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Abstract 

Pathogen clearance and resolution of inflammation in patients with pneumonia require an 

effective local T cell response. Nevertheless, local T cell activation may drive lung injury, 

particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-

2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of 

T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia 

caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 

432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and 

respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow 

cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. 

In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early 

and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital 

discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was 

associated with favorable outcomes, while activation of NF-κB-driven programs late in disease 

was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T 

cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more 

favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein 

complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T 

cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who 

recover, yet these responses progress to NF-κB activation against non-structural proteins in 

patients who go on to experience poor clinical outcomes. 
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Introduction 

Severe pneumonia due to SARS-CoV-2 is responsible for the bulk of the acute morbidity and 

mortality caused by the COVID-19 pandemic (1). Patients with severe SARS-CoV-2 pneumonia 

experience prolonged durations of respiratory failure when compared to patients with pneumonia 

secondary to other pathogens, increasing the risk of secondary bacterial pneumonia and other 

complications of critical illness (2, 3). During the pandemic, we used a systems biology approach 

that included data generated from bronchoalveolar lavage (BAL) sampling of the lungs of patients 

with severe pneumonia to suggest that spatially localized inflammatory circuits between alveolar 

macrophages and T cells sustain prolonged inflammation in patients with SARS-CoV-2 

pneumonia (4). This model, which has since been confirmed by others (5-8), highlights the 

unusual importance of alveolar T cells in the immune response to SARS-CoV-2. Nevertheless, 

longitudinal data describing T cell responses to SARS-CoV-2 has been limited to analysis of 

peripheral blood samples (9-13). These studies suggest that a coordinated response between 

interferon-producing innate and adaptive immune cells drives viral clearance in patients with less 

severe COVID-19. In contrast, older patients with more severe disease exhibit excessive 

inflammatory immune cell activation and inadequate type I interferon production. Whether these 

responses reflect those in the alveolar space is not known. Furthermore, whether the T cell 

responses in the alveolus are unique to COVID-19 or are common to pneumonia irrespective of 

pathogen is also unknown, as most studies have compared patients with COVID-19 to healthy 

controls. These questions take on added importance as the pandemic wanes and scientists and 

clinicians question whether therapies shown to benefit patients with SARS-CoV-2 pneumonia will 

be effective in patients with pneumonia secondary to other pathogens. 

 

We examined alveolar T cell responses in 432 BAL fluid samples collected serially from 273 

patients with severe pneumonia, 74 of them with SARS-CoV-2 pneumonia, all of whom developed 

respiratory failure requiring mechanical ventilation. All of these samples were collected before 
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effective vaccines for SARS-CoV-2 were produced. Compared to similarly ill patients with non-

COVID-19 etiologies of pneumonia and respiratory failure, we found that abundance of T cell 

subsets expressing interferon-stimulated genes and targeting structural SARS-CoV-2 proteins 

(Spike and Nucleocapsid) were associated with survival, whereas a T cell activation profile 

dominated by a TNF-α/NF-κB inflammatory signature and enrichment in SARS-CoV-2 ORF1ab 

antigen specificity was associated with hospital mortality in patients with severe SARS-CoV-2 

pneumonia. These findings suggest a unique pattern and evolution of T cell responses associated 

with severe SARS-CoV-2 infection in the alveolar space that may drive clinical outcomes 

(Graphical Abstract).  
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Graphical Abstract 
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Results 

Cohort demographics 

The Successful Clinical Response in Pneumonia Therapy (SCRIPT) study is a prospective, 

single-center observational cohort study of mechanically ventilated patients who undergo lower 

respiratory tract sampling with at least one BAL procedure to evaluate suspected pneumonia as 

part of routine clinical care. To evaluate the alveolar T cell response to severe pneumonia, we 

focused on clinical BAL fluid samples obtained from June 2018 through August 2020 from patients 

with known or suspected pneumonia and respiratory failure requiring mechanical ventilation who 

consented to enroll in SCRIPT. During this time period, 273/337 (81%) participants enrolled in 

SCRIPT had at least one BAL fluid sample that underwent flow cytometry analysis; we identified 

these 273 patients as the cohort for this study (Supplemental Figure 1A). Of these 273 

participants, 33 were adjudicated to have a non-pneumonia etiology for their respiratory failure 

(non-pneumonia controls, most often due to aspiration, cardiogenic pulmonary edema, or 

atelectasis). The remainder were diagnosed with pneumonia: 133 with pneumonia due to a 

bacterial pathogen (other pneumonia), 74 with SARS-CoV-2 pneumonia with or without bacterial 

superinfection (COVID-19), and 33 with pneumonia due to another virus with or without bacterial 

superinfection (other viral pneumonia). Some of these patients have been described in other 

publications (4, 14, 15). None of the patients had received SARS-CoV-2 vaccines, as the study 

period preceded their availability. Cohort demographics and clinical characteristics are shown in 

Supplemental Table 1, and some de-identified clinical information from this cohort has been 

published on PhysioNet (16). Demographics, body mass index, and the severity of illness as 

measured by Sequential Organ Failure Assessment (SOFA) score and Acute Physiology Score 

(APS) were similar across groups. Patients with COVID-19 had nominally lower rates of common 

comorbidities than the overall cohort. The percentages of samples obtained from study 

participants with viral pneumonia that also contained a bacterial superinfection were 46.1% for 

SARS-CoV-2 pneumonia and 38.9% for other viral pneumonia (p = 0.603, Fisher exact test). As 
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most of these samples were collected before publication of the first randomized controlled trial 

that demonstrated efficacy of corticosteroids in patients with COVID-19 (the RECOVERY trial) 

(17), the administration of corticosteroids was not systematically guided by diagnosis. One-third 

of the cohort was received in external transfer from an outside hospital. 

 

Cellular composition and T cell immunophenotype of BAL fluid 

We obtained 546 BAL fluid samples from the 337 patients enrolled in SCRIPT from June 2018 

through August 2020. Partial analysis of flow cytometry data from a subset of the samples 

included in this study were previously published (4). Flow cytometry data were available in 432 

(79.1%) of the samples (Figure 1A and Supplemental Figure 1A-B). (4) Hierarchical clustering 

performed on the normalized abundance of BAL fluid cell populations revealed a distinctive 

enrichment in T cells and monocytes in patients with COVID-19, irrespective of bacterial 

superinfection status (Figure 1B and Supplemental Figure 2A-F). Macrophages were enriched 

in non-pneumonia control samples, while neutrophils were higher in the other pneumonia group 

when compared with other groups (Supplemental Figure 2G-H). Compared to samples obtained 

from patients with COVID-19 ≤48 hours following intubation (early), the proportions of monocytes, 

CD3+ T cells, and T cell subsets (CD4+ T cells, CD8+ T cells, and Treg cells) were lower and the 

proportion of neutrophils was higher in BAL fluid samples collected from patients with COVID-19 

>48 hours following intubation (late) (Figure 1C-D and Supplemental Figure 2I-M, N-O, P, and 

S). The proportion of macrophages was higher only in early samples from the non-pneumonia 

control group when compared with early samples from the other pneumonia group 

(Supplemental Figure 2Q-R).  

 

We next examined the association between hospital mortality and the proportion of immune cell 

subsets present in BAL fluid. Consistent with previous studies of BAL fluid or endotracheal tube 
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washes from patients with severe SARS-CoV-2 pneumonia (18, 19), the abundance of CD3+ T 

cells—including CD4+ T cells, CD8+ T cells, and Treg cells—was positively associated with 

survival to hospital discharge (Figure 1E and Supplemental Figure 3A, E and I). BAL fluid T cell 

abundance was not associated with outcomes in patients with pneumonia secondary to other 

viruses or bacteria, suggesting a unique pathobiology in patients with SARS-CoV-2 pneumonia. 

In contrast to an analysis of endotracheal tube washes (19), we observed a positive association 

between survival and the overall abundance of macrophages, but not monocytes, in patients with 

COVID-19 (Supplemental Figure 3C and G), perhaps reflecting differences between 

endotracheal wash fluid and BAL fluid.  

 

Changes in BAL fluid cell type composition over the course of disease were associated with 

clinical outcomes. Indeed, in patients with COVID-19, persistence of T cells in BAL fluid over time 

was associated with survival to hospital discharge, whereas a decrease in T cell and macrophage 

abundance was associated with mortality (Figure 1F and Supplemental Figure 3B, D, F, H, and 

J). In contrast, we found an inverse association between BAL fluid neutrophilia and survival to 

hospital discharge (Supplemental Figure 3K). Patients with COVID-19 who died in the hospital 

had greater neutrophilia in late samples than those who survived hospitalization (Supplemental 

Figure 3L), possibly reflecting the higher risk of late ventilator-associated pneumonia (VAP) in 

COVID-19 compared with pneumonia due to other causes (14, 15, 20) (see Supplemental 

Figure 2P). Consistent with this hypothesis, neutrophilic enrichment positively correlated with 

inflammatory markers (procalcitonin, troponin, D-dimer), steroid administration, severity of illness 

(SOFA score), driving pressure, duration of mechanical ventilation, presence of superinfection, 

and hospital mortality in patients with COVID-19 (Figure 1G), but not in patients with other causes 

of pneumonia and respiratory failure (Supplemental Figure 4A-C). In contrast, T cell enrichment 

was associated with favorable clinical parameters, including respiratory system compliance, in 

patients with COVID-19. The resolution status of the pneumonia episode based on expert clinical 
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adjudication (21) was linked to mortality in patients with severe SARS-CoV-2 pneumonia in our 

cohort (Supplemental Figure 3M-N), similar to our findings in the larger cohort of patients with 

severe pneumonia enrolled in the SCRIPT study (15).  

 

Expression of CD127 (the interleukin-7 receptor) and HLA-DR on peripheral blood T cells has 

been associated with outcomes in SARS-CoV-2 pneumonia, with CD127 correlating with less 

severe disease and better outcomes and HLA-DR correlating with worsened disease severity and 

poorer outcomes (9, 22, 23). Consistent with these observations, we found that expression of 

CD127 on CD8+ T cells in the alveolar space negatively correlated with severity of illness 

measured by SOFA score, while HLA-DR expression positively correlated with the inflammatory 

marker D-dimer among other variables (Supplemental Figure 4D). In summary, flow cytometry 

analysis of BAL fluid revealed enrichment in T cell subsets among patients with COVID-19 that 

predicted favorable clinical outcomes, including lower severity of illness, shorter duration of 

mechanical ventilation, and less hospital mortality. 
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Figure 1 

 
Figure 1. Alveolar T cell enrichment is associated with clinical outcomes in patients with 

severe SARS-CoV-2 pneumonia. (A) Alluvial diagram depicting multi-step analysis of BAL fluid 

samples with flow cytometry, bulk RNA-sequencing, and bulk TCR-sequencing in patients from 

non-pneumonia control, other pneumonia, COVID-19, and other viral pneumonia groups. The 

number of analyzed samples from unique SCRIPT-enrolled patients are illustrated at the top of 

each stratum. (B) Hierarchical clustering of flow cytometry analysis of alveolar immune cell subset 
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composition from all samples. Each column represents a BAL sample and headers are color-

coded by diagnosis, binary outcome (whether a given patient was discharged or died during 

hospitalization), duration of mechanical ventilation (blanks indicate chronically ventilated 

patients), and infection status (presence or absence of bacterial superinfection in patients with 

COVID-19 or other viral pneumonia). The VAP (ventilator-associated pneumonia) flag designates 

samples from non-pneumonia controls or patients with COVID-19 or other viral pneumonia who 

cleared the virus and then developed a bacterial pneumonia. Samples were clustered using 

Euclidean distance and Ward’s minimum variance linkage method. (C) Comparison of CD3+ T 

cell percentage between early (≤48 hours following intubation) and late (>48 hours following 

intubation) samples (q < 0.05, pairwise Wilcoxon rank-sum tests with FDR correction). (D) 

Correlation analysis between the percentage of alveolar CD3+ T cells and duration of mechanical 

ventilation with Pearson correlation coefficient. (E-F) Comparison of percent of alveolar CD3+ T 

cells between patients who were discharged from the hospital or died during their hospital course 

(E) and between early and late samples (F) (q < 0.05, pairwise Wilcoxon rank-sum tests with FDR 

correction). (G) Correlation analysis between the percentage of alveolar immune cell subsets and 

clinical, physiologic, and laboratory variables with Spearman rank correlation coefficient and FDR 

correction (q < 0.05 [*], q < 0.01 [**] and q < 0.001 [***]). Abbreviations: PaCO2 (partial arterial 

carbon dioxide pressure), HCO3 (bicarbonate), Days on MV (days on mechanical ventilation), 

SOFA (Sequential Organ Failure Assessment), WBC (peripheral white blood cells), CK (creatinine 

kinase), Vte (minute ventilation), LDH (lactate dehydrogenase), FiO2 (fraction of inspired oxygen), 

CRP (C-reactive protein), PEEP (positive end-expiratory pressure), BMI (body mass index), AST 

(aspartate aminotransferase), PaO2 (partial arterial oxygen pressure), P/F (ratio of partial arterial 

oxygen pressure to fraction of inspired oxygen), COPD (chronic obstructive pulmonary disease). 
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Transcriptional profiling of T cell subsets reveals a distinctive immune cell activation profile 

associated with clinical outcomes in patients with severe SARS-CoV-2 pneumonia. 

We flow cytometry sorted CD3ε+ T cell subsets into CD8+ T cells, CD4+ Treg cells 

(CD25hiCD127lo), and non-Treg CD4+ T cells (referred to here as CD4+ T cells) and analyzed 

samples with sufficient quantities of high-quality RNA using bulk RNA-sequencing (336 samples 

from 113 patients) (see Figure 1A and Supplemental Figure 1B). This subset largely resembled 

the larger cohort (Supplemental Figure 5A-F). We identified differentially expressed genes in 

CD8+ and CD4+ T cells (975 and 865 differentially expressed genes, respectively [FDR q < 0.05]) 

between patient groups. K-means clustering with K = 2 revealed genes in both CD8+ and CD4+ T 

cells that distinguished patients with COVID-19 from other groups (Figure 2A, Figure 3A, and 

Supplemental Files 1-4). In CD8+ T cells, Cluster 1 contained genes involved in cell proliferation, 

monocyte and T cell migration, tissue residency, and immune cell inhibition (Supplemental 

Figure 6A). Cluster 1 in CD4+ T cells contained genes associated with cell proliferation, immune 

cell activation, co-inhibitory molecules, markers of tissue resident-memory/effector-memory T 

cells, and monocyte and B cell chemoattractants (Supplemental Figure 7A). In both CD8+ and 

CD4+ T cells, genes in Cluster 2 (mostly downregulated in COVID-19) were associated with a 

resting or quiescent T cell program characteristic of naïve or central-memory T cells. We then 

examined gene ontology (GO) biological processes associated with Cluster 1 and performed gene 

set enrichment analysis (GSEA) on the pairwise comparison between COVID-19 and the 

combined non-COVID-19 pneumonia groups as well as between the COVID-19 and the other 

viral pneumonia group (Supplemental Figure 6B, Supplemental Figure 7B, Figure 2B, and 

Figure 3B). In both CD8+ and CD4+ T cells, genes upregulated in COVID-19 (Cluster 1) were 

associated with T cell proliferation, heightened immune cell activation typified by an enriched 

interferon (IFN)-γ and TNF-α signature, vascular-specific pathways, and co-inhibitory markers 

(Supplemental Figure 6C-D, Supplemental Figure 7C, and Supplemental Files 5-10).  
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Protective cellular immunity requires activation, migration, and polarization of T cells into 

appropriate effector programs tailored to control the immune response elicited by a given 

pathogen (11). In COVID-19, early induction of IFN-γ-producing T cells in the peripheral blood 

(type 1 immune response) has been linked to more favorable clinical outcomes, attributed to these 

cells’ capacity to accelerate viral clearance (24, 25). Hence, we conducted pairwise comparisons 

between early (≤48 hours following intubation) versus late (>48 hours following intubation) 

samples of alveolar CD4+ and CD8+ T cells obtained from patients with COVID-19, observing 

higher expression of genes involved in interferon-mediated signaling early in the course of 

mechanical ventilation for severe SARS-CoV-2 pneumonia (Supplemental Figure 8A-B). 

Longitudinal analysis of these interferon-stimulated genes in combined CD4+ and CD8+ T cells 

revealed greater expression in samples obtained early following intubation (Supplemental 

Figure 8C). Correspondingly, viral loads were higher in early compared with late samples 

(Supplemental Figure 8D). The magnitude and kinetics of viral load have been associated with 

disease severity and mortality (13, 26, 27). Notably, patients who succumbed to COVID-19 had 

a higher initial viral load with a slower decline compared with patients who survived their 

hospitalization (Supplemental Figure 8D-F). In most patients, viral load declined or the BAL fluid 

became PCR negative for SARS-CoV-2 over the course of COVID-19, similar to observations of 

sputum samples (28). 

 

We then analyzed BAL fluid T cell transcriptomic signatures by performing correlation analyses 

between differentially expressed genes in CD8+ and CD4+ T cells and clinical variables followed 

by GSEA with leading edge analysis. We found that T cells from patients with poor outcomes from 

severe SARS-CoV-2 pneumonia exhibited upregulation of Hallmark processes linked to 

inflammatory responses and TNF-α/NF-κB signaling and downregulation of processes associated 

with cell proliferation and IFN-γ signaling (Figure 2C-J, Figure 3C-F and H-I, Supplemental 

Figure 7D-G, and Supplemental Figure 9A-J). Conversely, higher respiratory system 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.571479doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571479
http://creativecommons.org/licenses/by-nc-nd/4.0/


compliance (a marker of normal lung function) was associated with greater expression of cell 

proliferation and interferon-related genes and downregulation of TNF-α signaling via NF-κB 

(Figure 3G and J-K and Supplemental Figure 9K-O).  

 

CD4+FOXP3+ regulatory T (Treg) cells populate the alveolar space following virus-induced lung 

injury and orchestrate tissue-protective and reparative mechanisms (29). Hence, we performed 

K-means clustering of 80 differentially expressed genes in Treg cells (FDR q < 0.05) and identified 

two clusters that distinguished patients with COVID-19 from other groups (Supplemental Figure 

10A). Notably, GSEA of the pairwise comparison between patients with COVID-19 and combined 

patients in the non-COVID-19 pneumonia groups revealed enrichment of processes linked to cell 

proliferation Supplemental Figure 10B). Comparing patients with COVID-19 to the other viral 

pneumonia group identified enrichment in interferon signaling (Supplemental Figure 10C). Most 

lung T cells are T resident memory (TRM) cells, and in mouse models of SARS-CoV infection and 

lung fluid samples from patients with severe SARS-CoV-2 pneumonia, TRM cells have been 

suggested to play a protective role (19, 30). We therefore leveraged our previously published 

single-cell RNA-sequencing dataset (4) to perform in silico cell-type deconvolution of T cell bulk 

RNA-sequencing analysis. We found the majority of both alveolar CD8+ and CD4+ T cells to be 

memory T cells across all pneumonia diagnoses (Supplemental Figure 10D-I). In CD8+ T cell 

samples from patients with COVID-19, the TRM population remained elevated irrespective of 

outcome or timing of sampling. Notably, while proliferating T cells tended to decrease in late 

samples overall, the cytotoxic compartment tended to increase in late samples from deceased 

patients with COVID-19 (Supplemental Figure 10F). Lastly, in CD4+ T cell samples from patients 

with COVID-19, both central memory and Treg cells were more abundant than cytotoxic and 

proliferating subsets (Supplemental Figure 10I). 
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Figure 2 

 
Figure 2. Transcriptional profiling of alveolar CD8+ T cells reveals distinct effector 

activation signatures that are associated with clinical outcomes that shift throughout the 
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course of severe SARS-CoV-2 pneumonia. (A) K-means clustering of 975 differentially 

expressed genes (q < 0.05, likelihood-ratio test with FDR correction) across pneumonia 

diagnoses. Columns represent unique samples and column headers are color-coded by 

diagnosis, binary outcome (whether a given patient was discharged from the hospital alive or died 

during hospitalization), duration of mechanical ventilation (blanks indicate chronically ventilated 

patients), and infection status (presence or absence of bacterial superinfection in patients with 

COVID-19 or other viral pneumonia). The VAP (ventilator-associated pneumonia) flag designates 

samples from non-pneumonia controls or patients with COVID-19 or other viral pneumonia who 

cleared the virus and then developed a bacterial pneumonia. Samples were clustered using 

Ward’s minimum variance clustering method. Representative genes are shown for each cluster. 

(B) Gene set enrichment analysis (GSEA) of Hallmark gene sets for the pairwise comparison 

between COVID-19 samples and combined non-COVID-19 samples (non-pneumonia control, 

other pneumonia, and other viral pneumonia). Count denotes pathway size after removing genes 

not detected in the expression dataset. Enrichment denotes significant (q < 0.25 with FDR 

correction) upregulated (red) and downregulated (blue) pathways by normalized enrichment 

score. (C) GSEA of genes from COVID-19 samples after performing correlation analysis of 

differentially expressed genes in CD8+ T cells and binary outcome variable with Spearman rank 

correlation coefficient computation. Count denotes pathway size after removing genes that were 

not detected. Enrichment denotes significant (q < 0.25 with FDR correction) upregulated (red) and 

downregulated (blue) pathways by normalized enrichment score (NES). (D-E) Leading edge 

analysis reveals selected core genes driving pathway enrichment signal in the binary outcome 

variable. (F) GSEA of COVID-19 samples after performing correlation analysis of differentially 

expressed genes in CD8+ T cells and the duration of mechanical ventilation variable with 

Spearman rank correlation coefficient computation. Count denotes pathway size after removing 

genes that were not detected. Enrichment denotes significant (q < 0.25 with FDR correction) 

upregulated (red) and downregulated (blue) pathways by normalized enrichment score. (G-J) 
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Leading edge analysis reveals selected core genes driving pathway enrichment signal in the 

duration of mechanical ventilation variable. 

 

Figure 3 
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Figure 3. Transcriptional profiling of alveolar CD4+ T cells reveals distinct effector 

activation signatures that are associated with clinical outcomes that shift throughout the 

course of severe SARS-CoV-2 pneumonia. (A) K-means clustering of 865 differentially 

expressed genes (q < 0.05, likelihood-ratio test with FDR correction) across pneumonia 

diagnoses. Columns represent unique samples and column headers are color-coded by 

diagnosis, binary outcome (whether a given patient was discharged from the hospital alive or died 

during hospitalization), duration of mechanical ventilation (blanks indicate chronically ventilated 

patients), and infection status (presence or absence of bacterial superinfection in patients with 

COVID-19 or other viral pneumonia). The VAP (ventilator-associated pneumonia) flag designates 

samples from non-pneumonia controls or patients with COVID-19 or other viral pneumonia who 

cleared the virus and then developed a bacterial pneumonia. Samples were clustered using 

Ward’s minimum variance clustering method. Representative genes are shown for each cluster. 

(B) Gene set enrichment analysis (GSEA) of Hallmark gene sets for the pairwise comparison 

between COVID-19 samples and combined non-COVID-19 samples (non-pneumonia control, 

other pneumonia and other viral pneumonia). Count denotes pathway size after removing genes 

that were not detected. Enrichment denotes significant (q < 0.25 with FDR correction) upregulated 

(red) and downregulated (blue) pathways by normalized enrichment score. (C) GSEA of COVID-

19 samples after performing correlation analysis of differentially expressed genes in CD4+ T cells 

and the binary outcome variable with Spearman rank correlation coefficient computation. Count 

denotes pathway size after removing genes not present in expression dataset. Enrichment 

denotes significant (q < 0.25 with FDR correction) upregulated (red) and downregulated (blue) 

pathways by normalized enrichment score. (D-E) Leading edge analysis reveals selected core 

genes driving pathway enrichment signal in the binary outcome variable. (F-G) GSEA of COVID-

19 samples after performing correlation analysis of differentially expressed genes in CD4+ T cells 

and the duration of mechanical ventilation variable (F) and respiratory system compliance variable 

(G) with Spearman rank correlation coefficient computation. Count denotes pathway size after 
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removing genes not present in expression dataset. Enrichment denotes significant (q < 0.25 with 

FDR correction) upregulated (red) and downregulated (blue) pathways by normalized enrichment 

score. (H-I) Leading edge analysis reveals selected core genes driving pathway enrichment signal 

in the duration of mechanical ventilation variable. (J-K) Leading edge analysis reveals selected 

core genes driving pathway enrichment signal in the respiratory system compliance variable. 
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Alveolar T cell receptor profiling reveals distinct patterns in patients with COVID-19. 

The specificity and complexity of T cell responses is determined by the T cell receptor (TCR). 

Accordingly, we performed bulk TCR-sequencing on CD8+ and CD4+ alveolar T cells—the bulk of 

which are TRM cells as suggested in the deconvolution analysis above—to ascertain TCR 

repertoire signatures that shape the adaptive immune response to severe pneumonia. We used 

RNA from 130 alveolar T cell samples that had sufficient residual RNA (>0.5 ng) to generate TCR-

sequencing libraries (see Figure 1A and Supplemental Figure 1B). These samples 

corresponded to 47 patients with similar gender distribution, severity of illness, and mortality 

between groups (Supplemental Figure 11A-F). 

  

The alpha diversity with clonotype richness measurement within CD8+ and CD4+ T cells combined 

was similar across groups, although there were small yet statistically significant differences based 

on pneumonia category, timing of sample acquisition relative to intubation, and patient outcome 

(Supplemental Figure 12A-C). Similar to prior reports (31-33), we found that TCR repertoire 

diversity trended lower as a function of age (Supplemental Figure 12D). Approximately 50% of 

patients with severe SARS-CoV-2 pneumonia develop a secondary bacterial pneumonia either 

as a superinfection or a de novo ventilator-associated pneumonia (VAP) following viral clearance 

(14, 15). We hypothesized that TCR repertoire diversity would become more oligoclonal (i.e., 

narrow) in response to new pathogens encountered during secondary bacterial pneumonias. 

Indeed, whereas richness increased over the course of mechanical ventilation in the non-COVID-

19 groups, we found a significant decrease in richness over time in the COVID-19 group 

(Supplemental Figure 12E), consistent with the greater risk of secondary bacterial pneumonia 

in patients with severe SARS-CoV-2 pneumonia relative to similarly ill patients with other causes 

of pneumonia and respiratory failure (14, 15). Comparing patients with COVID-19 who survived 

to hospital discharge with those who did not, we observed a statistically significant difference in 

richness only in patients who were diagnosed with a secondary bacterial infection (superinfection 
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or VAP) during their ICU course (Supplemental Figure 12F). Altogether, these findings support 

the clinical observation that secondary bacterial infections contribute to dynamic immune 

responses and outcomes in patients with severe SARS-CoV-2 pneumonia (14, 15). 

  

Patients with severe SARS-CoV-2 pneumonia share an enriched network of T cell specificity. We 

used the Grouping of Lymphocyte Interactions by Paratope Hotspots 2 (GLIPH2) algorithm (34) 

to identify disease-relevant TCRs with predicted shared antigen specificity within the large number 

of the TCR sequences obtained from alveolar T cells (CD8+ CDR3β = 37,297 and CD4+ CDR3β 

= 64,276). We applied stringent filtering criteria (Supplemental Figure 13A) to obtain enriched 

TCR clusters with the highest probability to bind similar HLA-restricted peptides across different 

pneumonia categories (Supplemental Files 11 and 12). Our network analysis for CD8+ and CD4+ 

T cells revealed greater shared TCR sequence similarity in the COVID-19 group when compared 

with the non-COVID-19 groups (Supplemental Figure 13C-E and Supplemental Figure 14A-

E). Additionally, gene usage analysis revealed a distinctive enrichment of TRBV27/TRBV12-3 

and TRBV20-1/TRBV6-6/TRBV10-1 in CD8+ and CD4+ T cells, respectively (Supplemental 

Figure 13H-I and Supplemental Figure 14I-J); these findings are consistent with observations 

in peripheral blood (35). Collectively, these results suggest an enriched network of alveolar T cell 

specificity that is peculiar to SARS-CoV-2 pneumonia. 

 

We next sought to uncover potential targets of alveolar CD8+ and CD4+ T cell responses to SARS-

CoV-2 infection. We undertook an unsupervised reverse epitope discovery approach (36) to 

interrogate post-GLIPH2-enriched alveolar CDR3β sequences and identify immunodominant 

epitope responses in patients with COVID-19 as well as other causes of pneumonia and 

respiratory failure. Specifically, we leveraged the Multiplex Identification of Antigen-Specific T-

Cell Receptors Assay (MIRA) dataset (37) to compare our observed CD8+ and CD4+ TCR 

sequences with more than 135,000 high-confidence SARS-CoV-2-specific CDR3β sequences 
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and uncover putative shared epitopes. We annotated 42.3% (506/1,196) of GLIPH2-enriched 

TCRs to the MIRA MHC class I dataset and 29.0% (364/1,252) of GLIPH2-enriched TCRs to the 

MIRA MHC class II dataset based on identical sequence similarity (Supplemental Files 13 and 

14). Class I/Class II datasets were comprised of 269/56 target peptide pools (deconvolved to 

545/251 unique epitopes) from 15/9 unique combinatorial overlapping antigenic targets of the 

SARS-CoV-2 proteome, respectively (Supplemental File 15A). We mapped TCRs from all 

pneumonia categories to 32.7% (88 out of 269) of MIRA Class I and 25% (14 out of 56) of MIRA 

Class II peptide pools (Supplemental Files 13 and 14). Notably, in patients with COVID-19, we 

mapped 80.6% (71/88) of MIRA Class I and 85.7% (12/14) of MIRA Class II peptide pools. 

Altogether, these analyses support the specificity of the alveolar T cell response to SARS-CoV-2 

pneumonia compared with other causes of pneumonia and respiratory failure in our cohort. 

  

Antigen hierarchy distribution of alveolar T cells targeting the SARS-CoV-2 proteome is 

associated with clinical outcomes and age throughout the course of severe SARS-CoV-2 

pneumonia. In alveolar CD8+ T cells, analysis of SARS-CoV-2 antigenic targets demonstrated 

overall dominance of ORF1ab (31.6%), Spike (S, 23.2%), and Nucleocapsid (N, 22.2%) (Figure 

4A). Combined, N and S accounted for 48.8% of epitopes in patients with COVID-19 who were 

discharged from the hospital, whereas ORF1ab accounted for 43.5% of epitopes in patients who 

died from COVID-19 (Figure 4B). In patients with COVID-19, we found that within the ORF1ab 

polyprotein complex, the non-structural proteins NSP3 and NSP12 accounted for 35.1% and 

22.0% of overall targets, respectively (Figure 4C). Additionally, while NSP2 was significantly 

enriched in patients with COVID-19 who survived to hospital discharge (FDR q = 6.34e-03), 

NSP12 was higher in patients who died, but this comparison did not reach statistical significance 

(FDR q = 1.57e-01) (Figure 4D). In alveolar CD4+ T cells, we found that 95% of TCRs recognized 

structural proteins (M, 52.2%; S, 25.0%; N, 17.8%) (Supplemental Figure 14A), consistent with 

the known skewing of CD4+ T cell responses toward viral structural proteins (38). 
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The antigenic evolution and breadth of alveolar T cell responses throughout the prolonged course 

of severe SARS-CoV-2 pneumonia remains unknown. Hence, we next sought to ascertain 

whether protracted recovery from illness was associated with changes in the distribution hierarchy 

of SARS-CoV-2 antigens. We found that in patients who recovered from COVID-19, CD8+ T cells 

maintained an S- and N-specific T cell response in both early and late samples, while patients 

who died had fewer S targets and exhibited ORF1ab immunodominance during the late phase of 

infection (Figure 4E). Similar to other pathogens, SARS-CoV-2 disproportionately affects older 

patients (39, 40). We found that samples from patients ≤65 years-old were primarily enriched for 

S- and N-targets, with those who died demonstrating a significantly greater proportion of ORF1ab 

targets (Figure 4F). Notably, ORF1ab was the immunodominant antigen in patients >65 years-

old who died. Collectively, these results demonstrate that alveolar CD8+ T cells’ distinctive pattern 

of recognition across the SARS-CoV-2 proteome during severe SARS-CoV-2 pneumonia is 

associated with clinical outcome and age.  
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Figure 4 
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Figure 4. Alveolar CD8+ T cell targets exhibit a distinctive pattern of antigen hierarchy that 

is associated with clinical outcomes throughout the course of severe SARS-CoV-2 

pneumonia. (A) Proportion of alveolar CD8+ T cell responses by SARS-CoV-2 protein. TCR 

sequences identified in samples from patients with COVID-19 were cross-referenced with the 

MIRA I dataset to identify reactivity against specific SARS-CoV-2 antigens. n of patients = 14, n 

of samples = 29. (B) SARS-CoV-2 antigen cross-referenced TCR sequences grouped by binary 

outcome. n of patients (Discharged = 9 and Deceased = 5), n of samples (Discharged = 15, 

Deceased = 14). q-value < 0.05, row wise Fisher exact tests with FDR correction (per antigen). 

(C) Nonstructural proteins (NSP) within the ORF1ab complex. n of patients = 13 and n of samples 

= 24. (D) NSP and binary outcome. n of patients (Discharged = 8 and Deceased = 5), n of samples 

(Discharged = 12 and Deceased = 12). q-value < 0.05, row wise Fisher exact tests with FDR 

correction (per NSP). (E) Timing of BAL sampling and binary outcome. n of patients (Discharged, 

≤48 hours = 5; Deceased, ≤48 hours = 2; Discharged, >48 hours = 6; Deceased, >48 hours = 5) 

and n of samples (Discharged and ≤48 hours = 5; Deceased, ≤48 hours = 2; Discharged, >48 

hours = 10; Deceased, >48 hours = 12). q-value < 0.05, row wise Fisher exact tests with FDR 

correction (per antigen). (F) Age and outcome. n of patients (Discharged, ≤65 years-old = 6; 

Deceased, ≤65 years-old = 2; Discharged, >65 years-old = 3; Deceased, >65 years-old = 3) and 

n of samples (Discharged, ≤65 years-old = 10; Deceased, ≤65 years-old = 5; Discharged, >65 

years-old = 6; Deceased, >65 years-old = 8). q-value < 0.05, row wise Fisher exact tests with 

FDR correction (per antigen). (G) Network analysis of shared TCR sequences recognizing SARS-

CoV-2 epitopes. Nodes represent unique patients in the COVID-19 group (labeled here A-N), 

edges constitute TCR sequences shared by at least 2 patients mapped to a MIRA class I dataset 

epitope pool, and width of edges (magnitude) denotes total number of shared TCR sequences. 

Edges are color-coded by SARS-CoV-2 antigens. 
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Alveolar epitope analysis reveals distinctive patterns of immunodominance that are associated 

with divergent clinical outcomes in patients with severe SARS-CoV-2 pneumonia. To identify the 

overall breadth, immunodominance, and immunoprevalence of the epitope repertoire recognized 

by alveolar T cells during the course of severe SARS-CoV-2 pneumonia, we performed a network 

analysis uncovering the shared specificity of SARS-CoV-2 epitopes in the COVID-19 group 

(Figure 4G). Cross-referencing the MIRA MHC Class I dataset, we identified 44/71 unique 

peptide pools from 10/11 SARS-CoV-2 proteins that were shared in patients with COVID-19. 

Although the breadth of CD8+ T cell responses to SARS-CoV-2 antigens between discharged and 

deceased patients (10 discharged versus 8 deceased) and epitope pools (21 discharged versus 

27 deceased) was similar, the distribution of epitope specificity to SARS-CoV-2 proteins was 

substantially different (Figure 5A-F). Specifically, we found that while immunodominant and 

immunoprevalent targets were well-distributed across the viral proteome in patients who 

recovered, targets in those who died from SARS-CoV-2 pneumonia were highly and 

disproportionately enriched in the ORF1ab polyprotein complex. In CD4+ T cells, we identified 

8/12 unique peptide pools from 4/9 SARS-CoV-2 proteins shared among patients with COVID-19 

Supplemental Figure 14F-H). 

 

TCRs recognize cognate peptides in an HLA-restricted manner; thus, HLA gene polymorphisms 

strongly affect population-based T cell effector responses to different epitopes (41). We used a 

bioinformatics tool (arcasHLA) to infer HLA typing in our COVID-19 group (Supplemental Figure 

13B and F-G and Supplemental Figure 14B) (42). To predict the specificity of T cell responses, 

we used a machine learning tool (NetMHCIpan-4.1) (43) to assess an epitope’s likelihood of 

binding a given HLA molecule. We selected the top five epitopes from our peptide network 

analysis by binary outcome (discharged or deceased) (Figure 5B-C and E-F) and predicted 

immunodominant epitopes within the immunodominant SARS-CoV-2 region at the level of 

individual patients (18 epitopes total) (Supplemental File 15B). We then mapped predicted CD8+ 
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T cell reactivities from all 14 patients in the COVID-19 group to the four inferred patient-specific 

HLA A and B alleles (Figure 5G) (44). The majority of immunodominant epitopes (17/18 epitopes, 

94.4%) were predicted to bind (defined as a percentile rank < 5%) to at least one HLA molecule 

expressed in the corresponding patient. All ORF1ab epitopes along with epitopes YLQ (Spike), 

TPS (Nucleocapsid), and MIE (ORF7b) were predicted to bind with high-affinity (defined as 

percentile rank < 1%) to at least three patient-specific HLA molecules. Additionally, the most 

frequently identified dominant epitopes were predicted to bind with high affinity to multiple HLA 

molecules, which tend to be both immunodominant and immunoprevalent in human populations 

(45). Altogether, predictive mapping of SARS-CoV-2 epitopes targeted by alveolar T cells 

identified distinctive patterns of regional viral protein and peptide dominance, which were 

accurately restricted by patient-specific HLA allele expression and associated with outcomes in 

our cohort.  
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Figure 5  
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Figure 5. SARS-CoV-2 epitope mapping reveals a distinctive landscape of peptide 

immunodominance and immunoprevalence associated with outcomes in patients with 

COVID-19. (A) Network analysis of shared TCR sequences from CD8+ T cells recognizing SARS-

CoV-2 epitopes. Nodes represent the nine unique patients with COVID-19 who survived hospital 

discharge (labeled here using the lettering scheme from Figure 4G), edges constitute shared TCR 

sequences by at least two patients mapped to a MIRA class I dataset epitope pool, and width of 

edges (magnitude) denotes total number of shared TCR sequences. Edges are color-coded by 

SARS-CoV-2 antigens. (B) Immunoprevalence of SARS-CoV-2 epitopes in discharged patients 

was calculated by counting the number of events when a given epitope was shared by at least 

two patients. Total counts from all 21 identified epitopes are represented as percentage (%) of 

TCRs recognizing a given epitope. (C) Overall number of TCR sequences mapped to a given 

SARS-CoV-2 epitope in discharged patients was calculated by counting all events of TCRs 

recognizing an epitope. Total counts from all 21 identified epitopes are represented as percentage 

(%). (D) Network analysis of shared TCR sequences recognizing SARS-CoV-2 epitopes in the 

five unique patients with COVID-19 who died during hospitalization (labeled here using the 

lettering scheme from Figure 4G), edges constitute shared TCR sequences by at least two 

patients mapped to a MIRA class I dataset epitope pool, and width of edges (magnitude) denotes 

total number of shared TCR sequences. Edges are color-coded by SARS-CoV-2 antigens. (E) 

Immunoprevalence of SARS-CoV-2 epitopes in deceased patients was calculated by counting 

the number of events when a given epitope was shared by at least two patients. Total counts from 

all 27 identified epitopes are represented as percentage (%). (F) Overall number of TCR 

sequences mapped to a given SARS-CoV-2 epitope in deceased patients was calculated by 

counting all events of TCRs recognizing an epitope. Total counts from all 27 identified epitopes 

are represented as percentage (%). (G) Heatmap of predicted SARS-CoV-2 epitope binding 

affinity to patient-specific HLA molecules grouped by unique patient, binary outcome, HLA alleles, 

and SARS-CoV-2 antigens. Percentile rank denotes predicted affinity strength with percentile 
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ranks <1% and <5% denote strong and weak MHC binder sequences, respectively. Gray tiles 

represent epitopes not detected within a given patient. Column labels are color-coded by patient, 

binary outcome, and HLA alleles. Row labels are color-coded by SARS-CoV-2 antigens. M 

(Membrane), 7b (ORF7b), 10 (OFR10), * denotes other epitopes are present within MIRA class I 

dataset peptide pool. 
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Alveolar T cells in patients with severe SARS-CoV-2 pneumonia are predicted to recognize 

epitopes shared with other human coronaviruses. Previous encounters with extant human 

coronaviruses (HCoV), which exhibit conserved sequence homology with SARS-CoV-2, have 

been suggested to induce functional cross-reactive responses in patients with COVID-19 (46-53). 

This phenomenon is particularly relevant in older individuals in whom memory T cell subsets 

become relatively abundant as the numbers and diversity of the naïve T cell compartment decline 

with age (31-33, 54, 55). Accordingly, we selected immunodominant SARS-CoV-2 epitopes from 

our peptide network analysis (see Figure 5A-F) to calculate pairwise sequence similarity with 

peptides from HCoVs (OC43, HKU1, NL63, and 229E) (Figure 6A). Notably, the average 

conservation for epitopes across distinct coronavirus antigens was highest for ORF1ab  when 

compared to Spike and Nucleocapsid antigens (Figure 6B and Supplemental File 15C). Next, 

we compared the frequencies of all 88 SARS-CoV-2 epitopes detected in the MIRA I dataset 

between patients with COVID-19 and patients with non-COVID-19-related pneumonia and 

respiratory failure. While some of the most immunodominant epitopes in patients with COVID-19 

were also detected in unexposed individuals, the overall prevalence of these epitopes was 

significantly enriched in the COVID-19 group (Figure 6C-D and Supplemental Figure 14K-L). 

Altogether, our results suggested T cell cross-reactivity with HCoV in patients with severe SARS-

CoV-2 pneumonia. 
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Figure 6 

 
Figure 6. Predicted alveolar CD8+ T cell receptor targets cross-react with other human 

coronaviruses. (A) Heatmap of conserved sequence similarity between dominant SARS-CoV-2 

epitopes detected in alveolar CD8+ T cells and human coronaviruses (HCoV). Columns represent 

SARS-CoV-2 epitopes grouped and color-coded by antigen region. Rows are color-coded by 

distinct HCoV. Pairwise similarity denotes percentage of sequence homology between viruses. 

An average sequence homology percentage across all HCoV for each SARS-CoV-2 epitope is 

depicted as a dot in the column header. (B) Pairwise sequence similarity scores between SARS-

CoV-2 epitopes and closest matching epitopes from human coronaviruses. q < 0.05, pairwise 
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Wilcoxon rank-sum tests with FDR correction. (C) Scatter plot of SARS-CoV-2 epitope prevalence 

of CD8+ T cells in patients with COVID-19 (n = 14) and without COVID-19 (unexposed, n = non-

pneumonia control [4], other pneumonia [7], and other viral pneumonia [8]). Dots are color coded 

by SARS-CoV-2 antigen. Dot size corresponds to the number of detected TCR sequences 

recognizing a given antigen. Random variation to location of points was added with geom_jitter 

function from ggplot2 v.3.4.4 for improved visualization. (D) SARS-CoV-2 epitope prevalence in 

overall patient cohort from bulk CD8+ TCR sequencing grouped by COVID-19 status (n of patients 

= non-pneumonia control [4], other pneumonia [7], COVID-19 [14] and other viral pneumonia [8]). 

Wilcoxon rank sum test, p < 0.05. 
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Discussion 

Successful pulmonary immune responses to acute infection coordinate innate and adaptive 

immune events that lead to host recovery following severe pneumonia (56). In this study, we 

performed serial sampling of the alveolar spaces of patients with severe pneumonia to test the 

null hypothesis that dynamic pulmonary T cell responses are similar between causes of 

pneumonia (57). Rejecting the null hypothesis, we found that expansion of monocytes and T cells 

exhibiting enriched interferon signaling pathways within the alveolar spaces of patients with 

severe SARS-CoV-2 pneumonia early in the course of mechanical ventilation correlated with 

survival to hospital discharge, a pattern that was not observed in patients with pneumonia and 

respiratory failure due to other causes. In contrast, higher levels of persistent T cell activation with 

a TNF-α/NF-κB inflammatory signature were associated with poor outcomes, including mortality. 

TCR repertoire profiling of sorted CD8+ and CD4+ T cells revealed distinct specificity networks in 

patients with COVID-19 and identified patterns of immunodominant SARS-CoV-2 antigenic 

regions at the level of specific epitopes and HLA alleles that were associated with clinical 

outcome, age, and cross-reactivity with other human coronaviruses. Interestingly, we found that 

ORF1ab antigen specificity was associated with hospital mortality and age in patients with severe 

SARS-CoV-2 pneumonia. Altogether, these data identify unique T cell responses that evolve over 

time in the lungs of mechanically ventilated patients with COVID-19 that are distinct from other 

causes of pneumonia in similarly ill patients. 

 

Preclinical and human studies have investigated how dynamic changes in T cell-specific 

activation programs determine Sarbecovirus disease severity (30, 58-60). While an early and 

robust interferon response in T cells correlates with effective viral clearance and mild disease, a 

delayed and suboptimal interferon response is associated with impaired T cell function, leading 

to vascular permeability and the induction of an unchecked innate immune-mediated 

proinflammatory response (22, 25, 58, 61, 62). Our unique cohort allowed us to identify the 
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transcriptional response of alveolar T cells in unvaccinated patients with COVID-19 over the 

course of their disease and compare them to similarly ill patients with pneumonia attributable to 

other pathogens. We found that an interferon response-dominated T cell molecular signature 

within the first 48 hours following intubation was enriched in patients with COVID-19 who went on 

to experience favorable clinical outcomes, including survival. Conversely, progressive SARS-

CoV-2 pneumonia in patients with persistent respiratory failure was characterized by a decline in 

interferon responses and dominated by proinflammatory T cell responses driven by signaling 

through TNF-α and NF-κB. Clinically, patients with persistent respiratory failure and NF-κB 

activation had higher disease severity and risk for secondary bacterial pneumonias. T cells from 

these patients expressed inhibitory molecules (e.g., PDCD1, HAVCR2, LAG3) and transcription 

factors (NR4A3, IRF4, PRDM1) that have been linked to T cell exhaustion but in this context are 

more likely indicative of persistent activation (63). Collectively, these results suggest that failure 

of interferon responses early in the course of critical illness leads to persistent activation of NF-

κB-driven inflammation over the course of prolonged respiratory failure, perhaps associated with 

acquisition of secondary bacterial pneumonia. 

 

An open question in the field is how SARS-CoV-2 proteome-specific T cell targets evolve 

throughout the course of COVID-19 and whether any of these targeted antigenic regions are 

associated with disease outcome (64). Our TCR analysis demonstrated that while early CD8+ T 

cell samples from individuals ≤65 years-old with favorable outcomes exhibited a higher proportion 

of targets against structural proteins (Spike and Nucleocapsid), late samples from patients >65 

years-old who died from SARS-CoV-2 pneumonia were highly enriched for the non-structural 

proteins within the ORF1ab polyprotein complex. We were able to further narrow the predicted 

binding affinity of T cells for specific SARS-CoV-2-immunodominant epitopes in an HLA-restricted 

fashion and predict cross reactivity with other endemic human coronaviruses. We posit that 

ORF1ab-specific T cells during the late phase of severe SARS-CoV-2 pneumonia could be 
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associated with augmented immune escape mechanisms leading to delayed adaptive T cell 

responses in a subset of patients exhibiting poor outcomes. 

 

Multiple studies have shown that blood T cells collected from individuals before the COVID-19 

pandemic possess immune reactivity against specific SARS-CoV-2 peptides in regions of 

conserved homology with human coronaviruses, including ORF1ab, the S2 region of Spike, and 

Nucleocapsid (52, 65-67). These observations led to the hypothesis that prior encounters with 

human coronaviruses—particularly in children and younger adults—could mediate protective 

immune responses. Nevertheless, the functional characteristics of cross-reactive immunity and 

their impact on COVID-19 clinical outcomes remain unclear. Bacher and colleagues 

demonstrated that in previously SARS-CoV-2-unexposed individuals with COVID-19, pre-existing 

SARS-CoV-2-reactive circulating T cells possessed low TCR avidity and were enriched in patients 

with more severe disease, arguing against a protective function for cross-reative T cells (49). 

Furthermore, cross-reactivity might not only be limited to human coronaviruses (46, 49), and 

others have shown that microbial peptides from commensal bacteria and other viruses are 

potential sources of heterologous immunity to SARS-CoV-2 (68, 69). Here, we predicted that 

TCRs specific for immunodominant SARS-CoV-2 peptides in our dataset cross-react with other 

human coronaviruses. Hence, while some level of cross-reactivity may be protective, it is tempting 

to speculate that in certain patients with severe COVID-19, low-avidity, cross-reactive T cells 

generated following exposure to either human coronaviruses or other microbial peptides in the 

lung drive dysfunctional adaptive T cell immunity. Future studies are needed to assess the 

functional characteristics of cross-reactive T cell responses during severe SARS-CoV-2 

pneumonia. 

 

Based on direct observations of cells obtained from the alveolar space, the data presented here 

support the previously proposed model of SARS-CoV-2 pathogenesis in which activated CoV-
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reactive T cells drive feed-forward circuits with alveolar macrophages to sustain alveolar 

inflammation, respiratory failure, and risk for secondary bacterial pneumonia and other ICU 

complications in mechanically ventilated patients with COVID-19 (4-8, 14, 15). While early 

expansion of T cells enriched for interferon signaling pathways that target structural SARS-CoV-

2 proteins (Spike and Nucleocapsid) were associated with favorable clinical outcomes, late T cell 

activation was associated with expression of TNF-α/NF-κB signaling pathways, specificity 

directed toward the non-structural ORF1ab polyprotein complex, and mortality.  Identifying these 

distinctive features of severe SARS-CoV-2 pneumonia may inform the design of clinical trials of 

agents and vaccine targets demonstrated to be effective in COVID-19 for patients with other 

causes of pneumonia. 

 

Limitations 

Our study has important limitations. First, while we were able to perform deep molecular 

phenotyping of T cell subsets, cell numbers and study design limited our ability to perform 

functional studies of T cell avidity and cross-reactivity. Second, as pneumonia is an encompassing 

syndrome, our single-site study population was heterogeneous. We minimized this heterogeneity 

by focusing on an ICU population and performing careful clinical phenotyping of patients by 

pneumonia category, superinfection status, and clinical endpoints. Third, molecular phenotyping 

in the cohort was feasible only for samples with sufficient numbers of T cells present in BAL fluid. 

This limitation may have imparted a degree of selection bias to the analysis, although the clinical 

features of the patients whose samples had sufficient material for molecular phenotyping 

resembled the larger cohort. Fourth, because all samples were obtained early in the COVID-19 

pandemic—ahead of vaccination, prior exposure, and the emergence of viral variants of 

concern—we cannot determine the effects of these variables on T cell responses in our cohort. 

At present, the majority of patients with severe SARS-CoV-2 pneumonia remain unvaccinated 

(70), similar to the patients in our study. Nevertheless, to the best of our knowledge, all SARS-
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CoV-2 infections in our cohort were primary infections rather than recurrent or breakthrough 

infections, which may be more common presently. Finally, our TCR analysis relied on reverse 

epitope prediction, which is a powerful technique to identify the likely antigens recognized by the 

TCRs in our dataset but is nonetheless reliant on the robustness and accuracy of existing 

databases. Accordingly, we have made our data publicly available for reanalysis as these 

techniques evolve. 
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Methods 

Human participants. The details of participant recruitment in the SCRIPT Systems Biology Center 

have been previously reported (4, 14, 15). In brief, the SCRIPT study screened patients at least 

18 years of age who were receiving mechanical ventilation and had clinical suspicion of 

pneumonia based on clinical signs, including, but not limited to, fever, radiographic infiltrate, and 

respiratory secretions and had undergone at least one BAL procedure to evaluate the presence 

and microbial etiology of pneumonia. For this study, we included data and samples from patients 

enrolled in SCRIPT from June 2018 to August 2020 in the ICU at Northwestern Memorial Hospital 

in Chicago. We selected this time period because it was a study era in which SCRIPT used flow 

cytometry to analyze and sort T cell subsets for bulk transcriptional profiling. Participants could 

re-enter the study under a new study identifier if they were discharged from the hospital and 

subsequently re-admitted to the ICU. The etiology of pneumonia (SARS-CoV-2, other viral 

pneumonia, other pneumonia, or non-pneumonia [intubated for reasons other than pneumonia]) 

and outcome of each pneumonia episode (cured, indeterminate, or not cured) were adjudicated 

by consensus of pulmonary and critical care medicine physicians using a validated procedure (15, 

21). The etiology of pneumonia was determined based on clinical and BAL fluid data obtained on 

the date of study enrollment. Detailed definitions of pneumonia episodes and resolution status 

are available in reference (21). In this study, patients who underwent lung transplantation for 

refractory respiratory failure and patients who were transferred to home or inpatient hospice were 

adjudicated as having died in the reported binary outcome (discharged from the hospital alive 

versus deceased). Superinfection was defined as bacterial infection co-occurring with a viral 

pathogen diagnosed by BAL sampling. For the purposes of this report, ventilator-associated 

pneumonia (VAP) refers to incident bacterial pneumonia occurring after at least 48 hours of 

mechanical ventilation in patients who were enrolled as a non-pneumonia control or who were 

enrolled with viral pneumonia (due to SARS-CoV-2 or another virus) but who did not have 

evidence of an underlying viral infection at the time of the current BAL sample (i.e., had cleared 
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their viral infection). Demographics, clinical data, and outcomes were extracted from the electronic 

health record (EHR) via the Northwestern Medicine Enterprise Data Warehouse (71). Racial 

groups with fewer than five individuals were censored to ‘Other’ to protect patient 

anonymity. Comorbidities were extracted based on ICD codes as aligned to Charlson Comorbidity 

Index at time of hospital admission. The Northwestern University Institutional Review Board 

approved all research involving human participants under study STU00204868. All study 

participants or their surrogates provided informed consent. 

 

Clinical management. Bronchoscopic or non-bronchoscopic BAL sampling was performed using 

standard techniques with modifications to limit the generation of infectious aerosols (72). We 

routinely instill 120 mL of non-bacteriostatic saline in four 30-mL aliquots, discarding the return 

from the first aliquot. Quantitative bacterial cultures, multiplex or targeted PCR (BioFire® 

FilmArray® Pneumonia (PN) Panel, targeted SARS-CoV-2 PCR, and Respiratory Pathogen 

Panel), and automated cell count and differential were performed on BAL fluid, and nearly all 

patients underwent urinary antigen testing for Streptococcus pneumoniae and Legionella 

pneumophilia serogroup 1. Patient management was guided by institutional practice, including 

adherence to lung-protective mechanical ventilation strategies and use of prone positioning and 

ECMO, consistent with published guidelines (73-77). Some patients were enrolled in the ACTT-1 

placebo-controlled trial of remdesivir for COVID-19 (78) as noted in Supplemental Table 1.  

 

Flow cytometry analysis and sorting. The details of the standard operating procedures of the 

SCRIPT study for flow cytometry have been previously reported (4). In brief, BAL fluid samples 

were stored at 4 °C for no longer than 24 hours before filtration through a 70-µm filter, 

centrifugation, and hypotonic lysis (BD PharmLyse). All cell counts were performed on a K2 

Cellometer (Nexcelom) with AO/PI reagent. Fc receptors were blocked using Human TruStain 

FcX (Biolegend) in MACS buffer (Miltenyi Biotech). Cells were incubated with fluorochrome-
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conjugated antibodies at 4 °C for 30 minutes, washed, and resuspended in MACS buffer 

containing SYTOX Green viability dye (ThermoFisher). A FACS Aria III SORP with 100-µm nozzle 

operating at 20 psi was used to sort pre-defined T cell populations into 300 µL of MACS buffer 

using previously validated gating strategies (72). Specifically, we defined regulatory T (Treg) cells 

as live FSCloSSClo CD3ε+CD4+CD25hiCD127lo cells, CD4+ non-Treg cells as live FSCloSSClo 

CD3ε+CD4+ cells not in the Treg cell gate, bulk CD4+ T cells as live FSCloSSClo CD3ε+CD4+ cells, 

and CD8+ T cells as live FSCloSSClo CD3ε+CD8+ cells. Sorting for Treg cells, CD4+ non-Treg cells, 

and CD8+ T cells was performed if at least 1,000 Treg cells could be captured; otherwise, the gate 

was collapsed to capture bulk CD4+ T cells. Lastly, samples were not processed for flow cytometry 

if <4 mL were available for research use, if staff were unavailable, if the sample was grossly 

purulent (pus), or if the sample was collected in the first weeks of the pandemic before biosafety 

approval for research on these samples was obtained. 

 

Bulk RNA-sequencing and processing. Following sorting of T cell subsets, cells were pelleted by 

centrifugation and lysed in 350 µL of RLT Plus lysis buffer (Qiagen) supplemented with 1% 2-

mercaptoethanol and immediately stored at -80 °C. The Qiagen AllPrep DNA/RNA Micro Kit was 

used for simultaneous isolation of RNA and DNA, and RNA quality and quantity was assessed 

using a 4200 TapeStation System (Agilent Technologies). RNA-sequencing libraries were 

prepared from 300 pg of total RNA using SMARTer Stranded Total RNA-seq Kit v2 – Pico Input 

Mammalian (TakaraBio). Libraries were pooled and sequenced on a NextSeq 500 instrument 

(Illumina), 75 cycles, single-end, to an average sequencing depth of 20.83 million reads. 

Computational and bioinformatics pipelines were performed using Northwestern University’s 

Quest High Performance Computing Cluster Facility. The pipelines were constructed based on 

open-source software using nf-core /rnaseq pipeline v.3.3 implemented in Nextflow v.21.04.3 (79, 

80). Nf-core/rnaseq pipeline was run with nu_genomics profile and skip_bigwig option and 

otherwise default options. Briefly, Quality control using FastQC v.0.11.9 and adaptor trimming 
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using Trimgalore v.0.6.6 were performed on sequence reads from the RNA-sequencing data. 

STAR v2.6.10d (81) was used to align the reads to the reference genome (GRCh38 version of 

iGenomes reference, originally donwloaded from NCBI Homo sapiens Annotation Release 106), 

and Salmon v.1.4.0 (82) was used for gene and transcripts quantification. Downstream analysis 

was performed in R v.4.1.1. Sample swaps and mis-annotations were first identified by comparing 

a given patient’s known sex with sex determined by levels of XIST and RPSY41, followed by 

exploration of expression of canonical markers for T cells subsets and macrophages (CD8A, CD4, 

FOXP3, C1QC). Samples exhibiting either poor alignment, unexpected correlation, or extreme 

deviation in PCA were excluded from downstream analysis. Details for these procedures and all 

code described below are available in our GitHub repository: 

https://github.com/NUPulmonary/2023_Tcell_responses.  

 

 

Differential expression analysis (DEA). DEA was performed using edgeR v.3.36.0 (83). In brief, 

genes with very low count reads were filtered executing the function filterByExpr. Effective or 

normalized library sizes were calculated using calcNormFactors function. A generalized linear 

model (GLM) framework was used for matrix design with pneumonia category as imputed factor 

for Figures 2A, 3A and Supplemental Figures 6A, 7A and timing of BAL relative to intubation 

(COVID-19 samples only) as imputed factor for Supplemental Figures 8A-B. Common and 

tagwise dispersion were calculated using the estimateDisp command, and DEA was performed 

using likelihood ratio tests with functions glmFit and glmLRT. Significantly variable genes (FDR 

q-value < 0.05) were identified after performing a likelihood ratio test under the GLM framework 

as described above. We used k-means algorithms to cluster the significantly variable genes with 

the optimal number of clusters calculated using fviz_nbclust function from factoextra v.1.0.7 

followed by clustering with Hartigan-Wong algorithm from kmeans function in stats v.4.1.1. 
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Samples were subsequently hierarchically clustered by using Euclidean distance and Ward’s 

linkage method and visualized with ComplexHeatmap v.2.10.0 (84). 

  

Functional enrichment analysis. Gene Ontology (GO) Enrichment Analysis was performed with 

topGO v.2.46.0 (85). DEG were used as “genes of interest” within the gene universe. Gene 

Ontology annotations and attributes of interest were extracted with biomaRt v.2.50.3 (86) to build 

the topGO data object. Significant GO terms were obtained after performing a classical 

enrichment analysis (algorithm = “classic”, statistical test = “Fisher exact test”) followed by multiple 

testing correction using the Benjamini-Hochberg method (see Supplemental Data Files 5-6 and 

9 for all significant GO terms). To minimize redundancy between identified GO terms, help infer 

biological significance, and improve visualization of multiple significant GO terms, we used rrvgo 

v.1.6.0 (87) to group similar GO terms by semantic similarity methods (method = Rel, threshold = 

0.5) (see Supplemental Data Files 7-8 and 10 with all GO terms and parent terms). Gene set 

enrichment analysis (GSEA) (88) was performed after retrieving the Hallmark gene set collection 

(h.all.v7.5.1.symbols.gmt) and using log-fold change ranked genes with fgseaMultilevel feature, 

which implements an adaptive multilevel splitting Monte Carlo approach for enhanced estimation 

of small p-values with Fast Gene Set Enrichment Analysis (fgsea) v.1.20.0.26771021 (89). 

 

Correlation analysis of bulk RNA sequencing from T cell subsets with clinical outcomes. DEG 

(975 genes for CD8+ T cells and 865 for CD4+ T cells) obtained from DEA with edgeR were used 

to calculate correlation between gene expression levels and clinical metadata in COVID-19 

samples. Cor function from stats v.4.1.4 was used to compute correlation coefficient in the 

presence of missing values (method = “spearman”, use = “pairwise.complete.obs”). Gene-

associated correlation coefficients were ranked for individual clinical variables of interest, followed 

by GSEA as described above. Genes of interest were selected from the leading edge subsets 

within Hallmark processes. 
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Real Time SARS-CoV-2 PCR Ct values. Viral RNA was extracted from specimens using the 

QIAamp Viral RNA Minikit and the QIAamp 96 Virus QIAcube HT Kit (Qiagen). Viral transport 

media (VTM)-only controls were included in each extraction. Laboratory testing for the presence 

of SARS-CoV-2 was performed by quantitative reverse transcription and PCR (qRT-PCR) with 

the CDC 2019-nCoV RT-PCR Diagnostic Panel utilizing N1 and RNase P probes as previously 

described (https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html). 

Positive and negative controls for SARS-CoV-2 and Rnase P were included in each qRT-PCR 

experiment alongside the VTM only sample from the RNA extraction, a no template control, and 

standard curves for SARS-CoV-2 and Rnase P. Specimens with Rnase P cycle thresholds (Ct) 

above 35 were of insufficient quality and were excluded from future studies. N1 Ct values less 

than or equal to 35 were considered positive, and these Ct values were used in all subsequent 

analyses. 

 

Cell-type deconvolution of bulk RNA sequencing T cell signatures. Deconvolution of T cell bulk 

RNA sequencing was performed using AutoGeneS v.1.0.4 (90). Signatures were derived using 

the single cell dataset from Grant et al. Nature. 2021 (4). A model was trained on CD8+ T cells, 

CD4+ T cells, and Treg cells. Signatures were automatically derived from 1,000 highly variable 

genes with function optimize (ngen=2000, seed=0, nfeatures=200, mode=“fixed”) for CD8+ T cells 

and function optimize (ngen=2000, seed=0, nfeatures=150, mode=“fixed”) for CD4+ T cells and 

Treg cells. The model was then applied to bulk RNA-sequencing data to estimate the proportion 

of specific cell types using regression analysis. 

 

T cell receptor (TCR) sequencing and analysis. We performed TCR-sequencing on selected 

samples of CD4+ and CD8+ T cells that contained at least 0.5 ng of residual RNA following bulk 

RNA-sequencing. RNA quality and quantity were measured using a 4200 TapeStation using high-
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sensitivity RNA ScreenTape (Agilent Technologies) before library preparation using the SMARTer 

Human TCR α/β Profiling Kit (Takara Bio). In brief, this kit uses a 5' RACE-like approach to capture 

complete V(D)J variable regions of TCR transcripts and primers that incorporate Illumina-specific 

adaptor sequences during cDNA amplification. Libraries were then pooled, denatured, and diluted 

to a 1.8-pM DNA solution. PhiX control was spiked in at 20%. Libraries were sequenced on an 

Illumina NextSeq 500 instrument using NextSeq 500/550 Mid Output Kit v2.5 (300 cycles) with a 

target read depth of approximately 17.39 million aligned reads per sample. Raw sequencing reads 

in FASTQ format were aligned against a default reference database of V-, D-, J- and C- gene 

segments, followed by assemblage into clonotypes using MiXCR software v.3.0.13 (91). MiXCR-

processed files were exported and analyzed using the R-based package, immunarch v.0.9.0 (92). 

Clonotype diversity was calculated with the repDiversity function, using a nonparametric 

asymptotic estimator method of species richness chao1. 

 

HLA typing from RNA-sequencing. We used arcasHLA v.0.4.0 to perform high-resolution HLA 

class I and class II genotyping from RNA sequencing (42). Specifically, HLA sequences were 

extracted from mapped chromosome 6 reads in sorted BAM files (RNA sequencing files) and 

referenced with IMG/HLA database v.3.47.0. Singularity container v.3.8.7 was used to perform 

analysis using commands arcasHLA extract and arcasHLA genotype. In certain cases, the 

specific HLA protein field was reduced to the most frequent within the allele group. 

 

Identification of TCR motifs and shared specificity groups using GLIPH2. The GLIPH2 algorithm 

was implemented to identify TCR sequences predicted to bind similar epitopes in an HLA-

restricted manner (34). After imputing participant-specific CDR3β amino acid sequences, TRβV 

genes, and HLA alleles from our cohort, the GLIPH2 algorithm compared CDR3β sequences to 

a reference database of over 200,000 nonredundant naïve CD4+ and CD8+ TCRβ sequences 

from 12 healthy controls and clustered them into specificity groups (patterns) according to global 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.571479doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571479
http://creativecommons.org/licenses/by-nc-nd/4.0/


and local convergence sequence metrics. To identify high-confidence TCR specificity groups 

shared among our cohort, GLIPH2 analysis provided statistical measurements that identify TRβV 

gene usage bias and HLA allele usage, comparing enriched TCR sequences between our dataset 

and a reference dataset using Fisher exact test. Accordingly, we used these variables coupled 

with analysis of clusters containing at least 3 unique CDR3β sequences, from at least 3 distinct 

patients within our cohort (Supplemental Figure 13A). 

 

TCR network analysis and COVID-19-specific epitope dominance analysis. To identify high-

confidence SARS-CoV-2-specific TCR epitopes, we mapped our cohort’s CDR3β sequences to 

the MIRA dataset (37). To visualize shared TCR specificity between pneumonia diagnoses, we 

used network v.1.18.1, tidygraph v.2.3, and ggraph v.2.1.0 (93-95).  

 

Selection of SARS-CoV-2 dominant epitopes and sequence conservation analysis. For Figure 

5G, we selected both the top five SARS-CoV-2-specific epitopes from our peptide network 

analysis (Figure 5B-C and E-F). We also selected immunodominant epitope(s) within the 

immunodominant SARS-CoV-2 antigenic region(s) at the level of individual patients (18 epitopes 

total, Supplemental File 15B), followed by implementation of NetMHCpan EL 4.1 tool (available 

on Immune Epitope Database and Analysis Resource, http://tools.iedb.org/mhci/) (43) to predict 

their potential binding affinity in a patient-specific, HLA-restricted manner. For epitopes with poor 

binding capacity (e.g., CTFEYVSQPF, GMEVTPSGTWL and AFLLFLVLI), alternate epitopes 

within their respective MIRA class I epitope pools were used for analysis (e.g., FEYVSQPFL, 

TPSGTWLTY and MIELSLIDFY, respectively). To estimate the sequence conservation between 

SARS-CoV-2 epitopes and other HCoV-related epitopes, we first obtained whole-genome 

sequences for SARS-CoV-2 (GenBank ID: MN985325.1), HCoV 229E (GenBank ID: 

MN306046.1), HCoV HKU1 (GenBank ID: KY983584.1), HCoV NL63 (GenBank ID: 

KX179500.1), and HCoV OC43 (GenBank ID: MN306053.1) from the NCBI database. Next, we 
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calculated the pairwise sequence similarity score (https://www.ebi.ac.uk/Tools/psa/) for each 

selected SARS-CoV-2 epitope. Specifically, we imputed the sequence of a given selected SARS-

CoV-2 epitope against the whole antigen-specific and matching HCoV sequence by using global 

alignment and following these parameters: EMBOSS Needle, Needleman-Wunsch algorithm, 

BLOSUM62 matrix, gap open (10), gap extend (0.5), end gap penalty (false), end gap open 

penalty (10) and end gap extension penalty (0.5). The resultant matching HCoV epitopes were 

subsequently imputed to calculate the local alignment similarity score against the SARS-CoV-2 

epitope, using the following parameters: EMBOSS Water, Smith-Waterman algorithm, 

BLOSUM62 matrix, gap open (10), gap extend (0.5), end gap penalty (false), end gap open 

penalty (10) and end gap extension penalty (0.5). 

 

Statistics. Statistical analysis was performed using R v.4.2.3 (96). Data was analyzed with the 

statistical test described in the corresponding figure legend and annotated with ggsignif v.0.6.4 

(97). Pearson or Spearman correlation coefficients and p-values were annotated using ggpubr 

v.0.6.0 (98). Plotting was performed using ggplot2 v.3.4.4 (99). Adjusted p-values were obtained 

by correcting for multiple testing using the Benjamini-Hochberg method, unless otherwise stated. 

A p- or q-value < 0.05 was considered statistically significant with non-significant values not 

displayed. No statistical methods were used to predetermine sample size or power. The 

experiments were not randomized. Data collection and analysis by investigators were not blinded. 

 

Data availability. RNA-sequencing gene counts tables, TCR sequences, and predicted epitopes 

are available as supplemental files. All data, including raw FASTQ files from bulk RNA-

sequencing and TCR-sequencing will be made publicly available as part of the larger reference 

dataset in dbGaP. Some de-identified clinical information from this cohort has been published on 

PhysioNet (16). 
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Code availability. All code used for processing, analysis and figure generation are available at 

https://github.com/NUPulmonary/2023_Tcell_responses.    
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Supplemental Table and Figures 

Supplemental Table 1 
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Supplemental Table 1. Description of the cohort. * Missing values, n: BMI, 1; C-reactive 

protein, 195; D-dimer, 174; ferritin, 208; lactate, 70; procalcitonin, 114; white blood cell count, 3; 

absolute neutrophil count, 96; absolute lymphocyte count 101. Empty cells represent data not 

available or not applicable. BMI, body mass index; SOFA, Sequential Organ Failure Assessment; 

APS, Acute Physiology Score from APACHE II; LTACH, long-term acute care hospital; SNF, 

skilled nursing facility; IQR, interquartile range. 
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Supplemental Figure 1 

 

Supplemental Figure 1. (A) CONSORT diagram of patients included in this study. (B) Schematic 

depicting multi-step analysis of BAL fluid samples with flow cytometry, bulk RNA-sequencing, and 

bulk TCR-sequencing by diagnosis and T cell subset. 
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Supplemental Figure 2 

 
Supplemental Figure 2. SARS-CoV-2 pneumonia is characterized by a lymphomonocytic 

alveolar infiltrate early following intubation. (A) Heatmap of flow cytometry analysis of alveolar 

immune cell subsets from BAL fluid samples ordered by duration of mechanical ventilation (blanks 

indicate chronically ventilated patients) and grouped by diagnosis, binary outcome (whether a 

given patient was discharged or died during hospitalization), and infection status (presence or 

absence of bacterial superinfection in patients with COVID-19 or other viral pneumonia). Blanks 

in these two groups refer to samples for which microbiological data were incomplete and 

infectious status could not be determined. The VAP (ventilator-associated pneumonia) flag 
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designates samples from non-pneumonia controls or patients with COVID-19 or other viral 

pneumonia who cleared the virus and then developed a bacterial pneumonia. (B-H) Percent of 

alveolar immune cell subsets detected in BAL fluid samples from flow cytometry analysis (q < 

0.05, pairwise Wilcoxon rank-sum tests with FDR correction). (I-L, N and Q) Comparison of 

alveolar immune cell subset percentages between early (≤48 hours following intubation) and late 

(>48 hours following intubation) samples (q < 0.05, pairwise Wilcoxon rank-sum tests with FDR 

correction). (M, O and R) Correlation analysis between the percentage of alveolar immune cell 

subsets and duration of mechanical ventilation with Pearson correlation coefficient. (P and S) 

Comparison of neutrophil (P) and CD3+ T cell (S) percentage grouped by the presence or absence 

of bacterial superinfection in early (≤48 hours following intubation) and late (>48 hours following 

intubation) COVID-19 samples (q < 0.05, pairwise Wilcoxon rank-sum tests with FDR correction). 
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Supplemental Figure 3 

 

Supplemental Figure 3. Persistent alveolar T cell enrichment throughout the course of 

severe SARS-CoV-2 pneumonia is associated with discharge from hospital. (A-L) 

Comparison of alveolar immune cell subset percentages by binary outcome (C, E, G, I, and K) 

and between timing of BAL sampling (B, D, F, H, J and L) (q <0.05, pairwise Wilcoxon rank-sum 

tests with FDR correction). (M) Proportion of BAL fluid samples from patients with COVID-19, 

comparing presence or absence of bacterial superinfection with binary outcome (not significant 
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by Fisher exact test). (N) Proportion of BAL fluid samples from patients with COVID-19, comparing 

pneumonia episode outcome status with binary outcome (q < 0.05, Fisher exact test with FDR 

correction). C (Cured) and NC (Not cured). 
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Supplemental Figure 4 
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Supplemental Figure 4. Correlation of alveolar immune cell subset abundance with clinical 

outcomes differs between patients with distinct etiologies of severe pneumonia. (A-C). 

Correlation analysis between the percentage of alveolar immune cell subsets and clinical, 

physiologic, and laboratory variables as a function of diagnostic group. No significant values after 

calculating Spearman rank correlation coefficient with FDR correction. (D) Correlation between T 

cell subset surface expression of CD127 and HLA-DR in the alveolar space with clinical, 

laboratory, and physiological variables in COVID-19 samples. Spearman rank correlation 

coefficient with FDR correction (q < 0.05 [*]). Abbreviations: PaCO2 (partial arterial carbon dioxide 

pressure), HCO3 (bicarbonate), Days on MV (days on mechanical ventilation), SOFA (Sequential 

Organ Failure Assessment), WBC (peripheral white blood cells), CK (creatinine kinase), Vte 

(minute ventilation), LDH (lactate dehydrogenase), FiO2 (fraction of inspired oxygen), CRP (C-

reactive protein), PEEP (positive end-expiratory pressure), BMI (body mass index), AST 

(aspartate aminotransferase), PaO2 (partial arterial oxygen pressure), P/F (ratio of partial arterial 

oxygen pressure to fraction of inspired oxygen), COPD (chronic obstructive pulmonary disease), 

MFI (median fluorescence intensity). 
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Supplemental Figure 5 

 

Supplemental Figure 5. Composition and demographics of bulk RNA-sequencing samples. 

(A) Number of participants grouped by diagnosis. (B) Proportion of samples grouped by T cell 

subset and diagnosis. (C) Number of samples categorized by timing of BAL. (D) Distribution of 

Sequential Organ Failure Assessment (SOFA) scores by patient. Nonsignificant after pairwise 

Wilcoxon rank-sum tests with FDR correction). (E) Mortality by patient. Nonsignificant after 

pairwise𝜒￼ 2 tests for homogeneity of proportions with FDR correction. (F) Sex by patient 

(pairwise𝜒￼ 2 tests for homogeneity of proportions with FDR correction).  
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Supplemental Figure 6 

 

Supplemental Figure 6. SARS-CoV-2 pneumonia is characterized by a transcriptional 

program enriched for processes associated with monocyte and T cell activation, migration, 

and angiogenesis in alveolar CD8+ T cells. (A) K-means clustering of 975 differentially 

expressed genes (q < 0.05, likelihood-ratio test with FDR correction) across pneumonia 

diagnoses. Columns represent unique samples grouped by diagnosis and are ordered by duration 

of mechanical ventilation. Column headers are color-coded by diagnosis, binary outcome 

(whether a given patient was discharged or died during hospitalization), duration of mechanical 

ventilation (blanks indicate chronically ventilated patients), and infection status (presence or 

absence of bacterial superinfection in patients with COVID-19 or other viral pneumonia). The VAP 
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(ventilator-associated pneumonia) flag designates samples from non-pneumonia controls or 

patients with COVID-19 or other viral pneumonia who cleared the virus and then developed a 

bacterial pneumonia. Representative genes and significant gene ontology (GO) biological 

processes are shown for each cluster. (B) Gene set enrichment analysis (GSEA) of Hallmark 

gene sets for the pairwise comparison between COVID-19 samples and other viral pneumonia 

samples. Count denotes pathway size after removing genes not detected in the expression 

dataset. Enrichment denotes significant (q < 0.25 with FDR correction) upregulated (red) and 

downregulated (blue) pathways by normalized enrichment score. (C-D) Gene ontology (GO) 

parent term annotation after grouping significant terms (following classical or over-representation 

enrichment analysis, q < 0.05 with multiple testing correction using the Benjamini-Hochberg 

method) by semantic similarity. Reduced GO terms are depicted in a scatter plot where distance 

between points represent the similarity between terms and axes are the first two components 

after applying a principal coordinates analysis to the dissimilarity matrix. Points are color-coded 

by unique terms and size denotes the number of genes within each GO term. 
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Supplemental Figure 7 

 

Supplemental Figure 7. SARS-CoV-2 pneumonia is characterized by a transcriptional 

program enriched for processes associated with monocyte, B cell and T cell activation, 

migration, and angiogenesis in alveolar CD4+ T cells. (A) K-means clustering of 865 
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differentially expressed genes (q < 0.05, likelihood-ratio test with FDR correction) across 

pneumonia diagnoses. Columns represent unique samples grouped by diagnosis and are ordered 

by duration of mechanical ventilation. Column headers are color-coded by diagnosis, binary 

outcome (whether a given patient was discharged or died during hospitalization), duration of 

mechanical ventilation (blanks indicate chronically ventilated patients), and infection status 

(presence or absence of bacterial superinfection in patients with COVID-19 or other viral 

pneumonia). The VAP (ventilator-associated pneumonia) flag designates samples from non-

pneumonia controls or patients with COVID-19 or other viral pneumonia who cleared the virus 

and then developed a bacterial pneumonia. Representative genes and significant gene ontology 

(GO) biological processes are shown for each cluster. (B) Gene set enrichment analysis (GSEA) 

of Hallmark gene sets for the pairwise comparison between COVID-19 samples and other viral 

pneumonia samples. Count denotes pathway size after removing genes not detected in the 

expression dataset. Enrichment denotes significant (q < 0.25 with FDR correction) upregulated 

(red) and downregulated (blue) pathways by normalized enrichment score. (C) Gene ontology 

(GO) parent term annotation after grouping significant terms (following classical or over-

representation enrichment analysis, q < 0.05 with multiple testing correction using the Benjamini-

Hochberg method) by semantic similarity. Reduced GO terms are depicted in a scatter plot where 

distance between points represent the similarity between terms and axes are the first two 

components after applying a principal coordinates analysis to the dissimilarity matrix. Points are 

color-coded by unique terms and size denotes the number of genes within each GO term. (D-E) 

GSEA of COVID-19 samples after performing correlation analysis of differentially expressed 

genes in CD4+ T cells and clinical variables of interest with Spearman rank correlation coefficient 

computation. Count denotes pathway size after removing genes not detected in the expression 

dataset. Enrichment denotes significant (q < 0.25 with FDR correction) upregulated (red) and 

downregulated (blue) pathways by normalized enrichment score. (F-G) Leading edge analysis 
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reveals selected core genes driving pathway enrichment signal in clinical variables, which are 

annotated for the superinfection and SOFA score variables. 

 

Supplemental Figure 8 

 

Supplemental Figure 8. The early T cell response during severe SARS-CoV-2 pneumonia 

is dominated by an interferon signaling transcriptional program. (A-B) MA plot of 

differentially expressed genes in CD4+ T cells (81 samples from 46 patients with COVID-19 

pneumonia) (A) and CD8+ T cells (72 samples from 46 patients with COVID-19 pneumonia) (B), 

comparing early (≤48 hours following intubation) versus late (>48 hours following intubation) 
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COVID-19 samples. Significantly upregulated genes in early samples are shown in red, and 

significantly upregulated genes in late samples are shown in blue (q < 0.05, likelihood-ratio tests 

with FDR correction). Genes shown in gray are not significantly differentially expressed. 

Representative significant genes are annotated. (C) Heatmap of longitudinal analysis of 

interferon-stimulated genes in combined CD4+ and CD8+ T cells of patients with severe SARS-

CoV-2 pneumonia. Columns represent unique T cell samples and are color-coded by binary 

outcome, infection status, severity of illness (SOFA score), cumulative steroid dose (mg of 

hydrocortisone), C reactive protein (CRP), D-dimer, viral load (Ct value), and ordered by duration 

of mechanical ventilation. Blanks indicate missing values. (D) Comparison of SARS-CoV-2 viral 

load (Ct value) by binary outcome and BAL sampling time in COVID-19 samples that underwent 

RNA-sequencing (q < 0.05, pairwise Wilcoxon rank-sum tests with FDR correction). (E) Number 

of COVID-19 BAL samples grouped by binary outcome and sampling time with a Ct value above 

limit of detection (>40). (F) Correlation analysis of COVID-19 Ct values grouped by binary 

outcome and duration of mechanical ventilation with Spearman rank correlation coefficient. 
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Supplemental Figure 9 
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Supplemental Figure 9. Distinct activation molecular signatures in alveolar CD8+ T cells 

predict clinical outcomes in patients with severe SARS-CoV-2 pneumonia. (A-O) Gene set 

enrichment analysis (GSEA) of COVID-19 samples after performing correlation analysis of 

differentially expressed genes in CD8+ T cells and clinical variables of interest with Spearman 

rank correlation coefficient computation. Count denotes pathway size after removing genes not 

detected in the expression dataset. Enrichment denotes significant (q < 0.25 with FDR correction) 

upregulated (red) and downregulated (blue) pathways by normalized enrichment score. Leading 

edge analysis reveals selected core genes driving pathway enrichment signal in clinical variables, 

which are annotated for the superinfection (B-E), severity of illness (SOFA score) (G-J), and 

respiratory system compliance (L-O) variables. 
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Supplemental Figure 10 

 

Supplemental Figure 10. Cell-type deconvolution of bulk RNA-sequencing reveals a 

dominant activated memory phenotype of alveolar T cells during severe pneumonia. (A) K-

means clustering of 80 differentially expressed genes (q < 0.05, likelihood-ratio test with FDR 

correction) in Treg cells across pneumonia diagnoses. Columns represent unique samples and 

column headers are color-coded by diagnosis, binary outcome (whether a given patient was 

discharged or died during hospitalization), duration of mechanical ventilation (blanks indicate 
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chronically ventilated patients), and infection status (presence or absence of bacterial 

superinfection in patients with COVID-19 or other viral pneumonia). The VAP (ventilator-

associated pneumonia) flag designates samples from non-pneumonia controls or patients with 

COVID-19 or other viral pneumonia who cleared the virus and then developed a bacterial 

pneumonia. Samples were clustered using Ward’s minimum variance clustering method. 

Representative genes are shown for each cluster. (B-C) Gene set enrichment analysis (GSEA) 

of Hallmark gene sets for the pairwise comparison between COVID-19 samples and combined 

non-COVID-19 samples (non-pneumonia control, other pneumonia, and other viral pneumonia) 

(B) or the pairwise comparison between COVID-19 samples and other viral pneumonia samples 

(C). Count denotes pathway size after removing genes not detected in the expression dataset. 

Enrichment denotes significant (q < 0.25 with FDR correction) upregulated (red) and 

downregulated (blue) pathways by normalized enrichment score. (D) Heatmap demonstrating the 

proportion of alveolar CD8+ T cell subsets from deconvolution analysis. Columns represent unique 

samples grouped by diagnosis and are ordered by duration of mechanical ventilation. Column 

headers are color-coded by diagnosis, binary outcome, duration of mechanical ventilation (blanks 

indicate chronically ventilated patients), and infection status (presence or absence of bacterial 

superinfection in patients with COVID-19 or other viral pneumonia). The VAP (ventilator-

associated pneumonia) flag designates samples from non-pneumonia controls or patients with 

COVID-19 or other viral pneumonia who cleared the virus and then developed a bacterial 

pneumonia. (E) Proportion of alveolar CD8+ T cell subsets across different pneumonia etiologies. 

(q < 0.05, pairwise Wilcoxon rank-sum tests with FDR correction). F) Proportion of alveolar CD8+ 

T cell subsets by outcome and timing of BAL fluid sampling in COVID-19 patients (q < 0.05, 

pairwise Wilcoxon rank-sum tests with FDR correction). (G) Heatmap demonstrating the 

proportion of alveolar CD4+ T cell subsets from deconvolution analysis. Columns represent unique 

samples grouped by diagnosis and are ordered by duration of mechanical ventilation. Column 

headers are color-coded by diagnosis, binary outcome, duration of mechanical ventilation (blanks 
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indicate chronically ventilated patients), and infection status (presence or absence of bacterial 

superinfection in patients with COVID-19 or other viral pneumonia). The VAP (ventilator-

associated pneumonia) flag designates samples from non-pneumonia controls or patients with 

COVID-19 or other viral pneumonia who cleared the virus and then developed a bacterial 

pneumonia. (H) Proportion of alveolar CD4+ T and Treg cell subsets across different pneumonia 

etiologies (q < 0.05, pairwise Wilcoxon rank-sum tests with FDR correction). (I) Proportion of 

alveolar CD4+ T cell subsets by binary outcome and timing of BAL fluid sampling in COVID-19 

patients (q < 0.05, pairwise Wilcoxon rank-sum tests with FDR correction). 

 

Supplemental Figure 11 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.571479doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571479
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 11. Composition and demographics of bulk TCR-sequencing 

samples. (A) Number of participants grouped by diagnosis. (B) Proportion of samples grouped 

by T cell subset and diagnosis. (C) Number of samples categorized by timing of BAL. (D) 

Distribution of SOFA scores by patient. Nonsignificant after pairwise Wilcoxon rank-sum tests with 

FDR correction. (E) Mortality by patient. Nonsignificant after pairwise 𝜒2 tests for homogeneity of 

proportions with FDR correction. (F) Sex by patient. Nonsignificant after pairwise 𝜒2 tests for 

homogeneity of proportions with FDR correction. 

 

Supplemental Figure 12 
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Supplemental Figure 12. SARS-CoV-2 pneumonia complicated by secondary bacterial 

pneumonia is associated with lower TCR repertoire diversity. (A-C) Alpha diversity 

estimation with Chao 1 in combined alveolar CD4+ and CD8+ T cells in patients grouped by 

diagnosis (A), timing of BAL fluid collection relative to intubation (B), and binary outcome (C) (q < 

0.05, pairwise Wilcoxon rank-sum tests with FDR correction). (D-E) Correlation analysis between 

combined alveolar CD4+ and CD8+ T cell richness (Chao 1) and age (D) and duration of 

mechanical ventilation (E) using Pearson correlation. Data points are color-coded by unique 

patients (D) or infection status (E) and shaped according to binary outcome. (F) Alpha diversity 

estimation with Chao1 in combined alveolar CD8+ and CD4+ T cells in patients grouped by binary 

outcome and infection status (presence or absence of bacterial superinfection in patients with 

COVID-19 or other viral pneumonia). The VAP (ventilator-associated pneumonia) flag designates 

samples from non-pneumonia controls or patients with COVID-19 or other viral pneumonia who 

cleared the virus and then developed a bacterial pneumonia. Wilcoxon rank sum tests p-values 

are shown. 
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Supplemental Figure 13 

 

Supplemental Figure 13. Alveolar CD8+ T cell receptor specificity analysis in SARS-CoV-2 

pneumonia. (A) GLIPH2 specificity filtering criteria and numbers. (B) Inferred HLA-A and HLA-B 

alleles in patients with COVID-19. (C-E) Network analysis of TCR sequences in patients with 

severe pneumonia and respiratory failure from all diagnosis categories (C), non-COVID-19 groups 

(D), or COVID-19 (E). Nodes represent unique TCR (CDR3β) sequences and are color-coded by 

diagnosis. Shared TCR sequences by at least two different pneumonia categories are colored in 

purple. Edges constitute patterns or specificity groups identified through the GLIPH2 algorithm. 

(F-G) Proportion of HLA-A (F) and HLA-B (G) molecules identified in patients with COVID-19. n 

of patients = 14 (H-I) TCRβ (V) gene usage analysis of identified sequences following processing 

using the GLIPH2 pipeline and cross-matching with the MIRA class I dataset. Proportion of genes 

by pneumonia category (n of patients = non-pneumonia control [4], other pneumonia [7], COVID-
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19 [14], and other viral pneumonia [8]) (H) and absolute number of TCRβ sequences for each V 

region by pneumonia category (I) are shown. Dominant genes are annotated in (I). 

 

Supplemental Figure 14 

 

Supplemental Figure 14. Alveolar CD4+ T cell responses during severe SARS-CoV-2 

pneumonia. (A) Proportion of alveolar CD4+ T cell responses by SARS-CoV-2 protein. TCR 

sequences identified in all samples from patients with COVID-19 were cross-referenced with the 

MIRA II dataset to identify reactivity against specific SARS-CoV-2 antigens. n of patients = 12 and 

n of samples = 22 (B) Inferred HLA-DP, HLA-DQ, and HLA-DR alleles in patients with COVID-19. 

(C-E) Network analysis of TCR sequences in patients with severe pneumonia and respiratory 

failure from all diagnosis categories (C), non-COVID-19 groups (D), or COVID-19 (E). Nodes 

represent unique TCR (CDR3β) sequences and are color-coded by diagnosis. Shared TCR 

sequences by at least two different pneumonia categories are colored in purple. Edges constitute 
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patterns or specificity groups identified through the GLIPH2 algorithm. (F) Network analysis of 

shared TCR sequences recognizing SARS-CoV-2 epitopes. Nodes represent unique patients in 

the COVID-19 group (labeled here using the lettering scheme from Figure 4G), edges constitute 

shared TCR sequences by at least two patients mapped to a MIRA class II dataset epitope pool, 

and width of edges (magnitude) denote total number of shared TCR sequences. Edges are color-

coded by SARS-CoV-2 antigens. (G) Immunoprevalence of SARS-CoV-2 epitopes in patients 

with COVID-19 was calculated by counting the number of events when a given epitope was 

shared by at least two patients. Total counts from all eight identified epitopes are represented as 

percentage (%). (H) Overall number of TCR sequences mapped to a given SARS-CoV-2 epitope 

in patients with COVID-19 was calculated by counting all events of TCRs recognizing an epitope. 

Total counts from all eight identified epitopes are represented as percentage (%). * denotes other 

epitopes are present within MIRA class I dataset peptide pool. (I-J) TCRβ (V) gene usage analysis 

of identified sequences following GLIPH2 pipeline and cross-matching with MIRA class II dataset. 

Proportion of genes by pneumonia category. n of patients = non-pneumonia control (1), other 

pneumonia (4), COVID-19 (12), and other viral pneumonia (2) (I) and absolute number of TCRβ 

sequences for each V region by pneumonia category (J) are shown. Dominant genes are 

annotated in (J). (K) Scatter plot of SARS-CoV-2 epitope prevalence in patients with COVID-19 

(n = 12) and without COVID-19 (unexposed, n = non-pneumonia control [1], other pneumonia [4], 

and other viral pneumonia [2]). Dots are color coded by SARS-CoV-2 antigen. Dot size 

corresponds to the number of detected TCR sequences recognizing a given antigen. (L) SARS-

CoV-2 epitope prevalence in samples that underwent CD4+ TCR sequencing grouped by COVID-

19 status. Wilcoxon rank sum test p-values are shown. 
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Supplemental Data Files 

 

Supplemental File 1. Differentially expressed genes in CD8+ T cell bulk RNA-sequencing 

samples from K-means clustering analysis (cluster 1). 

Supplemental File 2. Differentially expressed genes in CD8+ T cell bulk RNA-sequencing 

samples from K-means clustering analysis (cluster 2). 

Supplemental File 3. Differentially expressed genes in CD4+ T cell bulk RNA-sequencing 

samples from K-means clustering analysis (cluster 1). 

Supplemental File 4. Differentially expressed genes in CD4+ T cell bulk RNA-sequencing 

samples from K-means clustering analysis (cluster 2). 

Supplemental File 5. Significant gene ontology processes identified in CD8+ T cell bulk RNA-

sequencing samples from K-means clustering analysis (cluster 1). 

Supplemental File 6. Significant gene ontology processes identified in CD8+ T cell bulk RNA-

sequencing samples from K-means clustering analysis (cluster 2). 

Supplemental File 7. Significant gene ontology parent terms and terms identified in CD8+ T cell 

bulk RNA-sequencing samples from K-means clustering analysis (cluster 1). 

Supplemental File 8. Significant gene ontology parent terms and terms identified in CD8+ T cell 

bulk RNA-sequencing samples from K-means clustering analysis (cluster 2). 

Supplemental File 9. Significant gene ontology processes identified in CD4+ T cell bulk RNA-

sequencing samples from K-means clustering analysis (cluster 1). 

Supplemental File 10. Significant gene ontology parent terms and terms identified in CD4+ T cell 

bulk RNA-sequencing samples from K-means clustering analysis (cluster 1). 

Supplemental File 11. GLIPH2 analysis establishing specificity groups from CD4+ T cell bulk 

TCR-sequencing samples. 

Supplemental File 12. GLIPH2 analysis establishing specificity groups from CD8+ T cell bulk 

TCR-sequencing samples. 
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Supplemental File 13. Cross-reference of CD4+ T cell repertoire sequences with Multiplex 

Identification of Antigen-Specific T-Cell Receptors Assay (MIRA) dataset. 

Supplemental File 14. Cross-reference of CD8+ T cell repertoire sequences with Multiplex 

Identification of Antigen-Specific T-Cell Receptors Assay (MIRA) dataset. 

Supplemental File 15. (A) Multiplex Identification of Antigen-Specific T-Cell Receptors Assay 

(MIRA) peptide deconvolution of Class I targets. (B) Hierarchical distribution of Class I 

immunodominant epitopes by patient from the bulk TCR-sequencing subset. (C) Pairwise 

similarity and average conservation score estimation between SARS-CoV-2 and HCoV epitopes. 

Supplemental File 16. Anonymized metadata by patient and samples for bulk RNA-sequencing 

and TCR-sequencing analysis. 

Supplemental File 17. Raw counts for CD4+ T cell bulk RNA-sequencing samples. 

Supplemental File 18. Raw counts for CD8+ T cell bulk RNA-sequencing samples. 

Supplemental File 19. Raw counts for Treg cell bulk RNA-sequencing samples. 

Supplemental File 20. MiXCR-processed raw sequencing files with TCR repertoire data for CD4+ 

T cell bulk TCR-sequencing samples. 

Supplemental File 21. MiXCR-processed raw sequencing files with TCR repertoire data for CD8+ 

T cell bulk TCR-sequencing samples. 

Supplemental File 22. Differential expression analysis in CD8+ T cells of pairwise comparison 

between COVID-19 samples and combined non-COVID-19 samples from Figure 2B. 

Supplemental File 23. Differential expression analysis in CD4+ T cells of pairwise comparison 

between COVID-19 samples and combined non-COVID-19 samples from Figure 3B. 

Supplemental File 24. Differential expression analysis in CD8+ T cells of pairwise comparison 

between COVID-19 samples and other viral pneumonia samples from Supplemental Figure 6B 

Supplemental File 25. Differential expression analysis in CD4+ T cells of pairwise comparison 

between COVID-19 samples and other viral pneumonia samples from Supplemental Figure 7B 
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Supplemental File 26. Differential expression analysis in Treg cells of pairwise comparison 

between COVID-19 samples and combined non-COVID-19 samples from Supplemental Figure 

10B. 

Supplemental File 27. Differential expression analysis in Treg cells of pairwise comparison 

between COVID-19 samples and other viral pneumonia samples from Supplemental Figure 10C 

Supplemental File 28. Differential expression analysis in CD4+ T cells of pairwise comparison 

between early (≤48 hours after intubation) and late (>48 hours after intubation) COVID-19 

samples from Supplemental Figure 8A. 

Supplemental File 29. Differential expression analysis in CD8+ T cells of pairwise comparison 

between early (≤48 hours after intubation) and late (>48 hours after intubation) COVID-19 

samples from Supplemental Figure 8B. 

Supplemental File 30. The NU SCRIPT Study Investigators. 
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