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6 Abstract

7 We introduce PhyloJunction, a computational framework designed to facilitate the prototyping, test-
8 ing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python
9 library that can be used to implement a variety of models, through its flexible graphical modeling ar-
10 chitecture and dedicated model specification language. Model design and use are exposed to users via
11 command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visu-
12 alizing data. This paper describes the features of PhyloJunction — which include, but are not limited
13 to, a general implementation of a popular family of phylogenetic diversification models — and, moving
14 forward, how it may be expanded to not only include new models, but to also become a platform for
15 conducting and teaching statistical learning.

16 Keywords: Evolutionary modeling, simulation, graphical model

17 Phylogenetic models of lineage diversification have been applied to a wide variety of evolutionary phenom-

18 ena spanning the disciplines of paleobiology [9] 26], [66], historical biogeography [8|, 22} 39, [£8], macroecology
v 111 [B1], epidemiology [I3} 511, [64], cancer evolution [4I], molecular evolution [20}[76], and linguistics [27]. The
2 evolutionary processes underlying these phenomena take place across a range of scales — from days to millions
a1 of years and from individual cells to the entire planet — and are known or hypothesized to operate under
» a similarly broad scope of tempos, modes, and spatial coordinates. Despite the heterogeneity in these bio-
» logical phenomena, however, at the core of such phylogenetic models frequently lies the “state dependence”
2 assumption: that the “states” of a lineage’s characters — ecological, geographic, phenotypic or genetic — may

»  shape anagenetic and cladogenetic evolution. Stochastic processes that make such assumption, the so-called
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»  state-dependent speciation and extinction (SSE) processes, comprise a popular family of models [44] for the
27 evolution of phylogenetic patterns.

2 In the recent past, many excellent methods for simulating under pure diversification models [e.g. 4], 24 [3T],
20 [43[69] and SSE processes [e.g. [6l 19 20, 43], [50] have been published. While overlapping in their capabilities,
3 each of those methods was developed and uniquely optimized given a specific intended application; hence,
51 they differ in terms of their model assumptions, implementation details and documentation, and execution
» attributes (e.g., speed, ease-of-use, etc.). Amidst this variation, we are unaware of any methods that, within
1 a single cohesive codebase, can simultaneously (i) simulate under arbitrarily complex SSE scenarios (but see
s [78]), (ii) support an intuitive model specification grammar (e.g., [I4] [30]), (iii) be easily extended by others
5 to include new models, and (iv) showcase a built-in graphical user interface for automatic visualization and
s summarization of synthetic data, streamlining user interaction with the software (but see [14]).

7 In the hope of filling this gap in the computational biology toolbox, we introduce a new, open-source
s computational framework for evolutionary modeling: PhyloJunction. PhyloJunction ships with a very gen-
s eral SSE model simulator and with additional functionalities for model validation and Bayesian analysis.
w0 Importantly, we designed PhyloJunction around a graphical modeling architecture, and equipped it with a
a dedicated probabilistic programming language. These features are forward-looking; they will make it easy
2 to expand and integrate PhyloJunction’s evolutionary model ecosystem in the future. PhyloJunction comes
s with a graphical user interface (GUI) that allows users to readily inspect and interact with simulation out-
« puts, making this program amenable to classroom use. A command-line interface (CLI) is also available for

s running PhyloJunction remotely and in parallel.

« 1 Flexible simulation: prototyping, testing and characterizing evo-
a lutionary models

s PhyloJunction was created first and foremost as an evolutionary model simulator, more specifically a flexible
» simulator of SSE diversification models. A series of related diversification models (Table [1)) have been
s implemented in multiple computational methods with varying foci and performance, each making different
51 assumptions about how a process starts and ends, whether it flows backward or forward in time, and what
52 output is processed and presented to the user. PhyloJunction was born out of the necessity of coalescing the
53 strengths of these different implementations in a single, cohesive application with additional capabilities (see
s« below). As illustrated in later sections and in the online documentation, our implementation can simulate

55 arbitrarily complex SSE processes (all models in Table |1} validation against other software can be found in
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Table 1: Phylogenetic models that can be simulated with PhyloJunction. Some of these models are nested
within each other (e.g., BiSSE is a special case of MuSSE). “skyline” indicates time-heterogeneous rates
varying in a piecewise-constant manner. “fossilized” means the addition of a fossilization parameter, which
allows for direct ancestors in the reconstructed (sampled) tree. All models can be simulated with incomplete
sampling. Representative papers for each model are listed under references.

Model Ak.a. or acronym Reference(s)

Pure-birth Yule [67, [83]
skyline
fossilized

Birth-death 36, 52]
skyline BDSKY [72]
fossilized FBD [26]

Binary SSE BiSSE [44]
skyline
fossilized

Multistate SSE MuSSE [19]
skyline
fossilized

Geographic SSE GeoSSE [17]
skyline
fossilized

Cladogenetic SSE ClaSSE [22]
skyline
fossilized

Multitype birth-death MTBD [71]
skyline [64]
fossilized

ss  the supplement), and presents the user with a variety of textual and graphical outputs.

57 Beyond its immediate goal of simulating SSE processes, however, it was evident early on that PhyloJunc-
ss  tion could grow and serve more broadly as a computational framework for developing evolutionary models.
so This ultimate purpose manifests from PhyloJunction’s graphical model architecture being written in Python
o0 — a design and language convenient for prototyping model code, on which we expand below — and from the
o1 critical role simulation plays in model testing and characterization, two key stages in a model’s life cycle.
62 A newly implemented model prototype is typically pitched against data simulated in simple scenarios, with
&3 the expectation that it returns acceptable parameter estimates given some truth (i.e., a value used in sim-
s ulation). Upon failure, development loops back to implementation so bugs can be patched; this potentially
s iterative process is the testing (or validation) stage. If testing succeeds, the model is released to the public
e and enters a final characterization stage, in which its behavior and adequacy are thoroughly scrutinized by
e the scientific community, again via analysis of simulated data (e.g., [12] [40} [45] 46, 59| 63] [68]).

o8 In the following sections, we detail the different features that allow PhyloJunction to flexibly specify and
6 simulate diversification processes, and to facilitate the different steps involved in computational evolutionary

7 model development.
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» 2 A graphical model architecture and dedicated language for spec-
7 ifying arbitrarily complex models

7 Any type of analytical or generative procedure involving statistical models requires some form of infrastruc-
7 ture for specifying such models. One example is the framework adopted by the BEAST, BEAST 2 and
7 RevBayes platforms, whereby atomic model components can be combined into an arbitrarily large Bayesian
% network — a probabilistic graphical model whose structure can be represented by a directed acyclic graph
7 (DAG; or more explicitly as a factor graph, e.g., Fig. [Ip; [29]). The popularity of these platforms is elevating
7 graphical models to a modeling standard, although every one of these programs differs in how it allows users
7 to specify models.

80 Here, we take a model specification approach that sits between those adopted by the BEAST and
s RevBayes community. PhyloJunction implements a programming language, phylojunction (written in
2 lowercase and abbreviated as pj), together with an interactive development environment for specifying
s phylogenetic models (see the next section). pj is lightweight like popular markup languages (e.g., XML,
u BEAST’s format of choice), but resembles model scripting languages (e.g., Rev, the language introduced by
s RevBayes) in its syntax, hence its retained human-readability.

86 Like the Rev language, pj commands can be read as mathematical statements, and are naturally inter-
s preted as instructions for building a node in a DAG (see below). User commands instruct the application
s engine to take some form of user input, produce some value from it, and then store that value permanently
g in a new variable created on the spot. Every command string consists of an assignment operator placed
w between the variable being created (on its left side) and some user input (on its right side). Listing 1 (Fig.
o1 ) demonstrates the different ways in which this essential operation takes place as a time-homogeneous
oo birth-death model is specified.

03 Following the grammar of Rev [30], the behavior of a variable is determined by which assignment operator
% (<=, ~, or :=) is used for assignment. For example, line 6 in listing 1 (Fig. [Lh) creates a variable ‘d’ (the
s death rate), which is then passed and henceforth stores an unmodified user input, constant value 1.0. This

‘<=’. Line 7, in turn,

o type of constant value assignment is carried out with the constant assignment operator,
o shows how the stochastic assignment operator ‘~’ is used to create a variable named ‘b’ (the birth rate).
o¢ This variable will then store a random value drawn from a user-specified distribution. Here, the user input
9 consists of the moments of a log-normal distribution.

100 Finally, the deterministic assignment operator, ‘:=", is used to assign a value computed deterministically

o1 from existing variables (or other user input) to a new variable. This is illustrated by lines 10, 11 and 16

02 in listing 1 (Fig. ) The purpose of deterministic assignments is to transform, combine or annotate one
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Listing 1: pj script ifyi birth-death model
(a) Listing 1: pj script specifying a bir eath mode (b) Model built by listing in (a)
1 # hyperprior

2 m <- 0.0 # log-normal mean

3 sd <- 0.1 # log-normal standard deviation
4

5 # rate wvalues lognonnal

6 d <- 1.0 # death i

7 b ~ lognormal (mean=m, sd=sd) # birth

9 # deterministic rate containers

sse_rate sse_rate

Y

10 dr := sse_rate(name="death_rate", value=d, event="

extinction")
11 br := sse_rate(name="birth_rate", value=b, event="
speciation")

12 sse_stash
13 0 <- 2.0 # origin age
14
15 # deterministic parameter stash
16 s := sse_stash(flat_rate_mat=[dr, br], n_states=1, n

_epochs=1) # parameter stash discrete_sse
17

18 # phylogenetic tree
19 T ~ discrete_sse(stash=s, stop="age", stop_value=0,
origin="true")

Figure 1. A birth-death phylogenetic model (a) as specified with phylojunction, PhyloJunction’s epony-
mous programming language, and (b) shown as a factor graph, a generalization of a directed acyclic graph
(DAG). A few of the symbols in (b) were introduced in the context of phylogenetics by [29]. Briefly, empty
squares and empty circles drawn in continuous lines represent constant and stochastic nodes, respectively.
Circles filled in gray represent stochastic nodes whose values are observed (i.e., data). Empty diamonds
denote deterministic nodes (the output of deterministic functions). Factors capture the conditional depen-
dencies between stochastic nodes and are either (i) filled squares, each associated to a distribution charac-
terized by a density function and from which values can be sampled, or (ii) filled diamonds, denoting each
a deterministic function.
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103 Or more existing variables, and give users more control over model building. Without this class of explicit
14 operations, such steps would instead take place out of sight in the backend, or alongside many other actions
105 upon a single pj command, both of which can contribute to obscuring model structure.

106 Computer variables created with pj are nodes in the DAG that describes all variable dependencies,
w7 distributions, functions, and values that comprise the full evolutionary model. With every pj command the
s DAG thus grows by a node, which is immediately assigned a value. The nature of the assignment (constant,
00 stochastic, or deterministic) reflects which operator was used, as explained above. A thorough treatment
uo of the grammar and usage of graphical models for evolutionary inference can be found in [29] [30] and the

mr tutorials therein.

> Technical remarks on the phylojunction language

3 In PhyloJunction, models are specified through commands written in the eponymous custom language,
us  phylojunction (pj). In the current version of pj, created variables are the sole, immutable output of every
us  function — and this output depends exclusively on a function’s arguments. Variable immutability has two
us consequences. First, it precludes loop control structures (e.g., for and while loops), with replication and
ur “plating” (see [29]) being achieved instead through vectorization, a concept R users should be familiar with.
us  (pj also does not support structures such as if-then-else and switch statements, effectively abstracting control
o flow.) Second, apart from the logical dependencies between nested functions — which reflect dependencies
o among DAG nodes — command evaluation order does not affect model specification and simulation. For
 example, in listing 1 (Fig. ), commands on lines 2, 3 and 6 are order-interchangeable, and so are those on
12 lines 10 and 11, but the command on line 7 must be executed before that on line 11.

123 The features described above make pj behave largely as a declarative language like XML. While com-
12« mands in pj are Rev-like in syntax, and instantiate and store a DAG object in memory (the state of a
15 PhyloJunction section), the similarities with Rev end here. In contrast to an imperative scripting language
2 (e.g., R, Python, Rev), pj (i) is easier to learn, understand and write, (ii) enhances reproducibility, (iii)
127 leaves less room for programming mistakes (e.g., variable overwriting, container indexing errors), and (iv)
128 shifts the user’s attention from how to specify a model to the structure of the model itself. Focus on model
129 structure in PhyloJunction is further encouraged by pj’s grammar ignoring actions and settings unrelated
1 to model building, such as dependency loading, input/output, Bayesian proposals, MCMC parameters, etc.

wm All of these properties make pj a lightweight language that can be particularly useful in the classroom.
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Figure 2: PhyloJunction’s (a) graphical user interface (GUI) with different features indicated by numbers
(see main text), and plots from (b) “Coverage” and (c) “Compare” graphical exploration functionalities.

= 3 Standalone command-line and graphical user interfaces

133 PhyloJunction integrates its multiple utilities for simulating, testing and characterizing evolutionary models
13 via both command-line (CLI) and graphical user interfaces (GUIL; Fig. ) Through the CLI and GUI, users
s can provide PhyloJunction with a series of DAG-building instructions in the form of a pj script (e.g., listing
s 1, Fig. ) Users can also build a DAG by entering commands through the GUI’s command prompt (Fig.
137 , number 1). Synthetic data is then generated while a pj script (or sequence of commands) is processed,
18 and can later be exported as text files to a user-specified location. The interfaces can be further used to save
1o and load a particular model instance as a serialized byte stream.

140 As any modern computer application, PhyloJunction’s GUI exposes its features to users via a menu (Fig.
141 , number 2). On the main tab (“Model”), one can navigate the DAG and see its node values as a plot,
w2 text string, or both (Fig. , numbers 3 and 4). Users can also cycle through replicated simulations (Fig.
143 , number 5), and examine node-value summaries computed for individual simulations or across replicates
w  (Fig. , number 6). Node-value summaries include the mean and standard deviation for scalar variables,
s and statistics like the root age and number of tips for phylogenetic trees.

146 Automatic summarization and visual inspection of synthetic data expedites model testing and character-
w7 ization, by helping researchers quickly determine if a model setup is appropriate. Empiricists can promptly
s examine the effect that prior choice may have during Bayesian inference, for example, depending on what
1o simulated data sets look like. Under an SSE model [I3], high state-transition rates causing saturation would

10 be immediately discernible in the state mappings coloring a phylogenetic tree (Fig. , number 3).
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s Workflow functionalities for model testing, characterization, and teaching

12 In addition to data simulation, the different stages of model development have a few common denominators.
153 Researchers must usually contend with (i) parsing inference results, (ii) comparing parameter estimates and
15 their true values, and (iii) displaying the results as graphs. These tasks will commonly be repeated across
155 parameter space, and sometimes under different models altogether. Furthermore, testing and characterization
16 pipelines are often built, executed and described several times by multiple researchers — even when the
7 procedures taking place are very similar (e.g., [28, 48]). This redundancy is not only an inefficient use of
18 researchers’ time, but also hinders reproducibility.

159 PhyloJunction introduces a suite of utilities for streamlining and automating model specification, testing
1o and characterization. These are meant to minimize scripting redundancy and maximize the reproducibility
w1 of in silico experiments. Different utilities are separately documented and can be invoked by the user from
12 within custom Python scripts, as modules. Alternatively, users may access PhyloJunction’s features via its
163 standalone interfaces.

164 Validation utilities, for example, can be accessed via the GUI's “Coverage” tab. These were designed
s with Bayesian coverage validation in mind (e.g., [21 63 84]). When a simulated data set is analyzed using
16 a Bayesian platform, this tab can be used for loading raw or post-processed inference result files. True
17 parameter values must be loaded as a table, or if data was simulated with PhyloJunction, users can load a
s model instance (saved previously as a byte stream). Parameter coverage can then automatically computed,
s and Bayesian intervals plotted against true parameter values (Fig. [2p).

170 The GUI’s “Compare” tab, in turn, exposes additional model exploration utilities to the user. Here,
. parameter values generated by PhyloJunction under a model can be visualized against theoretical expecta-
2 tions, or against values simulated by a different program. Because PhyloJunction automatically computes
173 parameter summary statistics, those can also be displayed side-by-side with comparable quantities calculated
m  elsewhere (Fig. ) These functionalities are useful in a Bayesian context, for example, whenever a model
175 has been implemented for inference, but not for direct simulation. In such cases, one can use PhyloJunction
e to rapidly build a direct simulator for the first time, and then use the “Compare” tab to check it against
w7 Monte Carlo samples produced by the existing implementation.

178 Simulation functionalities as well as those available under the “Coverage” and “Compare” tabs were
o developed because of the ubiquitous (and repetitious) nature of certain tasks involved in validating and
10 characterizing a model. In addition to methodological research, however, we anticipate that these features
1n - will find use in teaching settings — especially considering the growing availability and popularity of technical

12 workshops [2 [3], and new pedagogical material [25] [62] 80]. While trying their hand at implementing simple
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13 evolutionary models, students could use PhyloJunction to validate said models or to obtain simulation
18a benchmarks, and to immediately visualize results via the GUI. PhyloJunction’s pedagogical impact will be
15 further enhanced by its implementation in pure Python (see below), a cross-platform, user-friendly language

186 that finds widespread use in the classroom.

« 4 Longevity through an extensible and user-friendly model ecosys-
199 tem

19 One hurdle that must be often overcome during model development is the steep learning curve of the low-level
10 programming languages many software platforms are written in. RevBayes is written in C++4, for example,
11 while BEAST and BEAST 2 are developed in Java. This is a choice motivated by compiled programming
102 languages generally outperforming interpreted languages (e.g., R, Python), and being preferred over the
103 latter whenever speed is a priority, such as when a method is primarily used for inference from challenging
104 data sets. Languages like C++ and Java also natively support object-oriented programming — a programming
15 paradigm that is critical for erecting vast, extensible and maintainable codebases such as those living inside
16 those platforms.

107 Despite being conversant in interpreted languages, many biologists with an enthusiasm for evolutionary
s modeling have little to no experience with the commonly abstruse syntax and features of low-level languages
190 (e.g., memory management, abstraction, typing). They also have rarely had to contend with the complicated
20 pipelines for compiling large programs across different types of computers, and with the configuration of
20 industry-grade IDEs (integrated development environment), used for navigating immense codebases. Unless
22 working closely with developers of big software platforms, individual scientists are likely to struggle with (i)
23 reverse-engineering complex code that may not have been written to be read by others, and (ii) adding new
2 code that does not break the behavior of the original codebase.

205 One alternative that obviates some of these difficulties is to implement and release models as R or Python
26 packages (e.g., [ 10, 19l 211 50} 56| [61]). A package has a comparatively small codebase that can be written
207 by anyone from scratch, is self-contained and thus easily maintainable, and can be integrated with other
28 packages more or less readily, via the scripting language. Furthermore, public package archives such as CRAN
20 (the Comprehensive R Archive Network) or PyPI (the Python Package Index) do not restrict how a package
a0 should be programmed; package source files are immensely variable in their coding language, conventions and
an documentation, and programming paradigm. The minimal package submission and code-design requirements

a2 of CRAN and PyPI allow researchers freedom and flexibility, both unquestionable advantages to this variety
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a3 of method development.

214 Writing packages has its challenges. Developers who want to add to or combine existing packages will
25 likely have to contend with code written in a mix of languages (e.g., R, Python, C, C++, FORTRAN),
26 paradigms (e.g., functional, objected-oriented) and styles. Furthermore, CRAN and PyPI put the onus
2 on the researcher to choose among (often multiple) packages for the same or different purposes. Packages
28 may vary with respect to their underlying algorithms, modeling assumptions and notation (see [70] for an
20 example). Lastly, every scientist will adopt a unique R scripting strategy when specifying a model. All of the
20 above makes reproducibility of results harder, and leads to code that is often chimeric (in its style, paradigm
a1 and language), single-use, or redundant.

2 The choice of platform for writing modeling software thus involves trade-offs related to technical difficulty,
»3  speed, distributability, and maintainability. PhyloJunction embodies our attempt at balancing the above
24 considerations while introducing an alternative methodology for model development and characterization.
25 The brunt of PhyloJunction’s design effort involved conceiving a computational framework that could not
26 merely be extended — among other things, our intention is to facilitate the early stages of model prototyping
27 and testing — but extended with minimal refactoring and in the most developer-friendly way possible.

28 We chose to implement Phylojunction in Python primarily because of its native support for object-
29 oriented programming, a paradigm that aids codebase expansion and maintenance. Furthermore, Python
20 has clear community standards and many tools (e.g., mypy, Sphinz, pep8 [(1], pep20 [67]) for encouraging
2 or enforcing conventions on coding style, type hinting and documentation — all of which further contribute
2 to codebase clarity and consistency. A Python codebase can also be easily navigated with any of the various
a3 user-friendly IDEs with support for Python (e.g., Visual Studio Code, PyCharm, Spyder).

23 Finally, Python development can profit from a vast array of free, industry-grade scientific libraries for
25 data manipulation (e.g., matplotlib [34], pandas), statistics and Bayesian analysis (e.g., scipy [(9], PyMCS8
26 [30], ArviZ [38]), and machine learning (e.g., TensorFlow [I], scikit-learn [55]). Of particular relevance to
2 PhyloJunction’s is PyPI’s growing list of modules specifically aimed at phylogenetic or population genetic
2 analysis (e.g., DendroPy [(3], PyRate [65], MESS [54], ete3 [33], msprime [5]), some of which have already
239 been or may be integrated with PhyloJunction in the future. Below we suggest a few ways in which the

uo latter may be done.

. D Availability and resources

22 PhyloJunction’s source code is publicly available on https://github. com/fkmendes/PhyloJunction. Doc-

23 umentation on how to install and use the program can be found on https://phylojunction.org. Phylo-
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24 Junction is licensed under GNU General Public License v3.0.

« 6 Future directions

s We introduced PhyloJunction, an open-source package for simulating state-dependent speciation and ex-
27 tinction (SSE) processes, a large family of diversification models that has found success across a range of
2 scientific domains [I3], 27, [75]. Most implementations of SSE models have prioritized inference and effi-
2u9 ciency over simulation and generality; the latter is the relatively vacant niche PhyloJunction was designed
»0  to fill. In addition to model-specification and simulation tools, our program ships with a series of utilities
»1 for summarizing and visualizing simulation outputs, as well as data-wrangling functions for model validation
2 and characterization. These utilities are integrated and exposed to users by standalone command-line and
»3  graphical interfaces, which simplify the execution and reproduction of in silico experiments.

25 Models in PhyloJunction are embedded within a graphical modeling architecture, which also underlies
x5 the package’s dedicated probabilistic-programming language, phylojunction. These features make Phy-
»6  loJunction’s model ecosystem extensible beyond SSE processes, and allow its components to be promptly
»7  integrated. Future software releases are planned to include distributions for different types of data models
s (e.g., DNA and protein sequences, [23 [74] [82]; discrete and continuous characters, [I8] [42]), evolutionary
20 clock models (e.g., [15], [16]), population-genetic and phylogeographic processes (e.g., [37, 60]), or models
%0 combining any of the above (e.g., [7, 32 47]). A richer selection of evolutionary processes should widen the
1 range of potential applications of PhyloJunction in research and teaching.

262 PhyloJunction was primarily designed to be a framework for simulation and prototyping of evolutionary
%3 models, but we expect its future development to further take on the task of statistical inference. Moving in
s that direction may involve introducing subroutines for creating textual instructions for Bayesian inference,
w5 for example, as required by popular platforms (e.g., RevBayes, BEAST, BEAST 2). Bayesian inference is
26 also possible within a Python environment, although it is unclear how immediately useful existing libraries
wr (e.g., [35]) may be in terms of parameter estimation in phylogenetic space. Porting or implementing Bayesian
x%s inference utilities in our platform would in the very least allow synthetic data to be simulated under simple
%0 models, and immediately plotted. Such an extension would further empower PhyloJunction as a teaching
oo tool. Alternatively, it should be straightforward to integrate PhyloJunction’s functionalities for summarizing
o data together with Python machine learning libraries. There is increasing evidence [49] backing machine-
a2 learning methods as viable alternatives to frequentist and Bayesian evolutionary inference, especially when
a3 the latter is very onerous or impossible [75].

274 It is our long-term hope for PhyloJunction that it not only increasingly facilitates research in evolutionary
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25 modeling, but that its capabilities can be diversified and enhanced by (and according to the needs of) the

ar  scientific community at large.
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