sequencing 
reads that align to viral RdRPs as well as the host transcriptome. Notably, the efficacy of masking 
the host genome and/or transcriptome will depend on the quality and comprehensiveness of said 
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genome/transcriptome. In this case, the majority of host sequences originated from rhesus 
macaque, which has a very comprehensive genome assembly57. Finally, we trained logistic 
regression models to predict viral presence at the single-cell level based on host gene expression, 
achieving high accuracy indicative of an ongoing viral infection or clearance. Our results show 
that it is beneficial to combine multiple of these approaches, which we validate and describe in 
detail, for the interpretation of the presence of virus-like sequences. 

Focusing on the RdRP produces biases between virus species with varying life cycles, depending 
on the sequencing technology used. The genome of many negative-strand RNA (-ssRNA) is 
replicated as well as transcribed. Transcription produces short, often polyadenylated mRNA 
products which are captured and sequenced, including the RdRP. In contrast, the genome of many 
positive-strand RNA (+ssRNA) viruses undergoes replication, but not transcription. Instead, the 
genome is translated into polyproteins, which are subsequently cleaved. While +ssRNA virus 
genomes are often polyadenylated and hence are captured by polyA capture-dependent single-cell 
RNA sequencing technologies, sequencing ~100 bases from the polyA-tail using a poly(T) primer 
will not capture the RdRP if it is located too far from the polyA-tail (see the schematic overview 
of the SARS-CoV genome in Fig. 1). In this scenario, the RdRP of +ssRNA viruses will, however, 
be captured by bulk RNA sequencing and random hexamer primers in single-cell RNA sequencing 
(Extended Data Fig. 4c). Hence, sequencing using random hexamer primers overcomes the virus 
life cycle-dependent bias for single-cell technologies. Many novel sequencing technologies, 
including Parse Biosciences SPLiT-Seq33, employ random hexamer primers to produce full-
coverage sequencing and overcome biases introduced by poly(T) primers. We foresee that the use 
of random priming in sequencing will continue to increase. It is worth noting that, depending on 
the technology, intra-genomic sequences of +ssRNA viruses might be captured by poly(T) primers 
nonetheless due to mispriming. Even with random priming, many biases will remain. For example, 
any viral RNA that is not polyadenylated will not be captured efficiently by single-cell sequencing 
technologies that rely on polyA capture. 

We hope that kallisto translated search will be widely implemented in the analysis of next-
generation sequencing data to identify the presence of viral RNA, as well as inform the 
experimental design of research aiming to identify microbial reads from RNA sequencing data. 
We describe several experimental design choices that greatly impact the results of microbial read 
quantification, such as the sequencing primer design and sample spike-ins. The masking 
workflows described in this paper and the associated challenges are applicable to any 
metagenomics analysis beyond the identification of viral reads, and the workflows described here 
can be easily applied to nucleotide references, such as a 16S database for the characterization of 
the human gut microbiome78.  

Methods 

Developing kallisto translated search and optimization for the identification of viral RNA 

Building kallisto translated search and choosing a new ‘genetic code’ 
To perform translated alignment, the nucleotide and amino acid sequences need to be translated 
into a shared ‘language’. This might be achieved by translating nucleotides to amino acids or vice 
versa. Since kallisto encodes nucleotide characters in 2 bits (allowing a total of 4 distinct 
nucleotides to be encoded), encoding the 20 different amino acids resulting from translated 
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nucleotide sequences was not feasible. Moreover, reverse translating the amino acid sequences to 
nucleotides would be intractable due to the redundancy in the genetic code leading to a 
combinatorial explosion in nucleotide sequences consistent with an amino acid reference. We 
therefore translated the nucleotide sequences and reverse translated the amino acid sequences 
using a fixed synthetic code designed to reduce spurious alignments. We explored two different 
codes for this translation: 1. Comma-free code and 2. A code that maximizes the Hamming 
distance between frequently occurring amino acids (Extended Data Fig. 10a). While maximizing 
Hamming distance is advantageous in terms of avoiding sequence multimapping (see next 
paragraph), a comma-free code prevents off-frame alignment since any k-mers formed by adjacent 
words will not be included in the dictionary. We found that the comma-free code recalls viral 
sequences equally well compared to maximizing the Hamming distance between amino acids 
(Extended Data Fig. 10b).  

Optimization of PalmDB for the identification of viral reads in RNA sequencing data 
Due to the occurrence of the ambiguous amino acid characters B, J, and Z, 62 out of 296,623 viral 
sequences were transformed into identical sequences after reverse translation to comma-free code. 
The identical sequences were merged and assigned a representative virus ID. Due to the high 
similarity between viral RdRP sequences, the loss of aligned sequences due to multimapping to 
several reference sequences was a major concern. Moreover, the necessity of reverse translating 
the amino acid sequences further decreases the Hamming distance between reference sequences 
by approximately 30 % (Extended Data Fig. 10d). To overcome this problem, we tried clustering 
the amino acid sequences based on 99 % similarity using the MMseqs2 algorithm79. This resulted 
in 6,518 clusters with high concordance of taxonomy labels between sequences in the same cluster 
(Extended Data Fig. 10e). However, although clusters were computed correctly based on their 
concordance with taxonomy, this resulted in 67.4 % of sOTUs not being detected anymore 
(compared to 3.3 % when using the complete index). As a result, we decided to group the sOTUs 
instead, treating virus IDs with the same taxonomy across all main taxonomic ranks like transcripts 
of the same gene (available here: https://tinyurl.com/4wd33rey). This retained the alignment 
percentage of the complete index while allowing highly accurate taxonomic assignment and 
minimal sequence loss to multimapping (Fig. 3b). It is noteworthy that the default kallisto k-mer 
length of 31 nucleotides equals only 10 amino acids. Given the architecture of the current kallisto 
version (0.50.1), which is optimized for 64-bit k-mers with each nucleotide occupying two bits, k 
cannot be set > 31. This will change in future versions. 

Validation and benchmarks 

Visualization of the Kraken2 and kallisto translated search alignments of ZEBOV sequences 
Kotliar et al.37 performed single-cell RNA sequencing of PBMC samples from rhesus macaques 
after infection with ZEBOV (further described below). A subset of the data obtained by Kotliar et 
al. at 8 days post-infection with ZEBOV was used to visualize the identification of RdRP 
sequences using kallisto (v0.50.1) translated search. The first 100,000,000 raw sequencing reads 
from the GSE158390 library SRR12698539 were aligned to the ZEBOV reference genome 
(NC_002549.1) using Kraken2 v2.1.2 and to the optimized PalmDB using kallisto translated 
search. Aligned reads from both workflows were extracted and realigned to the ZEBOV genome 
using bowtie239 v2.2.5 and SAMtools40 v1.6 as previously described80. The visualization shown 
in Extended Data Fig. 2 was generated from the resulting sorted bam files with the NCBI Genome 
Workbench41. 
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Testing robustness to mutation 
676 Zaire ebolavirus (ZEBOV) RdRP sequences were identified by aligning the first 100,000,000 
raw sequencing reads from the GSE158390 library SRR12698539 to the optimized PalmDB using 
kallisto translated search. Mutation-Simulator48 (v3.0.1) was used to add random single nucleotide 
base substitutions to the RdRP sequences at increasing mutation rates. We performed 10 rounds 
of simulated mutations per mutation rate. The sequences were subsequently aligned using kallisto 
translated search against the complete PalmDB, Kraken2 translated search against the RdRP amino 
acid sequence of ZEBOV with a manually adjusted NCBI Taxonomy ID to allow compatibility 
with Kraken2, and kallisto standard workflow against the complete ZEBOV nucleotide genome 
(GCA_000848505.1). We subsequently calculated the recall percentage over all 676 sequences. 
For kallisto translated search, the recall percentage was calculated based on species-level 
taxonomic assignment. Since the other two methods were only given the target virus sequence as 
a reference and did not have to distinguish between different viruses, their recall percentage was 
calculated based on all aligned sequences. The recall percentage over all 676 sequences for the 10 
rounds at each mutation rate is shown in Fig. 2c. Extended Data Fig. 4b shows the precision with 
which kallisto translated search identified the correct virus versus other taxonomies at each 
mutation rate. The recall and precision at mutation rates > 0 were fitted with an inverse sigmoid 
function using non-linear least squares using the scipy.optimize.curve_fit function (scipy v1.11.1). 

Alignment and quantification of viral counts in validation datasets 
The sequencing reads for each library used in the validation (Fig. 3a) were aligned with kallisto 
translated search against the PalmDB index D-listed with the corresponding host genome and 
transcriptome. The hosts were (i) human (GRCh38 Ensembl version 109) for GSE150316, 
GSM4548303 and the SARS-CoV-2 saliva, nasal, and throat samples, (ii) mouse (GRCm39 
Ensembl version 109) for GSM5974202, and (iii) rhesus macaque (Mmul_10 Ensembl version 
109) and dog (ROS_Cfam_1.0 Ensembl version 109) for GSE158390. Count matrices were 
generated with bustools (v0.43.1). Fig. 3a shows the total raw counts obtained for each target virus 
species. RT-qPCR and RNA-ISH counts were reproduced from the original publications. 

Validating the alignment of nucleotide sequences to an amino acid reference and assessing the 
accuracy of the taxonomic assignment 
To validate the mapping of nucleotide sequences to an amino acid reference with kallisto translated 
search and assess the accuracy of the taxonomic assignment, we reverse translated all amino acid 
sequences in the PalmDB using the ‘standard’ genetic code from the biopython81 (v1.79) 
Bio.Data.CodonTable module and DnaChisel82 (v3.2.10) (with a slight adaptation to allow the 
ambiguous amino acids ‘X’, ‘B’, ‘J’, and ‘Z’ occurring in the PalmDB, which was later 
implemented in DnaChisel v3.2.11). A unique synthetic ‘cell barcode’ was generated for each 
resulting nucleotide sequence, and the sequences were aligned to the optimized amino acid 
PalmDB with kallisto translated search, keeping track of each sequence separately as if they were 
an individual cell. The synthetic barcodes allowed subsequent analysis of the alignment result for 
each individual sequence, and the accuracy of the obtained taxonomy based on the virus ID to 
sOTU mapping provided by PalmDB is shown in Fig. 3b. For each sequence, we differentiated 
between ‘correct’ or ‘incorrect’ taxonomic assignment, or, if the sequence did not return any 
results, whether it was ‘multimapped’ (the sequence aligned to multiple targets in the reference 
and could not unambiguously be assigned to one) or ‘not aligned’ (the sequence was not aligned), 
at each taxonomic rank. 
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Analysis of macaque PBMC data 

Kotliar et al.37 performed single-cell RNA sequencing of  PBMC samples from 19 rhesus 
macaques at different time points during Ebola virus disease (EVD) after infection with ZEBOV 
(EBOV/Kikwit; GenBank accession MG572235.1; Filoviridae: Zaire ebolavirus) using Seq-
Well74 with the S3 protocol75. A subset of PBMC samples were spiked with Madin-Darby canine 
kidney (MDCK) cells. The data is available at GSE158390, and we obtained the raw sequencing 
data from the European Nucleotide Archive using FTP download links and ffq (v0.3.0)83. The data 
is split into 106 datasets containing 30,594,130,037 reads in total.  

Alignment to the host transcriptome 
The rhesus macaque Mmul_10 and domestic dog ROS_Cfam_1.0 genomes were retrieved from 
Ensembl version 109. The reference index was built using both genomes and the kb-python 
(v0.28.0 with kallisto v0.50.1 and bustools v0.43.1) ref command to create a combined index 
containing the transcriptome of both species. We quantified the gene expression in each of the 106 
datasets using the standard kallisto-bustools workflow13 with the ‘batch’ and ‘batch-barcodes’ 
arguments to process all files simultaneously while keeping track of each batch, and with the ‘x’-
string ‘0,0,12:0,12,20:1,0,0’ to match the Seq-Well technology. Since the Seq-Well technology 
does not provide a barcode on-list, we generated a barcode on-list using the ‘bustools allowlist’ 
command, requiring each barcode to occur at least 1,000 times. We subsequently corrected the cell 
barcodes using the generated on-list and computed the count matrix using the ‘bustools count’ 
function.  

Host cell quality control, filtering, and separation of macaque and MDCK cells 
The count matrix generated by bustools was converted to h5ad using kb_python.utils.kb_utils and 
read into Python using anndata v0.8.0. Metadata such as donor animal, the presence of an MDCK 
spike-in, and time point were added to the AnnData object from the SRR library metadata provided 
by Kotliar et al.37. The cell barcodes were filtered based on a minimum number of UMI counts of 
125 obtained from the knee plot of sorted total UMI counts per cell (Extended Data Fig. 3a), 
resulting in a mean UMI count of 1,401 after filtering. The cells were further filtered based on a 
maximum percentage of mitochondrial genes of 10 %, based on a combination of macaque and 
dog mitochondrial genes facilitated by Scanpy84 (v1.9.3) and gget45 (v0.28.0). Cells were 
categorized as macaque if a maximum of 10 % of their UMIs originated from dog genes and vice 
versa (Extended Data Fig. 3b). Macaque and MDCK cells were normalized separately using 
log(CP10k + 1) with Scanpy’s normalize_total defaults of target sum 10,000 and log1p.  

Macaque cell clustering and cell type assignment 
The macaque gene count matrix was transformed by PCA to 50 dimensions applied using the log-
normalized counts filtered for highly variable genes using Scanpy’s highly_variable_genes. Next, 
we computed nearest neighbors and conducted Leiden clustering58 using Scanpy, resulting in 19 
Leiden clusters. We found that EVD time points were highly concordant across sequencing 
libraries, suggesting the lack of a batch effect (Fig. 7a, also see GitHub code repository). Each 
cluster was manually annotated with a cell type based on the expression of previously established 
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marker genes37 (Extended Data Fig. 3d). Cluster ‘Undefined 1’ was omitted because it only 
contained 12 cells. Gene names and descriptions for Ensembl IDs without annotations were 
obtained using gget45.  

Virus alignment with different masking options 
For each masking option, we quantified the gene expression in each of the 106 datasets from 
GSE158390 using kallisto with the ‘batch’ and ‘batch-barcodes’ arguments to process all files 
simultaneously while keeping track of each batch and with the ‘x’-string ‘0,0,12:0,12,20:1,0,0’ to 
match the Seq-Well technology. kallisto translated search was initiated in the ‘kallisto index’ and 
‘kallisto bus’ commands by adding the ‘—aa’ flag. Following the alignment to PalmDB with any 
of the masking options, cell barcodes were corrected using the barcode on-list generated during 
the alignment to the host as described above. 

- No mask 
The raw sequencing reads were aligned to the optimized PalmDB reference files (see 
‘Optimization of PalmDB’ above) using kallisto translated search.  

- D-list genome + transcriptome 
The raw sequencing reads were aligned to the optimized PalmDB reference using kallisto 
translated search with the added argument ‘d-list’, which was passed the concatenated macaque 
genome and transcriptome (Mmul_10 Ensembl version 109), and dog genome and transcriptome 
(ROS_Cfam_1.0 Ensembl version 109). For D-list masking options including only the genomes 
or transcriptomes (Extended Data Fig. 4a), only the genome or transcriptome files from both 
species were concatenated and passed to the ‘d-list’ argument, respectively.   

- D-list genome + transcriptome + ambiguous reads filtered 
This workflow was performed as described above for the ‘D-list genome + transcriptome’ with an 
unreleased version of kallisto where ambiguous reads in the D-list will be thrown out as host 
instead of being assigned to virus (Extended Data Fig. 4a). We explored this option to investigate 
the effect of ambiguous reads during D-list masking. However, we found that the alignment results 
did not notably differ from the masking option ‘D-list genome + transcriptome’ (Fig. 4a and 
Extended Data Fig. 5). 

- Host read capture with kallisto 
The raw sequencing reads were aligned to the combined macaque and dog reference index 
generated during the alignment to host with ‘kallisto bus’ with the added ‘-n’ flag. The ‘-n’ flag 
keeps track of the read line number of each aligned read; the line numbers are added to the resulting 
BUS file. The raw sequencing reads were also aligned to the modified PalmDB with kallisto 
translated search with the added ‘-n’ flag to obtain all reads that map to viral RdRPs. Subsequently, 
the BUS file returned by kallisto translated search was split into reads that only aligned to viral 
RdRPs and reads that also aligned to host based on the read line numbers in the BUS files. This 
step was performed using ‘bustools capture’ to, first, obtain all reads that belonged to a single 
batch file (of the 106 dataset files), and, second, capture all reads that also aligned to host. 

- Host read capture with kallisto + D-list genome + transcriptome 
Host reads were captured with kallisto as described above under ‘Host read capture with kallisto’. 
However, during the alignment of the raw sequencing reads to PalmDB with the ‘-n’ flag, we also 
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used the ‘d-list’ flag to mask the host genomes and transcriptomes as described above under ‘D-
list genome + transcriptome’. 

 

- Prior alignment to host with bwa 
bwa54 v0.7.17 was installed from source. The ‘bwa index’ command was used to generate a bwa 
index from the concatenated macaque and dog genomes (Mmul_10 and ROS_Cfam_1.0 from 
Ensembl v109). The raw sequencing reads were subsequently aligned to the bwa index using the 
‘bwa mem’ command, aligning each file separately. For each FASTQ file, the names of all 
unmapped reads were extracted using ‘samtools view’ (SAMtools40 v1.6), and a new FASTQ file 
including only unmapped sequences was generated using the ‘seqtk subseq’ command (v1.4; 
https://github.com/lh3/seqtk). The resulting FASTQ files containing the sequencing reads that did 
not map to the host genomes were aligned to the optimized PalmDB reference files using kallisto 
translated search.  

Extraction and BLAST alignment of viral reads 
Randomly selected sequencing reads from three libraries that included reads that mapped to the 
viruses of interest were aligned to the optimized PalmDB with kallisto translated search including 
the ‘-n’ flag, without any host read masking. Reads that mapped to the viruses of interest were 
subsequently captured and extracted from the raw sequencing FASTQ files using ‘bustools 
capture’ and ‘bustools extract’.  

BLAST+56 v2.14.1 was installed from source and the BLAST nt database was downloaded using 
the update_blastdb.pl command. 10 reads were randomly chosen for each target virus for each 
library and were BLASTed against the nt database using the blastn algorithm. Sequences that 
aligned to the polyA tail were recognized by the occurrence of ‘AAAAAAAAAAAA’ or 
‘TTTTTTTTTTTT’ in the aligned part of the subject or query sequences and removed from the 
results. BLAST results were subsequently plotted using pyCirclize.Circos (v1.0.0; 
https://github.com/moshi4/pyCirclize). 

Virus quality control 
The viral count matrix generated using the ‘Host read capture with kallisto + D-list genome + 
transcriptome’ masking workflow was converted to h5ad using kb_python.utils.kb_utils and read 
into Python using anndata v0.8.0. Metadata such as donor animal, the presence of an MDCK spike-
in, and time point were added to the AnnData object from the SRR library metadata provided by 
Kotliar et al.37. For each cell, the host species and cell type were added from the host matrices 
generated as described above. The virus count matrix was subsequently binarized, such that for 
each cell, each virus was either present or absent. The viruses were thresholded to viruses that were 
observed in ≥ 0.05 % of cells in either species. 

Virus categorization into shared, ‘macaque only’, and ‘MDCK only’ viruses 
For each virus ID, the virus was defined as ‘shared’ if the fold change between the fraction of 
positive macaque cells and the fraction of positive MDCK cells was less than or equal to 2. Viruses 
were assigned the category ‘macaque only’ if the virus was seen in ≥ 0.05 % of macaque cells and 
≤ 7 MDCK cells, and vice versa for the category ‘MDCK only’. These thresholds were defined 
based on the percentages of positive cells observed for each virus in each species, as shown in Fig. 
6b. 
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Generation of the Krona plot 
KronaTools62 v2.8.1 was installed from source. We generated a data frame containing the total 
numbers of positive cells for each sOTU seen in ≥ 0.05 % of macaque cells for each animal and 
time point (including only cells that passed host cell quality control). The ktImportText tool was 
used to generate a Krona plot HTML file from a text file generated from this data frame. 

Logistic regression models to predict viral presence based on host gene expression 
Logistic regression models the log odds of an event as a weighted linear combination of some 
predictor variables. That is, the natural log of the ratio of the probability 𝑝 that an event occurs to 
the probability that it does not occur is modeled:  

 

where each 𝑥! is a predictor variable with corresponding weight 𝛽! and 𝛽" is an intercept. Here, 𝑝 
is the probability of viral presence or absence in a given cell, predicted based on a linear 
combination of normalized host gene count values (denoted as 𝑥 with a total of 𝐺 modeled genes). 
Viral presence or absence is modeled for a single virus at a time. To control for covariates, we also 
included animal identifier (denoted as 𝑦 with a total of 𝐴 animals) and time point (denoted as 𝑧 
with a total of 𝑇 time points), which were one-hot encoded for fits: 

 

The magnitude of the weight value for each predictor variable corresponds to that variable’s 
influence on event probability, with large positive weights increasing the probability and large 
negative weights decreasing the probability of the event. Thus, for our purposes, an analysis of 
gene weights suggests which genes are likely to correlate with viral infection. For models 
parameterized by highly variable (HV) genes, the host (macaque) matrix was subset to highly 
variable genes as defined above. To reduce the occurrence of false negative viral counts, the 
logistic regression models were trained using the viral count matrix obtained without any masking 
of the host genes. However, the models were trained for viruses that were filtered based on the 
more conservative masking options (‘macaque only’ and ‘shared’ viruses). To further reduce the 
occurrence of false negative viral counts, we filtered the virus and host matrices to include only 
the top 50 % of cells according to the sum of raw host reads per cell before training the models. 
This was done to reduce the effects introduced by varying sequencing depths. For example, cells 
with a lower sequencing depth will have a higher likelihood of a false negative viral count.   

For viruses with more virus-negative than virus-positive cells, half of the virus-positive cells and 
an equal number of virus-negative cells were randomly selected to train the logistic regression 
models. For viruses with more virus-positive than virus-negative cells, half of the virus-negative 
cells and an equal number of virus-positive cells were randomly selected for training. In both cases, 
the remaining cells were held out for testing the performance of trained models. Given the cell 
type specificity of the viruses whose presence could be predicted with high accuracy, we wanted 
to confirm that we were not simply predicting cell type. To this end, virus-negative training cells 
were selected to be of the same cell types as virus-positive cells (Extended Data Fig. 8d). The 
number of training and testing cells for each virus are shown in Extended Data Fig. 8c. 
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For models that included covariates, donor animal and EVD time point were one-hot encoded and 
appended to the gene expression training matrix. All models included an intercept. Models were 
trained with L2 weight regularization using the sklearn.linear_model.LogisticRegression (sklearn 
v1.0.1) classifier with a maximum of 100 iterations to predict the probability of viral presence at 
single-cell resolution. Virus-positive cells were assigned class label 1, and virus-negative cells 
were assigned class label 0. All four possible combinations of two modeling choices (highly 
variable versus all genes, and covariates versus no covariates) were tested, and the results are 
shown in Fig. 8c. Accuracy, specificity, and sensitivity were calculated for each model on the held-
out testing cells (Extended Data Fig. 8a). A negative control where labels of viral presence and 
absence for each virus were randomly scrambled in the training data was included in the modeling 
experiments. For the scrambled labels, the original ratio of virus-positive to virus-negative cells 
was maintained.  

All results were averaged across models generated using six different random seeds for parameter 
optimization and random selection of cells for training and testing. 

Enrichment analysis of predictive genes 
Of the top 50 highly variable macaque genes with the largest positive average weights in the 
regression model we selected those for which the standard deviation of the weights was less than 
half than the lowest weight. Here, we used the model trained on highly variable genes with 
covariates donor animal and time point. The gene weight distributions and thresholds are shown 
in Extended Data Fig. 9a. Approximately one third of the macaque Ensembl IDs did not have 
annotated gene names. We used gget45 to translate annotated Ensembl IDs to gene symbols and to 
perform enrichment analysis on the returned gene symbols using Enrichr71 against the 2023 Gene 
Ontology (GO) Biological Processes database (‘GO_Biological_Process_2023’)72. The reported P 
values were corrected with the Benjamini-Hochberg method73.  
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Data availability 
 

Sample Methods Data shown 
in 

DOI GEO accession 

Lung autopsy samples 
from COVID-19 

patients 

Bulk RNA 
sequencing; 
RNA-ISH 

Fig. 3a https://doi.org/
10.1038/s4146
7-020-20139-7 

GSE150316 

Self-collected saliva, 
anterior nares swab, 
and oropharyngeal 
swab samples from 

individuals enrolled in 
a COVID-19 

household 
transmission study 

Bulk RNA 
sequencing with 

viral 
surveillance 

panel 
enrichment 

(Illumina Cat. 
20040536 and 

20088154); 
RT-qPCR 

Fig. 3a https://doi.org/
10.1128/spectr
um.03873-22 

 
https://doi.org/
10.1093/pnasne

xus/pgad033 

Raw sequencing 
data is not 
publicly 

available per 
participant 

privacy practices 

SARS-CoV-2 infected 
human iPSC derived 

cardiomyocytes 

SMART-Seq V4 Fig. 3a https://doi.org/
10.1016/j.xcrm
.2020.100052 

GSM4548303 

Blood samples from 
rhesus macaques 

infected with Zaire 
ebolavirus 

Seq-Well S3; 
RT-qPCR 

Fig. 2-8; 
Extended Data 

Fig. 1-9 

https://doi.org/
10.1016/j.cell.2

020.10.002 

GSE158390 

Lungs from APOE 
knock-in mice 

infected with SARS-
CoV-2 

SPLiT-Seq  
(Parse 

Biosciences) 

Extended Data 
Fig. 4c 

https://doi.org/
10.1038/s4158
6-022-05344-2 

GSM5974202 

Table 1: Availability of data analyzed in this paper. 
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File Description Category 

viral sequences in laboratory 
reagents.h5ad 

Count matrix containing virus-like sequences found in sequencing 
libraries comprised of only sterile water and laboratory reagents 

Alignment of 
‘blank’ sequencing 

libraries to the 
PalmDB 

host alignment results.zip Raw alignment results obtained by kallisto after alignment to the 
macaque and dog (to account for the MDCK spike-in) transcriptomes 

Alignment of the 
macaque PBMC 
data37 to the host 
transcriptome(s)  

host QC.h5ad Filtered count matrix containing all host cells 
canis QC norm leiden.h5ad Filtered and clustered count matrix containing MDCK cells 

macaque QC norm leiden.h5ad Filtered and clustered count matrix containing macaque cells 
macaque QC norm leiden 

celltypes.h5ad 
Filtered and clustered count matrix containing macaque cells with cell 

type assignments 
virus no mask alignment 

results.zip 
Raw alignment results obtained by kallisto translated search after 

alignment to the PalmDB without masking host sequences 

Alignment of the 
macaque PBMC 

data37 to the 
PalmDB for the 
detection of viral 

RNA with different 
workflows for the 
masking of host 
genome(s) and 

transcriptome(s) 

virus no mask.h5ad Count matrix obtained through the alignment above with added metadata 

virus dlist cdna alignment 
results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host transcriptome(s) using the 

D-list 
virus dlist cdna.h5ad Count matrix obtained through the alignment above with added metadata 

virus dlist dna alignment 
results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host genome(s) using the D-list 

virus dlist dna.h5ad Count matrix obtained through the alignment above with added metadata 

virus dlist cdna dna alignment 
results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host genome(s) and 

transcriptome(s) using the D-list 
virus dlist cdna dna.h5ad Count matrix obtained through the alignment above with added metadata 

virus dlist cdna dna amb 
alignment results.zip 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host genome(s) and 

transcriptome(s) using the D-list + forcing ambiguous sequences to be 
discarded 

virus dlist cdna dna 
ambiguous.h5ad Count matrix obtained through the alignment above with added metadata 

virus host capture alignment 
results.tar.gz 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB + reads that align to the host transcriptome(s) 

were captured 
virus host-captured.h5ad Count matrix obtained through the alignment above with added metadata 

virus host capture dlist cdna dna 
alignment results.tar.gz 

Raw alignment results obtained by kallisto translated search after 
alignment to the PalmDB while masking host genome(s) and 
transcriptome(s) using the D-list + reads that align to the host 

transcriptome(s) were captured 
virus host-captured dlist cdna 

dna.h5ad Count matrix obtained through the alignment above with added metadata 

bwa unmapped reads.tar.gz Raw sequencing files obtained after removal of host sequences based on 
alignment with bwa 

virus bwa alignment results.zip 
Raw alignment results obtained by kallisto translated search after 

alignment to the PalmDB after reads that align to the host genome(s) with 
bwa were removed 

virus bwa.h5ad Count matrix obtained through the alignment above with added metadata 

models.zip Logistic regression models to predict viral presence based on host gene 
expression 

Logistic regression 
models 

palmdb human dlist cdna 
dna.idx 

Pre-computed PalmDB reference index with human genomic and 
transcriptomic sequences masked using D-list 

Pre-computed 
references for 
future use with 

kallisto translated 
search 

palmdb mouse dlist cdna 
dna.idx 

Pre-computed PalmDB reference index with mouse genomic and 
transcriptomic sequences masked using D-list 

Table 2: Availability of data generated in this paper. The data is available on Caltech Data under the DOIs 
10.22002/krqmp-5hy81 and 10.22002/k7xqw-88d74. 
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The PalmDB reference files optimized for use with kallisto translated search for the identification 
of viral sequences in bulk and single-cell RNA sequencing data are available here: 
https://tinyurl.com/4wd33rey. 

The data generated in this paper is freely and publicly available on Caltech Data under the DOIs 
10.22002/krqmp-5hy81 and 10.22002/k7xqw-88d74. 

Code availability 

The code used to generate all of the results and figures reported in this paper, starting from the raw 
sequencing reads, can be found here: https://github.com/pachterlab/LSCHWCP_2023. The code 
is organized by figure panel and provided in immediately executable Google Colab notebooks to 
maximize the reproducibility of the results and methods described in this manuscript.  
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Extended Data 

Extended Data Table 1: Virus ID to species-like operational taxonomic unit (sOTU) mapping for the most highly 
expressed viruses (in the same order as shown in Fig. 6d). Virus IDs that are further mentioned in the paper are 
marked in blue. Virus IDs not included in this list are of unknown taxonomy across all taxonomic ranks. 
 
 

Virus ID Phylum Class Order Family Genus Species 
u102540 Pisuviricota Pisoniviricetes Nidovirales Coronaviridae Alphacoronavirus . 
u10 Negarnaviricota Monjiviricetes Mononegavirales Filoviridae Ebolavirus Zaire ebolavirus 
u10240 Pisuviricota Pisoniviricetes Nidovirales Arteriviridae . . 
u1001 Negarnaviricota Insthoviricetes Articulavirales Orthomyxoviridae Alphainfluenzavirus Influenza A virus 
u100291 Negarnaviricota Monjiviricetes Mononegavirales . . . 
u103829 Negarnaviricota Insthoviricetes Articulavirales Orthomyxoviridae . . 
u110641 Duplornaviricota Resentoviricetes Reovirales Reoviridae . . 
u101227 Pisuviricota Pisoniviricetes Picornavirales Picornaviridae . . 
u100188 Kitrinoviricota Alsuviricetes Martellivirales Closteroviridae . . 

u27694 Peploviricota Herviviricetes Herpesvirales Herpesviridae Varicellovirus Bubaline 
alphaherpesvirus 1 

u100245 . . . Fusariviridae . . 
u10015 Duplornaviricota Chrymotiviricetes Ghabrivirales Totiviridae . . 
u100733 Negarnaviricota . . . . . 
u100173 Lenarviricota Miaviricetes Ourlivirales Botourmiaviridae Ourmiavirus . 
u100196 Negarnaviricota Monjiviricetes . . . . 
u100599 Negarnaviricota Ellioviricetes . . . . 
u100644 Lenarviricota Amabiliviricetes Wolframvirales . . . 
u100296 Pisuviricota Pisoniviricetes Picornavirales Dicistroviridae . . 
u100017 Lenarviricota Allassoviricetes Levivirales Leviviridae . . 
u100002 Lenarviricota Allassoviricetes Levivirales . . . 
u100012 Lenarviricota Allassoviricetes . . . . 
u100024 Pisuviricota Duplopiviricetes Durnavirales Picobirnaviridae . . 
u100048 Lenarviricota Amabiliviricetes . . . . 
u100302 Negarnaviricota Monjiviricetes Mononegavirales Rhabdoviridae . . 
u100074 Lenarviricota Howeltoviricetes Cryppavirales . . . 
u100289 Negarnaviricota Ellioviricetes Bunyavirales . . . 
u100026 Pisuviricota Duplopiviricetes Durnavirales . . . 
u100111 Duplornaviricota Chrymotiviricetes Ghabrivirales . . . 
u100139 Kitrinoviricota Alsuviricetes Martellivirales . . . 
u100154 Pisuviricota Duplopiviricetes Durnavirales Amalgaviridae . . 
u100251 Pisuviricota Duplopiviricetes . . . . 
u100177 Kitrinoviricota Tolucaviricetes Tolivirales . . . 
u100215 Duplornaviricota Chrymotiviricetes . . . . 
u100049 Lenarviricota Miaviricetes . . . . 
u100000 Kitrinoviricota Tolucaviricetes Tolivirales Tombusviridae . . 
u100001 Lenarviricota Howeltoviricetes Cryppavirales Mitoviridae . . 
u100007 Lenarviricota . . . . . 
u100004 Lenarviricota Miaviricetes Ourlivirales . . . 
u100011 Lenarviricota Howeltoviricetes . . . . 
u100093 Pisuviricota Duplopiviricetes Durnavirales Partitiviridae . . 
u100116 Pisuviricota Pisoniviricetes . . . . 
u100019 Pisuviricota Duplopiviricetes Durnavirales Picobirnaviridae Picobirnavirus . 
u100076 Kitrinoviricota Tolucaviricetes . . . . 
u100028 Pisuviricota . . . . . 
u100153 Lenarviricota Miaviricetes Ourlivirales Botourmiaviridae . . 
u100031 Kitrinoviricota Alsuviricetes . . . . 
u100145 Pisuviricota Pisoniviricetes Sobelivirales . . . 
u102324 Pisuviricota Pisoniviricetes Picornavirales Iflaviridae . . 
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Extended Data Fig. 1: 676 ZEBOV RdRP sequences were identified by aligning a subset of 100,000,000 single-
cell RNA sequencing reads of macaque PBMC samples obtained at 8 days post-infection with ZEBOV37 to the 
optimized PalmDB using kallisto translated search. We subsequently aligned the sequences to PalmDB reference 
indices from which (i) all Ebolavirus species were removed (dark blue), (ii) all Ebolavirus genera were removed 
(medium blue), or (iii) all Filoviridae were removed (light blue). In each scenario, a subset of sequences aligned 
to the nearest remaining relative based on the main taxonomic rank, suggesting that kallisto translated search 
can detect the highly conserved RdRP of a large number of viral species, beyond the number of sequences in the 
PalmDB database, while still providing reliable sOTU-based taxonomic assignment of lower-rank taxonomies. 
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Extended Data Fig. 2: Visualization of the identification of RdRP sequences with kallisto translated search. We 
selected a subset of 100,000,000 reads obtained using Seq-Well sequencing of macaque peripheral blood 
mononuclear cell (PBMC) samples obtained at 8 days post-infection with ZEBOV37. We aligned the reads to the 
PalmDB amino acid sequences with kallisto translated search. We also aligned the reads to the complete ZEBOV 
nucleotide genome using Kraken2 (standard nucleotide alignment)27. Aligned reads from both alignments were 
extracted and realigned to the ZEBOV genome using bowtie239, a BAM file was created using SAMtools40, and 
the alignment was subsequently visualized NCBI Genome Workbench41.  
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Extended Data Fig. 3: a, Knee plot of sorted total UMI counts per cell and library saturation plot of host (rhesus 
macaque and MDCK) cells sequenced by Kotliar et al.37 b, Canis lupus (dog/MDCK) over Macaca mulatta 
(macaque) UMI count for each cell. Cells were categorized as macaque if a maximum of 10 % of their UMIs 
originated from dog genes and vice versa. c, The obtained numbers of macaque, dog (MDCK), and 
uncategorized cells after species separation. d, Mean expression of marker genes used for cell type assignment 
per macaque Leiden cluster. The barplot shows the number of cells in each cluster. Cluster ‘Undefined 1’ was 
omitted because it only contained 12 cells. e, Frequency of host and viral gene counts in individual cells. 
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Extended Data Fig. 4: a, Schematic overview of different host masking options, extending the masking options 
shown in Fig. 4a. Reads that align to PalmDB and are considered viral are marked in orange, and reads that 
align to the host genome or transcriptome are marked in black or grey, respectively. The barplot shows the 
number of distinct sOTUs, defined by distinct virus IDs, observed in ≥ 0.05 % of cells for each workflow. b, 
Precision of species-level taxonomic assignment at increasing simulated mutation rates. Mutation-Simulator48 
was used to add random single nucleotide base substitutions to 676 ZEBOV RdRP sequences obtained by Seq-
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Well sequencing37 at increasing mutation rates. We performed 10 simulations per mutation rate. The sequences 
were subsequently aligned using kallisto translated search against the complete PalmDB. The recall percentages 
at each mutation rate are shown in Fig. 2c. c, Fraction of counts obtained for the known viral infection (here, 
SARS-CoV-2) and per viral strandedness of other sOTUs per primer type. Lung samples from mice infected with 
SARS-CoV2 were sequenced with SPLiT-Seq85 and aligned to PalmDB using kallisto translated search using the 
D-list to mask the host (here, mouse) genome. The plot shows the fraction of counts obtained for SARS-CoV as 
well as all sOTUs of different strandedness per primer type. d, The de Bruijn graph generated from the reverse 
translated PalmDB sequences in the kallisto translated search workflow, visualized and colored using Bandage 
v0.8.186.  
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Extended Data Fig. 5: The number of positive cells for each individual virus ID obtained by different host 
masking options. Each virus ID shown here was observed in ≥ 0.05 % of cells. The host masking options are 
visualized in Extended Data Fig. 4a. 
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Extended Data Fig. 6: Number of positive cells per 10k cells for virus-like sequences from genera known to 
infect rhesus macaques61 in the data from Kotliar et al.37 analyzed using kallisto translated search with PalmDB. 
Host sequences were masked using the D-list option with the host genomes and transcriptomes, followed by host 
read capture using kallisto. No quality control thresholding of virus-like sequences was performed prior to 
generating this plot and the majority of these virus-like sequences were filtered out during quality control, and 
identification of contaminating sequences. 
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Extended Data Fig. 7: a, For each virus ID, the fraction of positive animal (top) and time point (bottom) samples 
was plotted. A sample was considered positive if at least 0.05 % of cells were positive. b, The number of positive 
cells for each virus ID or any combination of virus IDs for the count matrices generated from host-masked reads 
(D-list host genome and transcriptome + host transcriptome read capture) (left) and reads without any host 
masking (right). A large amount of reads for u202260 were masked when conservatively removing host reads 
(Fig. 5a). The plots were generated using PyVenn (https://github.com/tctianchi/pyvenn). 
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Extended Data Fig. 8: a, We trained logistic regression models to predict the presence of specific viruses based 
on host gene expression at single-cell resolution. The average accuracy, specificity, and sensitivity of the logistic 
regression models trained on highly variable (HV) or all macaque genes with or without donor animal and EVD 
time point as covariates are shown for ZEBOV (u10) and five novel virus-like sequences. Error bars indicate 
the standard deviation between models initialized with different random seeds. As a negative control, viral 
presence and absence labels were scrambled at random in the training data. b, Correlations of the average 
weights of predictive genes for models trained on HV genes with and without covariates on the real and 
scrambled labels. The weight correlations are lost when the model is trained using the scrambled labels. Virus 
IDs with high cell type specificity have slightly higher correlations than those with low cell type specificity. The 
color bar indicates the standard deviation (SD) of gene weights generated using different random seeds in the 
model trained on HV genes with covariates. The weights were max normalized between random seeds before 
computing the average and SD. c, The number of cells used to train and test the logistic regression models for 
ZEBOV (u10) and five novel virus-like sequences. d, Total number of training cells per cell type. The total 
consists of an equal number of virus-positive and -negative cells. e, Average prediction accuracy of models 
trained on HV genes with donor animal and EVD time point as covariates for all ‘macaque only’ and ‘shared’ 
viruses. Error bars indicate the standard deviation between models initialized with different random seeds.   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2025. ; https://doi.org/10.1101/2023.12.11.571168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.11.571168
http://creativecommons.org/licenses/by/4.0/


 
43 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2025. ; https://doi.org/10.1101/2023.12.11.571168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.11.571168
http://creativecommons.org/licenses/by/4.0/


 
44 

Extended Data Fig. 9: a, Average weight distributions of predictive genes from the models trained on highly 
variable genes with donor and time point as covariates for the four virus-like sequences with high predictive 
accuracy. The weights were averaged across models initialized using different random seeds and the standard 
deviations (SD) of the weights between seeds are shown in red. Gene weights were max normalized between 
random seeds before computing the average and SD. The dashed, grey lines indicate the minimum average gene 
weight and maximum SD for genes included in the enrichment analysis. b, Enrichment analysis of predictive 
genes from the regression model trained on highly variable genes with donor and time point as covariates. 
Approximately one third of the macaque Ensembl IDs did not have annotated gene names, which is a common 
problem for genomes from non-model organisms. We used gget45 to translate annotated Ensembl IDs to gene 
symbols and to perform enrichment analysis using Enrichr71 against the 2023 Gene Ontology (GO) Biological 
Processes database (‘GO_Biological_Process_2023)72. Gene names are listed on the bar plot. Reported P 
values were corrected with the Benjamini-Hochberg method. c, Sequencing reads were obtained by sequencing 
multiple ‘blank’ sequencing libraries containing only sterile water and reagent mix. The plot shows the fraction 
of reads that map to different virus IDs for each sequencing technology. The fractions were normalized to the 
total number of reads obtained for each technology. The data was generated by Porter et al.63 and analyzed 
using kallisto translated search with PalmDB. Virus IDs also detected in the macaque dataset are marked in 
red.  
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Extended Data Fig. 10: a, Hamming distances between amino acids in the comma-free code (left) and a second 
code that maximizes Hamming distances between amino acids that occur most often (right). b, We reverse 
translated all amino acid sequences in the PalmDB using the ‘standard’ genetic code (see Methods). The reverse 
translated PalmDB RdRP sequences were subsequently aligned to the optimized PalmDB amino acid reference 
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(see Methods) with kallisto translated search. The left plot shows the expected and observed counts for each 
sOTU when kallisto performs the pseudoalignment in the comma-free code space. The plot on the right shows 
the expected and observed counts for each sOTU when kallisto performs the pseudoalignment using a second 
code that maximizes the Hamming distances between reverse translated amino acids. c, Occurrence of each 
amino acid in the PalmDB. d, Percentage of differing amino acids or nucleotides between 10,000 sequences 
randomly selected from the PalmDB before and after reverse translation using the standard genetic code 
(optimized for human) and comma-free code. e, The virus orders of RdRP sequences sorted based on their 
clustering by MMseqs279 (see Methods).    
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