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Abstract  10 

Research on cell-cell communication (CCC) is crucial for understanding biology and diseases. Many 11 

existing CCC inference tools neglect potential confounders, such as batch and demographic variables, when 12 

analyzing multi-sample, multi-condition scRNA-seq datasets. To address this significant gap, we introduce 13 

STACCato, a Supervised Tensor Analysis tool for studying Cell-cell Communication, that identifies CCC 14 

events and estimates the effects of biological conditions (e.g., disease status, tissue types) on such events, 15 

while adjusting for potential confounders. Application of STACCato to both simulated data and real scRNA-16 

seq data of lupus and autism studies demonstrate that incorporating sample-level variables into CCC inference 17 

consistently provides more accurate estimations of disease effects and cell type activity patterns than existing 18 

methods that ignore sample-level variables. A computational tool implementing the STACCato framework is 19 

available on GitHub. 20 

Introduction  21 

Cell-cell communication (CCC) involves cells exchanging signals to coordinate physiological and 22 

developmental functions in multicellular organisms. The study of CCC events, which involves interactions 23 

between one ligand-receptor pair from one sender cell type to one receiver cell type, is important for 24 

elucidating biological processes, exploring disease mechanisms, and inspiring advancements in drug 25 

discovery. Using gene expression data produced by single-cell RNA sequencing (scRNA-seq) technology, 26 

multiple computational tools are now available to infer CCC events1–9.   27 
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Recently, high-throughput sequencing technology advancements have significantly reduced the cost of 28 

scRNA-seq, allowing researchers to gather scRNA-seq data from multiple biological samples under multiple 29 

biological conditions10–13, such as disease versus healthy control samples or samples from multiple tissue 30 

types. Most existing computational tools developed for CCC inference were originally designed for analyzing 31 

single-sample scRNA-seq data1–7. When attempting to apply these tools to multi-sample multi-condition 32 

scRNA-seq datasets, a three-step procedure is typically necessary. First, data from all samples within the same 33 

condition are combined to create an aggregated “sample” per condition. Second, communication scores are 34 

calculated for CCC events using the aggregated “samples”, one per condition. Last, CCC events with 35 

significantly different communication scores across conditions are identified as condition-related CCC events. 36 

Another proposed strategy to handle such multi-sample multi-condition single-cell data is to use the tensor 37 

decomposition technique, which has been used to extract underlying lower-dimensional patterns from high-38 

dimensional genomic data8,9,14,15. For example, the recently developed tool Tensor-cell2cell 11 constructs a 4-39 

dimensional communication score tensor, with 4 dimensions corresponding to samples, ligand-receptor pairs 40 

sender cell types, and receiver cell types. Tensor-cell2cell applies unsupervised tensor decomposition to 41 

identify underlying communication patterns, and then tests if the communication patterns are significantly 42 

different across conditions.  43 

An important drawback of both the three-step procedure and the Tensor-cell2cell tool for analyzing 44 

multi-sample and multi-condition scRNAseq data is that they ignore important sample-level variables (such as 45 

processing batch, age, gender, and ancestry) that are typically collected in such studies. These variables can 46 

have substantial impacts on both biological conditions and CCC, likely confounding the identification of 47 

condition-related CCC events. Neglecting these confounding variables may mask true biological associations 48 

between CCC events and conditions, or, even more concerning, lead to false positive associations that could 49 

result in misguided interpretations of CCC events. Therefore, the development of a CCC inference tool to 50 

effectively incorporate sample-level variables and adjust for potential confounding variables in multi-sample 51 

multi-condition scRNA-seq data becomes increasingly important. 52 
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To bridge this gap, we introduce the Supervised Tensor Analysis tool for studying Cell-cell 53 

Communication (STACCato), that uses multi-sample multi-condition scRNA-seq dataset to identify CCC events 54 

significantly associated with conditions while adjusting for potential sample-level confounders. STACCato 55 

considers the same 4-dimentional communication score tensor as the Tensor-cell2cell tool, with 4 dimensions 56 

corresponding to samples, ligand-receptor pairs, sender cell types, and receiver cell types. Different from the 57 

Tensor-cell2cell tool, STACCato employs supervised tensor decomposition16 to fit a regression model that 58 

considers the 4-dimensional communication score tensor as the outcome variable while treating the biological 59 

conditions (e.g., disease status, time points, tissue types) and other sample-level covariates (e.g., batch and 60 

demographic variables) as independent variables. Through this supervised tensor-based regression model, 61 

STACCato can identify CCC events and estimate the impact of conditions on CCC events, while effectively 62 

controlling for potential confounding variables.  63 

In subsequent sections, we first introduce the analytical framework of STACCato. We then apply 64 

STACCato to two real datasets: the Systemic Lupus Erythematosus (SLE) dataset10,11 consisting of scRNA-seq 65 

data of peripheral blood mononuclear cells (PBMC) samples from 154 SLE patients and 97 healthy controls, 66 

and the Autism Spectrum Disorder (ASD) dataset12 consisting of snRNA-seq data of prefrontal cortex (PFC) 67 

samples from 13 ASD patients and 10 controls. Notably, the SLE dataset exhibits an unbalanced study design, 68 

resulting in batch effects being highly confounded with the disease effect. We observed dramatic changes in 69 

estimated disease effects for CCC events before and after adjusting for batch effects, leading to contrasting 70 

conclusions regarding the associations between these CCC events and SLE. These findings underscore the 71 

substantial impact of confounding variables on CCC inference, emphasizing the necessity of accounting for 72 

confounding variables in CCC studies. We further validate these observations through a simulation study 73 

considering various study designs. Finally, we conclude with a discussion. 74 

Results 75 

STACCato framework 76 

We propose STACCato, a powerful tool that utilizes multi-sample multi-condition scRNA-seq data to 77 

identify condition-related CCC events while accounting for potential confounding variables. Briefly, STACCato 78 
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first generates a 4D communication score tensor with four dimensions representing samples, ligand-receptor 79 

pairs, sender cell types, and receiver cell types (Figure 1A-1C). Next, STACCato employs a supervised tensor 80 

decomposition method that incorporates sample-level information (such as biological conditions or batches) to 81 

estimate a coefficient tensor, representing the effects of sample-level variables on CCC events (Figure 1C). 82 

Finally, we conduct parametric bootstrapping to assess the significance of the estimated coefficients. We 83 

describe the general supervised tensor decomposition framework below and relegate the technical details to the 84 

Methods section.   85 

Supervised tensor decomposition of communication score tensor 86 

With respect to an CCC event involving the interaction of ligand-receptor pair 𝑗 from sender cell type 87 

𝑘 to receiver cell type 𝑙, we consider the following regression model to assess the association between the CCC 88 

event and the condition adjusting for other covariates,  89 

𝑦!"#$ = 𝛽%"#$𝑥!% +⋯+ 𝛽&"#$𝑥!& 	+ 	𝜖!"#$; 90 

𝑖 = 1,⋯ 𝐼; 		𝑗 = 1,⋯ 𝐽; 		𝑘 = 1,⋯𝐾; 		𝑙 = 1,⋯𝐿; 		𝑞 = 1,⋯𝑄.   (Equation 1) 91 

Here, 𝐼, 𝐽, 𝐾, 𝐿, and Q are the total number of samples, ligand-receptor pairs, sender cell types, receiver cell 92 

types, and sample-level variables, respectively. In Equation 1, 𝑦!"#$  denotes the communication score 93 

representing the communication level of the CCC event involving the interaction of ligand-receptor pair 𝑗 from 94 

sender cell type 𝑘  to receiver cell type 𝑙	in sample 𝑖	(see Methods for details about communication score 95 

calculation); 𝑥!& denotes the sample-level variable 𝑞, such as biological condition or batch, for sample 𝑖; 𝛽&"#$ 96 

denotes the effect of variable 𝑞 on the communication score of the CCC event involving the interaction of ligand-97 

receptor pair 𝑗 from sender cell type 𝑘 to receiver cell type 𝑙; and 𝜖!"#$ ∼ 𝑁(0, 𝜎') denotes the random error that 98 

follows a Gaussian distribution with mean 0 and standard deviation 𝜎. 99 

A straightforward way to estimate 𝛽&"#$ is to fit a regression model with 𝒚"#$ = =𝑦%"#$ , ⋯ , 𝑦("#$>
) 	as the 100 

values of the dependent variable and sample-level information matrix 𝑿 ∈ ℝ(	×	,  as the design matrix for 101 

independent variables. The major limitation of this strategy is that it estimates 𝜷"#$ =	 =𝛽%"#$ , ⋯ , 𝛽,"#$>
) 	, 𝑗 =102 
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1,⋯ 𝐽, 𝑘 = 1,⋯𝐾, 𝑙 = 1,⋯𝐿 separately for each CCC event and ignores the correlations among CCC events. 103 

For example, the interactions of the same ligand-receptor pair 𝑗 across different sender and receiver cell types 104 

are dependent, and thus 𝛽&"#$  is dependent of 𝛽&"#!$!  with 𝑘	 ≠ 𝑘-  and 𝑙 ≠ 𝑙- . To consider such correlations 105 

among CCC events, we employ a supervised tensor technique to jointly estimate 𝜷"#$ for all 𝑗 = 1,⋯ 𝐽, 𝑘 =106 

1,⋯𝐾, 𝑙 = 1,⋯𝐿. To do so, we note that Equation 1 is equivalent to the tensor model,  107 

𝒴 = ℬ	 ×% 𝑿 + ℇ         (Equation 2) 108 

where 𝒴 ∈ ℝ(×.×/×0 denotes the 4-dimensional communication score tensor with dimensions of 𝐼 samples, 𝐽 109 

ligand-receptor pairs, 𝐾 sender cell types, and 𝐿 receiver cell types, with the (𝑖, 𝑗, 𝑘, 𝑙	) entry corresponding to 110 

𝑦!"#$ in Equation 1 (see Figure 1A – 1C for an example communication score tensor; see Methods for details 111 

about constructing communication score tensor); ℬ ∈ ℝ,×.×/×0 denotes a 4-dimensional coefficient tensor with 112 

dimensions of 𝑄 sample-level variables, 𝐽 ligand-receptor pairs, 𝐾 sender cell types, and 𝐿 receiver cell types, 113 

with the (𝑞, 𝑗, 𝑘, 𝑙	) entry corresponding to 𝛽&"#$ in Equation 1; 𝑿 ∈ ℝ(	×	, in Equation 2 denotes sample-level 114 

design matrix for 𝑄 variables of 𝐼 samples, with the (𝑖, 𝑞) entry corresponding to 𝑥!& in Equation 1; ×% denotes 115 

multiplying a tensor by a matrix in the tensor’s first dimension; and ℇ ∈ ℝ(×.×/×0  denotes a 4-dimensional 116 

tensor with the (𝑖, 𝑗, 𝑘, 𝑙	) entry corresponding to 𝜖!"#$ in Equation 1. The graphic representation of an example 117 

tensor model as in Equation 2 is shown in Figure 1C, with disease, age, and batch as example sample-level 118 

variables. The detailed illustration of how this supervised tensor technique can incorporate correlations among 119 

CCC events is described in the Methods section. 120 

To estimate ℬ in Equation 2, we employ the supervised tensor decomposition technique16 that considers  121 

ℬ in Equation 2 as a core tensor 𝒢 multiplied by 4 factor matrices 𝑴, ,𝑴.,𝑴/ ,𝑴0,  122 

ℬ = 	𝒢	 ×%𝑴, 	×'𝑴. ×1𝑴/ ×2𝑴0 . 123 

where ×3 , 𝑑 = 1,2,3,4  denotes multiplying a tensor by a matrix in the tensor’s 𝑑 th dimension. For the 124 

convenience of presentation, we use 𝒢	 ×	O𝑴, ,𝑴.,𝑴/ ,𝑴0P to denote the above tensor-by-matrix product. 125 

Then the full supervised tensor decomposition model is given by: 126 
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𝒴 = ℬ	 ×% 𝑿 = 	𝒢	 ×	O𝑴, ,𝑴.,𝑴/ ,𝑴0P 	×% 𝑿 + ℇ,    (Equation 3) 127 

where 𝑴, ∈ ℝ,	×	4", 𝑴. ∈ ℝ.	×	4#, 𝑴/ ∈ ℝ/	×	4$, 𝑴0 ∈ ℝ0	×	4% are factor matrices. These factor matrices have 128 

orthonormal columns (i.e., factors), which can be thought of as the principal components for each dimension. 129 

Under the context of cell-cell communication, 𝑴𝑄 ∈ ℝ
𝑄	×	𝑟𝑄 contains 𝑟, factors, representing 𝑟, effect patterns 130 

of 𝑄  covariates; 𝑴. ∈ ℝ.	×	4# 	contains 𝑟.  factors, representing 𝑟.  activity patterns of 𝐽	 ligand-receptor pairs; 131 

𝑴/ ∈ ℝ/	×	4$  contains 𝑟/  factors, representing 𝑟#  activity patterns of 𝐾  sender cell type; 𝑴0  contains 𝑟0 132 

factors, represents 𝑟0 activity patterns of 𝐿 receiver cell type; 𝒢 ∈ ℝ4"	×4#	×	4$	×4% in Equation 3 denotes the core 133 

tensor whose entries show the level of interaction among the factors from different dimensions. We define the 134 

decomposition rank 𝒓 = (𝑟,, 𝑟., 𝑟/, 𝑟0). Details regarding the determination of 𝒓 are described in the Methods 135 

section. 136 

We use the QR-adjusted optimization algorithm proposed by Hu et al.16 to estimate ℬ, 𝒢,	𝑴,, 𝑴., 𝑴/ 137 

𝑴0. The significance level of estimated coefficients in ℬ are assessed using parametric bootstrap17. The details 138 

about the optimization algorithm and bootstrap procedure are described in Methods.  139 

Applying STACCato to identify CCC events associated with SLE  140 

We applied STACCato to a scRNA-seq dataset of PBMC samples from 154 SLE subjects and 97 healthy 141 

controls10,11 to identify CCC events associated with SLE while adjusting for age, gender, self-reported ancestry, 142 

and processing batch (see Methods for details). The constructed 4-dimensional communication score tensor is a 143 

251 × 55	 × 9 × 9	 tensor containing the communication scores of CCC events for 251 samples across 55 144 

ligand-receptor pairs, 9 sender cell types, and 9 receiver cell types. The 9 cell types are B cells, natural killer 145 

cells (NK), proliferating T and NK cells (Prolif), CD4+ T cells, CD8+ T cells, CD14+ classical monocytes (cM), 146 

CD16+ nonclassical monocytes (ncM), conventional dendritic cells (cDC), and plasmacytoid dendritic cells 147 

(pDC). We used the decomposition rank 𝒓 = (𝑟, = 8, 𝑟. =	7, 𝑟/  = 4, 𝑟0  = 4). We used 4,999 iterations of 148 

bootstrapping resampling to assess the significance levels of the estimated SLE disease effects. We identified 149 

disease effects with p-value < 0.05 and magnitude > 0.015 as significant disease effects (Supplementary Figure 150 

1). 151 
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Figure 2A displays the estimated factor matrices of the sender and receiver cell type dimension, which 152 

represent the activity patterns of sender cell types and receiver cell types. The contribution of each factor to the 153 

decomposition is shown in Supplementary Figure 2 (see Methods for details about the calculation of 154 

contributions). In both sender and receiver cell type dimension, for factor 1 with the largest contribution, all cell 155 

types display scores in the same direction, indicating a critical systematic biological process that involves all cell 156 

types. Factor 2 highlights a notable contrast between the lymphocyte group (encompassing B, NK, Prolif, CD4+ 157 

T, and CD8+ T cells) and the monocyte group (comprising cM, nCM, cDC, and pDC cells), demonstrating 158 

opposite activities of these two groups. Factor 3 and Factor 4 unveil distinct activity patterns specific to pDC 159 

cells and B cells, respectively, shedding light on the unique roles of these two cell types. 160 

Figure 2B displays significant disease effects corresponding to CCC events with B, CD8+ T, cM, and 161 

pDC cells as the receiver cell type. The significant effects of CCC events in other receiver cell types are shown 162 

in Supplementary Figure 3. Notably, multiple ligand-receptor pairs consistently exhibit positive associations 163 

with SLE across sender and receiver cell types. For instance, ligand-receptor pairs LGALS9 – PTPRC and 164 

LGALS9 – CD44 consistently show positive associations with SLE across cell types (Figure 2B). This discovery 165 

aligns with our earlier findings that the factors representing the systematic biological process involving all cell 166 

types have the largest contributions to the decomposition.  167 

STACCato also effectively identified CCC events with cell type specific disease effects. For instance, 168 

ligand-receptor pair CD99 – PILRA showed negative associations with SLE only with B cells and pDC cells as 169 

the receiver cell types (Figure 2B). ligand-receptor pair CD22 – PTPRC demonstrated an significant association 170 

with SLE only with B cells as the sender cell type (Figure 2B), which is consistent with the knowledge that 171 

CD22 is a B-cell-specific glycoprotein18.  172 

One noteworthy aspect of this SLE dataset is its highly unbalanced study design, where batch 1 included 173 

only healthy controls while batch 2 included SLE patients predominantly (Supplementary Table 1). 174 

Consequently, batch confounded the association of CCC events with SLE. We applied Tensor-cell2cell8, which 175 

does not consider confounding variables, to the same 4-dimensional communication score tensor of the SLE 176 

dataset (Supplementary Figure 4A) and identified three factors (factor 3, 5, 7) significantly associated with SLE 177 
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disease (Supplementary Figure 4B). However, we found that these factors were also strongly associated with 178 

batch (Supplementary Figure 5), suggesting that the disease effect was confounded by the batch effect in these 179 

factors (Supplementary Figure 6). For instance, healthy controls exhibited significantly larger loadings in factor 180 

3 (Supplementary Figure 4B), indicating a negative association between factor 3 and SLE. However, when 181 

excluding batch 1 samples, the difference between SLE patients and healthy controls in other batches became 182 

minimal in factor 3 (Supplementary Figure 6). These results demonstrated that batch 1 distorted the association 183 

between factor 3 and disease in Tensor-cell2cell, leading to misleading interpretations of factor 3's role in SLE. 184 

These findings highlighted the importance of adjusting for confounding effects in CCC inference. 185 

Evaluating the impact of confounding variables on CCC inference with the SLE dataset 186 

To evaluate the impact of confounding variables on CCC inference, we applied STACCato to the SLE 187 

dataset with three distinct models, each incorporating different sample-level variables: Model 1, whose results 188 

were shown in Figure 2 and described above, considers sample-level variables of disease status, batches, and all 189 

other available covariates including age, gender, and ancestry; Model 2 considers disease status and batches 190 

only; and Model 3 considers disease status only. When comparing Model 1 and Model 2 to Model 3, we observed 191 

substantial changes in the estimated disease effects before and after adjusting for batch effects (Supplementary 192 

Figure 7). For example, the ligand-receptor pairs macrophage migration inhibitory factor (MIF) – 193 

CD74&CXCR4 and MIF – CD74&CD44 showed negative associations with SLE before batch adjustment but 194 

positive associations with SLE after accounting for batch effects. Monoclonal antibodies like imalumab (anti-195 

MIF) and milatuzumab (anti-CD74) have been assessed in early phase clinical trials, demonstrating efficacy in 196 

SLE treatment19. This suggests a positive association between MIF – CD74 and SLE, which is consistent with 197 

the results adjusting for batch effects. These findings underscore how confounding variables can distort true 198 

associations and emphasize the importance of considering confounding variables like batches in CCC inference. 199 

We also compared the factor matrices estimated with and without adjustment of batch effects by 200 

calculating the normalized chordal distance between the estimated factor matrices. Normalized chordal distance 201 

is a metric ranging from 0 to 1 for measuring distances between subspaces. A larger chordal distance indicates 202 

a greater difference between the subspaces of the estimated factor matrices (see Methods for details about chordal 203 
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distance). The normalized chordal distances between the factor matrices estimated before (Model 3) and after 204 

adjusting for batches (Model 2) were 0.009 for sender cell types and 0.013 for receiver cell types, indicating 205 

minor differences. These results illustrate that confounding variables can significantly influence the estimation 206 

of disease effects in CCC events while having a relatively minor impact on the estimation of factor matrices.  207 

Applying STACCato to identify CCC events associated with ASD  208 

We applied STACCato on the snRNA-seq dataset of postmortem tissue samples of prefrontal cortex 209 

from 13 ASD patients and 10 controls12 to identify CCC events associated with ASD (see Methods for details). 210 

We considered 16 sender/receiver cell types: fibrous astrocytes (AST-FB), protoplasmic astrocytes (AST-PP), 211 

Endothelial, parvalbumin interneurons (IN-PV), somatostatin interneurons (IN-SST), SV2C interneurons (IN-212 

SV2C), VIP interneurons (IN-VIP), layer 2/3 excitatory neurons (L2/3), layer 4 excitatory neurons (L4), layer 213 

5/6 corticofugal projection neurons (L5/6), layer 5/6 cortico-cortical projection neurons (L5/6-CC), maturing 214 

neurons (Neu-mat), NRGN-expressing neurons (Neu-NRGN-I), NRGN-expressing neurons (Neu-NRGN-II), 215 

Oligodendrocyte precursor cells (OPC), and oligodendrocytes. We applied STACCato to a 23 × 749	 × 16 ×216 

16	communication score tensor (consisting of 23 samples, 749 ligand-receptor pairs, 16 sender cell types, 16 217 

receiver cell types) to examine associations between CCC events and ASD, while adjusting for age, gender, and 218 

processing batch. We used the decomposition rank 𝒓 = (𝑟, = 5, 𝑟. = 	5, 𝑟/ = 5, 𝑟0 = 5). We used 4,999 iterations 219 

of bootstrapping resampling to assess the significance levels of the estimated ASD disease effects. We identified 220 

estimated disease effects with p-value < 0.05 and magnitude > 0.015 as significant disease effects 221 

(Supplementary Figure 8). 222 

In Figure 3A, we present the estimated factor matrices of the sender and receiver cell type dimension, 223 

which depict the activity patterns of sender and receiver cell types. The contributions of all factors are shown in 224 

Supplementary Figure 9A – 9B. Similar to our findings in the SLE dataset, we observed that factor 1 contributed 225 

the most and reflected a systematic process involving all cell types. Factors 2 through 5 for both sender and 226 

receiver cell types successfully revealed 6 cell type groups with distinct activity patterns: (1) astrocytes group 227 

including AST-FB and AST-PP; (2) Endothelial; (3) inhibitory neurons group including IN-PV, IN-SST, IN-228 

SV2C, IN-VIP; (4) excitatory neurons group including L2/3, L4, L5/6, L5/6-CC; (5) expressing neurons group 229 
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including Neu-mat, Neu-NRGN-I, and Neu-NRGN-II; (6) neuroglia group including oligodendrocytes and OPC 230 

(Figure 3A).   231 

For each pair of sender cell type and receiver cell type, we ranked the ligand-receptor pairs by the 232 

estimated ASD disease effects and performed preranked Gene Set Enrichment Analysis (GSEA)20 to determine 233 

if ligand-receptor pairs belonging to a particular pathway are more likely to be clustered at the top or bottom of 234 

the ranked list, and thereby identifying pathways associated with ASD (see details of pathway enrichment 235 

analysis in the Methods section). Figure 3B shows significantly enriched KEGG pathways21 across AST-PP, 236 

Endothelial, IN-PV, L2/3, and Neu-NRGN-I cells. A total of 10 significantly enriched pathways were identified, 237 

including the axon guidance, cell adhesion molecules (CAMs), cytokine-cytokine receptor interaction, 238 

extracellular matrix-receptor (ECM-receptor) interaction, ErbB signaling, focal adhesion, MAPK signaling, 239 

notch signaling, regulation of actin cytoskeleton, and small cell lung cancer. Importantly, 8 out of these 10 240 

pathways (axon guidance, CAMs, ECM-receptor interaction, ErbB signaling, focal adhesion, MAPK signaling, 241 

regulation of actin cytoskeleton, small cell lung cancer) have been previously identified as significantly enriched 242 

pathways with p-values < 	5	 × 1078	for ASD22. The molecules related to the notch signaling pathway have 243 

been shown to have increased expression in the PFC in an animal model of autism23, which is consistent with 244 

our observation of a positive association of the notch signaling pathway with ASD between AST-FB and L2/3 245 

cells. 246 

Evaluating the impact of confounding variables on CCC inference with the ASD dataset 247 

We also examined the impact of batch information on our ASD results by fitting three distinct 248 

STACCato models with Model 1 considering disease status and all available covariates including batches, age, 249 

and gender (as shown in Figure 3), Model 2 considering disease status and batches only, and Model 3 considering 250 

disease status only. Unlike the SLE dataset, the ASD dataset exhibits a fairly balanced design (Supplementary 251 

Table 2). Consequently, batch is no longer a confounding factor. As anticipated, the estimated disease effects 252 

remain consistent before and after adjusting for batch effects (Supplementary Figure 10). Interestingly, the 253 

chordal distances between the factor matrices estimated before (Model 3) and after adjusting for batch (Model 254 

2) were 0.384 for sender cell types and 0.438 for receiver cell types, indicating substantial discrepancies in the 255 
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estimated factor matrices before and after batch adjustment. We further evaluated the relative contributions of 256 

all sample-level variables and found that batch contributed substantially to the communication tensor, indicating 257 

a non-negligible batch effect on the communication scores (Supplementary Figure 9C). This underscores a 258 

crucial point –– even in datasets with balanced designs, failing to account for variables with significant impacts 259 

on the CCC can significantly impact the estimation of factor matrices and, consequently, the interpretations of 260 

cell type activity patterns. 261 

Simulation Study  262 

We conducted simulations to investigate how sample-level variables affect the CCC inference in 263 

different study designs. We simulated the communication score tensor 𝒴 ∈ ℝ(×.×/×0 from the supervised tensor 264 

decomposition model as in Equations 2 and 3. We set 𝒢, 𝑴,, 𝑴., 𝑴/, 𝑴0 in Equation 3 as the core tensor and 265 

factor matrices estimated from the ASD dataset and simulated 𝑿 for 60 subjects with intercept, disease status, 266 

and batch variables. The elements of ℇ were independently simulated from a normal distribution with mean 0 267 

and variance 𝜎Y', where 𝜎Y = 0.05 was taken as the standard error of the estimation residuals from ASD data. We 268 

considered a study with 30 disease subjects and 30 healthy controls processed in two batches. We considered 269 

three study designs: (1) balanced design with 15 controls and 15 disease subjects in both batches; (2) moderate 270 

unbalanced design with 20 controls and 10 disease subjects in batch 1, and 10 controls and 20 disease subjects 271 

in batch 2; (3) extreme unbalanced design with 30 controls and 5 disease subjects in batch 1, and batch 2 only 272 

contains 25 disease subjects.  273 

We applied STACCato with two models: Model 1 considers disease status and batch variables, and 274 

Model 2 considers only disease status. We calculated the mean squared errors (MSEs) of the estimated disease 275 

effects across 100 simulations. Figure 4A shows that neglecting confounders in an unbalanced design can 276 

generate larger estimation errors, and the MSEs of the disease effect dramatically increased as the degree of 277 

imbalance became more extreme. We also assessed the proportion of estimated disease effects with opposite 278 

directions to the assumed one (Supplementary Figure 11). We found that, before adjusting for batch, 14.7% of 279 

the disease effects had incorrect estimated directions in the extremely unbalanced design, which was 280 

significantly higher than the proportion 3.1% after adjusting for batch. Additionally, we assessed the accuracy 281 
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of the estimated factor matrices by calculating the chordal distance between the estimated factor matrices and 282 

the assumed factor matrices. We observed that neglecting the batch variable resulted in decreased accuracy in 283 

estimating the factor matrices (Figure 4B), especially in balanced and moderate unbalanced design. Failing to 284 

account for the batch variable prevents the identification of factors that are solely batch-associated and not 285 

disease-associated, resulting in inaccuracies in the estimated factor matrices. Conversely, in extreme unbalanced 286 

designs where batch and disease are strongly correlated, batch-associated factors are also strongly linked to the 287 

disease. In such scenarios, neglecting the batch variable did not significantly impact the accuracy of estimating 288 

the factor matrices. These observations align with our real-data analysis findings, suggesting that regardless of 289 

whether the dataset originates from a balanced or unbalanced design, incorporating information of sample-level 290 

variables into CCC inference consistently leads to more accurate estimations of disease effects or activity 291 

patterns of cell types. 292 

We also compared STACCato to the separate regression procedure (Equation 1), where a regression 293 

model was fitted with communication scores as dependent variables and sample-level variables as independent 294 

variables separately for each CCC event. In contrast, STACCato employs the tensor technique to incorporate the 295 

correlations among CCC events and jointly estimates the effects of considered variables for all CCC events. 296 

Across all study designs, STACCato consistently achieved significantly lower MSE compared to the separate 297 

regression approach (Supplementary Figure 12), justifying the advantage of using the tensor technique to account 298 

for correlations among CCC events.  299 

Computational Considerations 300 

While a single STACCato decomposition only takes seconds, assessing the significance level of 301 

estimated effects by bootstrapping requires performing decompositions for a substantial number of bootstrapping 302 

iterations and takes hours of CPU time. We conducted the computational benchmarks using one Intel(R) Xeon(R) 303 

processor (2.10 GHz). For a simulated dataset comprising 100 samples, 10 sender and receiver cell types, 600 304 

ligand-receptor pairs, and 10 sample-level covariates, 99 iterations of bootstrap resampling took around 11 305 

minutes and ~1.3 GB memory usage on the upper-bound.  306 
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 Considering that the numbers of cell types and sample-level covariates generally do not vary much in 307 

practice, we investigated how bootstrapping time and upper-bound memory usage vary with the number of 308 

samples and the number of ligand-receptor pairs. We simulated datasets with 10 sender and receiver cell types, 309 

10 sample-level covariates, and various numbers of samples (ranging from 25 to 100) and ligand-receptor pairs 310 

(ranging from 150 to 600). With 99 iterations of bootstrap resampling, our simulation results revealed that 311 

computational time increased linearly with the number of samples (Supplementary Figure 13A) and 312 

quadratically with the number of ligand-receptor pairs (Supplementary Figure 14A). The upper bound memory 313 

usage changed approximately linearly with both the number of samples and ligand-receptor pairs 314 

(Supplementary Figures 13B, 14B).  315 

Discussion 316 

We present STACCato, a computational tool that utilizes multi-sample multi-condition scRNA-seq data 317 

to identify CCC events associated with conditions (e.g., disease status, multiple time points, different tissue 318 

types). STACCato utilizes supervised tensor decomposition to estimate the influence of the condition of interest 319 

on CCC events, while adjusting for potential confounding variables. Furthermore, it facilitates the identification 320 

of activity patterns among cell types involved in CCC. We applied STACCato to analyze a SLE dataset with an 321 

extremely unbalanced design10,11 and an ASD dataset with a balanced design12. Additionally, we conducted 322 

simulation studies to mimic real data with different study designs. Our real data application and simulation 323 

results demonstrated STACCato's capability to incorporate available sample-level variables, thereby enabling 324 

more reliable inference regarding the associations between CCC events and conditions, as well as more robust 325 

estimations of activity patterns among cell types.  326 

In practice, a common approach to address batch effects in scRNA-seq data is to remove batch effects 327 

before downstream analysis. This approach involves the estimation of batch effects, followed by the removal of 328 

these estimated batch effects to generate “batch-effect-free” data for downstream analysis. However, as noted 329 

by Nygaard et al.24, this two-step procedure has a severe drawback: it relies on point estimates of batch effects 330 

while disregarding estimation errors. In this two-step process, even when the original batch effects could be 331 

eliminated, the estimation errors may introduce new batch effects. In contrast, STACCato incorporates potential 332 
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confounding variables, such as batch effects, into the design matrix, and jointly estimates the effects of these 333 

confounders along with other variables in a single step. Moreover, although our application and simulation 334 

studies focused on addressing batch effects, STACCato can adjust for all potential confounding variables in 335 

biomedical research. For instance, age is often considered as a confounding factor in the identification of CCC 336 

events associated with Alzheimer's disease. By incorporating all potential confounding variables into the model, 337 

STACCato offers a comprehensive solution, allowing for simultaneous handling of multiple confounders and 338 

facilitating more accurate CCC inference. 339 

In contrast to Tensor-cell2cell, which also employs the tensor decomposition technique for CCC 340 

inference, STACCato stands out in several key aspects. First, STACCato directly assesses the relationship 341 

between each CCC event and the condition of interest. In contrast, Tensor-cell2cell primarily provides insights 342 

into the association between the decomposed factors and conditions, without offering explicit interpretations 343 

regarding individual CCC events. Second, STACCato goes a step further by not only identifying associations 344 

but also estimating the condition effect for each CCC event and assessing the statistical significance of such an 345 

effect. In contrast, Tensor-cell2cell focuses on determining the significance of the association between factors 346 

and the condition, without providing detailed information on the magnitude of condition effects. Last, as 347 

highlighted throughout our paper, STACCato has the capability to account for confounding variables, a feature 348 

lacking in Tensor-cell2cell. Through our application of Tensor-cell2cell to the SLE dataset, we demonstrated its 349 

inability to effectively disentangle confounding effects from disease effects in the study of CCC events.  350 

It is important to note that STACCato is a highly adaptable framework that can be seamlessly 351 

integrated with various existing CCC inference tools, each with its unique methods of constructing 352 

communication scores. Researchers have the flexibility to select any tool of interest to calculate 353 

communication scores. For example, one can use the LIANA tool25, which incorporates a wide range of tools 354 

and resources to calculate cell-cell communication scores, to calculate communication scores for all CCC 355 

events and arrange the scores into a 3-dimensional communication score tensor per sample. The 3-dimensional 356 

tensors of all samples can subsequently be combined into the 4-dimensional communication score tensor, 357 

allowing STACCato to be applied for inferring CCC events associated with the specific condition of interest. 358 
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The STACCato framework does have its limitations. First, in scRNA-seq data, many genes may not 359 

be actively expressed in single cells, resulting in a significant proportion of zero values in the cell-cell 360 

communication score tensor. A future extension of STACCato involving sparse tensor decomposition, which 361 

imposes sparsity constraints on the ligand-receptor pairs, may inherently address this zero-inflation problem. 362 

Second, STACCato relies on a literature-curated database to perform CCC inference, limiting the identified 363 

condition-related CCC events to those documented in previous literature. Extending STACCato to identify 364 

novel ligand-receptor pairs is part of our ongoing research but falls outside the scope of this work.  365 

 To enable the use of STACCato by the public, we provide an integrated tool (see Code availability) to: 366 

(1) perform supervised tensor decomposition to estimate the effects of conditions on CCC events adjusting for 367 

covariates and infer activity patterns of cell types; (2) use bootstrapping resampling to assess the significance 368 

level of the estimated effects; (3) conduct downstream analyses including comparing significant CCC events 369 

across cell types and identifying pathways significantly associated with conditions. In conclusion, we present 370 

STACCato as a valuable tool to effectively incorporate sample-level variables and adjust for possible 371 

confounding variables in CCC inference using multi-sample multi-condition scRNA-seq data. 372 

Methods 373 

Construction of a 4-dimensional communication score tensor 374 

With the matrix of gene expressions of multiple cell types from a scRNA-seq sample and the 375 

literature-curated list of ligand-receptor pairs, we can calculate the communication score for the CCC event 376 

involving the interaction of ligand-receptor pair 𝑗 from sender cell type 𝑘 to receiver cell type 𝑙 as 377 

𝑦"#$ = 	𝑓(ligand# , receptor$) 378 

where  𝑦"#$ denotes the communication score; ligand# denotes the expression of the ligand in sender cell type 379 

𝑘;  receptor$ denotes the expression of the receptor in receiver cell type 𝑙; and 𝑓 denotes the scoring function 380 

(Figure 1A). In this study, we used the scoring function  𝑦"#$ =	gligand# ×	receptor$. Other available scoring 381 

functions have been previously summarized by Armingol et al.26 and Dimitrov et al25.  382 
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Once we compute communication scores for a specific ligand-receptor pair 𝑗 across all 𝐾 sender cell 383 

types and 𝐿 receiver cell types, we can create a communication score matrix (Figure 1B). In this matrix, the rows 384 

represent 𝐾 sender cell types; the columns represent 𝐿 receiver cell types; and the element located in the 𝑘9: row 385 

and 𝑙9: column corresponds to the value of 𝑦"#$. By repeating this process for all 𝐽 ligand-receptor pairs, we will 386 

get 𝐽 matrices, which can be arranged into a sample-specific 3-dimensional tensor with dimensions 𝐽 × 𝐾	 × 𝐿 387 

(Figure 1B). Then the 3-dimensional tensor of all samples can be arranged into a 4-dimensional tensor with 388 

dimensions of 𝐼 samples, 𝐽 ligand-receptor pairs, 𝐾 sender cell types, and 𝐿 receiver cell types (Figure 1C). In 389 

the application studies of the SLE dataset and ASD dataset, we constructed the 4-dimensional tensor using the 390 

Tensor-cell2cell  package8 (see Code availability). In the final tensor, we only included ligand-receptor pairs 391 

with both ligands and receptors shared across all samples.  392 

STACCato incorporates correlations among CCC events 393 

Consider the full supervised tensor decomposition model in Equation 3, 394 

𝒴 = ℬ ×% 	𝑿 + ℇ = 𝒢	 ×	 O𝑴, ,𝑴.,𝑴/ ,𝑴0P 	×% 	𝑿 + ℇ. 395 

Elementwise, we have	396 

𝛽&"#$ =	 h h h h 𝑔4'4(4)4*	𝑀,
&4' 	𝑀.

"4(𝑀/
#4)𝑀0

$4*

4%

4*;%

4$

4);%

4#

4(;%

4"

4';%

				(Equation	4) 397 

where 𝑔4'4(4)4*	denotes the (𝑟%, 𝑟', 𝑟1, 𝑟2) entry of 𝒢, 𝑀,
&4' denotes the entry in the 𝑞9: row and 𝑟%9: column of 398 

𝑀,, similarly for 𝑀.
"4(, 𝑀/

#4), and 𝑀0
$4*. Then for 𝑘 ≠ 𝑘- and 𝑙 ≠ 𝑙-,  399 

𝛽&"#!$! =	 h h h h 𝑔4'4(4)4*	𝑀,
&4' 	𝑀.

"4(𝑀/
#!4)𝑀0

$!4* 				
4%

4*;%

(Equation	5)
4$

4);%

4#

4(;%

4"

4';%

 400 

Equations 4 and 5 represent the effects of covariate 𝑞 on two different CCC events with the same ligand-401 

receptor pair 𝑗 but different sender (sender cell type 𝑘 in Equation 4 and 𝑘- in Equation 5) and receiver cell types 402 

(receiver cell type 𝑙  in Equation 4 and 𝑙-  in Equation 5). These two equations share the same parameters 403 
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𝑀.
"4( , 𝑟' = 1,⋯𝑟. . Similarly, for CCC events with the same sender cell type	𝑘 , the effects share the same 404 

parameters 𝑀/
#4) , 𝑟1 = 1,⋯𝑟/; for CCC events with the same receiver cell type	𝑙, the effects share the same 405 

parameters 𝑀0
$4* , 𝑟2 = 1,⋯𝑟0 . In STACCato, the effects of covariates on correlated CCC events share 406 

parameters, enabling it to effectively incorporate the complex correlation structure among these CCC events.  407 

STACCato Optimization 408 

We first determine the number of components 𝑟., 𝑟/, 𝑟0 for ligand-receptor pair, sender cell type, and 409 

receiver cell type dimension. For each dimension, we start by performing tensor unfolding to rearrange the 410 

elements of the communication score tensor into a matrix. For example, for the ligand-receptor pair dimension, 411 

we transform 𝒴 ∈ ℝ(×.×/×0   into a matrix 𝑌(.)  with 𝐽  rows and 𝐼 × 𝐾 × 𝐿  columns. Then we set 𝑟.  as the 412 

number of components that can explain more than 1% of the variation in 𝑌(.). We follow the same approach to 413 

determine 𝑟/ for sender cell type dimension and 𝑟0 for receiver cell type dimension. We set 𝑟, as the number of 414 

sample-level variables available in 𝑿.  415 

Denoting the supervised decomposition rank 𝒓 = (𝑟,, 𝑟., 𝑟/, 𝑟0), we follow the optimization algorithm 416 

proposed by Hu et al. 16 to estimate ℬ, 𝒢,	𝑴,, 𝑴., 𝑴/ 𝑴0: 417 

Algorithm 1: 

Input: communication score tensor 𝒴 ∈ ℝ!×#×$×%, sample-level design matrix 𝑿 ∈ ℝ!	×', rank 𝒓. 

1. Normalize sample-level design matrix via QR factorization 𝑿 = 𝑸𝑹. 

2. Project 𝒴 to the multilinear sample-level variable space to obtain the unconstrained coefficient tensor: 

ℬ) = 𝒴	 ×( 𝑸𝑻. 

3. Obtain rank-unconstrained coefficient tensor by performing a rank-𝒓 higher-order orthogonal iteration 

(HOOI)27 on ℬ):	ℬ.(+) ← 𝐻𝑂𝑂𝐼3ℬ), 𝒓5. 

4. Obtain estimated coefficient tensor by re-normalizing ℬ.(+) back to the original feature scales:  

ℬ. = ℬ.(+) ×( 𝑹-(.	  

5. Estimate 𝒢,𝑴', 𝑴#, 𝑴$, 𝑴% by performing a rank-𝒓 HOOI on ℬ.: ℬ. ≈ 𝒢: 	× {𝑴'< , 𝑴#< , 𝑴$< , 𝑴%< }. 

Output: ℬ., 𝒢:, 𝑴'< , 𝑴#< , 𝑴$< , 𝑴%< . 

 418 
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We also impose orthonormality on 𝑴,, 𝑴., 𝑴/ 𝑴0 to ensure the uniqueness of decomposition.  419 

Parametric bootstrapping for hypothesis testing  420 

Denote the estimated communication score tensor as 𝒴p = ℬq 	×% 𝑿 with entry 𝑦Y!"#$ and the estimated 421 

standard error of 𝜖!"#$  as 𝜎Y , we have residual tensor 𝒮 = 	𝒴 − 𝒴p  with entry 𝑠!"#$ =	𝑦!"#$ − 𝑦Y!"#$ , and 𝜎Y' =422 

𝑣𝑎𝑟(vec(𝒮)), where vec(𝒮) = [𝑠%%%%, ⋯ , 𝑠!"#$] denotes the vectorized version of tensor 𝒮.  423 

For the 𝑛9:  bootstrap resampling17, we generate a new tensor 𝒮(>)  with entries from 𝑁(0, 𝜎Y' ) and 424 

construct a new communication score tensor 𝒴(>)= 𝒴p + 𝒮(>). We perform STACCato on  𝒴(>) to estimate a 425 

new coefficient tensor ℬq(>). We repeat this procedure for 𝑁 iterations to generate ℬq(%), ℬq('), ⋯, ℬq(?). To test 426 

the null hypothesis of 𝐻@:	𝑏&"#$ = 0, we follow the guideline suggested by Hall and Wilson28 to define the 427 

bootstrap p-value as: 428 

𝑝&"#$ =	
∑ 𝐼 ��𝑏p&"#$

(>) − 𝑏p&"#$ 	� > |𝑏p&"#$|�?
>;%

𝑁 + 1  429 

where 𝑏p&"#$
(>)  denotes the (𝑞, 𝑗, 𝑘, 𝑙) entry of ℬq(>); 𝑏p&"#$ denotes the (𝑞, 𝑗, 𝑘, 𝑙) entry of ℬq, which is the estimated 430 

effect of variable 𝑞 on the CCC events involving the ligand-receptor pair 𝑗 between sender cell type 𝑘 and 431 

receiver cell type 𝑙; and 𝑝&"#$ is the bootstrapping p-value for 𝑏p&"#$.  432 

Calculation of contributions  433 

To calculate the contributions of factors of the sender and receiver cell types, we remove each factor 434 

from the decomposition results and assess the changes in the estimated outcome. For example, for factor 1 in the 435 

sender cell type dimension, we first remove the first column of the estimated factor matrix 𝑴$<  and construct a 436 

new factor matrix 𝑴$<
∗ ∈ ℝ𝐾	×(𝑟𝐾−1). We then eliminate the interactions between this factor and factors in other 437 

dimensions from the estimated core tensor 𝒢� , creating a new core tensor 𝒢�∗ ∈ ℝ4"×4#×(4$7%)×4% . With the 438 

modified factor matrices and core tensor, we calculate a new predicted communication score tensor 𝒴p∗ =439 
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𝒢�∗ 	× O𝑴𝑄� , 𝑴𝐽� , 𝑴𝐾�
∗, 𝑴𝐿�P ×% 𝑿. The contribution of the removed factor is defined as the mean squared difference 440 

between the entries of 𝒴p∗ and the original estimated 𝒴p = 𝒢� 	× O𝑴𝑄� , 𝑴𝐽� , 𝑴𝐾� , 𝑴𝐿�P ×% 𝑿. 441 

Chordal distance between two subspaces  442 

We use normalized chordal distance29 to evaluate the distance between the column spaces of two factor 443 

matrices. Let 𝐴 ∈ ℝ3'×3(  , 𝐵	 ∈ ℝ3'×3(  as two matrices whose columns are the orthonormal bases of two 444 

subspaces 𝐀	and 𝐁 , and 𝐴)𝐵	 = 	𝑈𝛴𝑉)  as the full singular value decomposition (SVD) of 𝐴)𝐵  with Σ =445 

𝑑𝑖𝑎𝑔(𝜎%, 𝜎', ⋯ , 𝜎3(). The principal angles 𝜃% ≤ 𝜃' ≤ ⋯ ≤	𝜃3( 	between the subspaces 𝐀 and 𝐁 are given by: 446 

𝜃! = cos7% 𝜎!, 𝑖 = 1,⋯ , 𝑑' 447 

The chordal distance between the subspaces 𝐀 and 𝐁 is given by: 448 

𝑑(𝐀, 𝐁) = �h sin' 𝜃!
3(

!;%
�

%
'
. 449 

Here, we use the normalized chordal distance 𝑑∗(𝐀, 𝐁) = � %
3(
∑ sin' 𝜃!
3(
!;% �

'
( so that the measure is bounded 450 

within [0,1]. We used the R function chord.norm.diff  from CJIVE package30 (see Code availability) to calculate 451 

the normalized chordal distance.  452 

RNA-seq data processing 453 

For all scRNA-seq datasets used in the study, we filtered out genes expressed in fewer than 4 cells and 454 

utilized the provided cell type labels from the metadata. For each sample in the dataset, we aggregate gene 455 

expression from single cells/nuclei into cell types by calculating the fraction of cells with non-zero counts within 456 

each cell type. Therefore, the aggregated cell-type specific gene expression is bounded within [0,1]. This 457 

approach is endorsed by Tensor-cell2cell  for the accurate representation of genes with low expression levels8,31, 458 

which is common among genes responsible for encoding surface proteins32.  459 

Literature-curated lists of ligand-receptor pairs 460 
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We downloaded the human list of 2,005 ligand-receptor pairs from a public available compendium of 461 

lists of ligand-receptor pairs (see Data availability). This list of ligand-receptor pairs was originally curated by 462 

Jin et al1.  463 

scRNA-seq dataset of SLE patients and controls 464 

The SLE scRNA-seq dataset collects multiplexed scRNA-seq of 264 PBMC samples from 162 SLE 465 

patients and 99 healthy controls10,11. The data in h5ad format was obtained from NCBI's Gene Expression 466 

Omnibus33 with GEO accession number 174188 (see Data availability). From the h5ad data, we extracted the 467 

raw UMI counts of 32,738 genes across 1,263,676 cells from 264 samples and 99 technical replicates. We 468 

reduced the dataset down to one sample per subject by selecting the sample with the largest number of cells.  469 

The metadata, which was also extracted from the h5ad data, includes the information of age, processing 470 

batch, ancestry, and gender of subjects. 107 (41%) subjects are Asian, 149 (57%) subjects are European, 3 (1%) 471 

subjects are African American, and 2 (1%) subjects are Hispanic. We filtered out 5 samples of African American 472 

or Hispanic history, and only kept samples containing 9 main cell types: B, NK, Prolif, CD4+ T cells, CD8+ T 473 

cells, cM, ncM, cDC, and pDC cells. The remaining 251 samples include 154 SLE patients and 97 healthy 474 

controls from 4 processing batches. The constructed CCC tensor for the SLE dataset resulted in a 4-dimensional 475 

tensor with 251 subjects, 55 ligand-receptor pairs, 9 sender cell types, and 9 receiver cell types.  476 

scRNA-seq dataset of ASD patients and controls 477 

For the ASD dataset, we downloaded the log2-transformed UMI counts of PFC samples and the 478 

corresponding metadata from the UCSC Cell Browser34 (see Data availability). The raw dataset contains the 479 

expression levels of 36,501 genes across 62,166 cells from 13 ASD patients and 10 healthy controls12. The 480 

constructed CCC tensor for the ASD dataset resulted in a 4-dimensional tensor with 23 subjects, 749 ligand-481 

receptor pairs, 16 sender cell types, and 16 receiver cell types.  482 

Gene set enrichment analysis  483 

We follow the procedure proposed in Tensor-cell2cell to conduct the GSEA. A ligand-receptor pair is 484 

considered in a pathway if all the genes participating in the ligand-receptor pair are in the pathway. We consider 485 
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the 22 KEGG pathways selected by Tensor-cell2cell (see Data availability). For one pair of sender cell type and 486 

receiver cell type, we first rank ligand-receptor pairs by their estimated disease effects, and then use the prerank 487 

module in the Python package GSEApy35 (see Code availability) with 4999 permutations, gene sets with at least 488 

15 elements, and a score weight of 1 to calculate the enrichment p-value and normalized enrichment score. We 489 

then combined the results from all tested pairs of cell types, and performed false discovery rate (FDR) correction 490 

to adjust for multiple comparisons. Pathways with FDR q-value < 0.05 were identified as pathways significantly 491 

associated with disease.  492 
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Data availability 496 
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pairs.csv. The processed data of the SLE dataset in h5ad format was downloaded from 499 
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ASD dataset was downloaded from https://cells.ucsc.edu/autism/downloads.html. The KEGG pathways 501 

selected by Tensor-cell2cell to perform GSEA was downloaded from 502 

https://codeocean.com/capsule/9737314/tree/v2/data/LR-Pairs/CellChat-LR-KEGG-set.pkl. 503 

Code availability 504 

Source code for STACCato is available from https://github.com/daiqile96/STACCato. Source code for CJIVE 505 

is available from https://cran.r-project.org/web/packages/CJIVE/index.html. Source code for Tensor-cell2cell 506 

is available from https://github.com/earmingol/cell2cell. Source code for GSEApy is available from    507 

https://github.com/zqfang/GSEApy.  508 
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Figures and Tables 589 

Figure 1. STACCato analytic framework. (A) Cell-cell communication (CCC) score is given by a function 590 
of the expression levels of ligand 1 in sender cell type A (𝐿%,) and receptor 1 in receiver cell type B (𝑅%-). (B) 591 
CCC scores are calculated for a specific ligand-receptor pair across all sender and receiver cell types. CCC 592 
scores are then organized into a communication score matrix with sender cell types as rows and receiver cell 593 
types as columns. Communication score matrices are repeatedly calculated for all ligand-receptor pairs and 594 
organized into a 3-dimensional communication score tensor. (C) The 3-dimensional communication score 595 
tensors are repeatedly constructed for all samples and then combined into a 4-dimensional communication 596 
score tensor. STACCato then uses subject-level information to estimate the coefficient tensor representing the 597 
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effects of subject-level variables on CCC events. While this example tensor contains only 2 cell types and 2 598 
ligand-receptor pairs, the framework is generalizable to any number of cell types and ligand-receptor pairs. 599 
Figure 2. STACCato results with the SLE dataset. (A) Bar plots of the estimated values in the factor matrices 600 
of sender and receiver cell types. Each color represents one cell type. (B) Estimated significant disease effects 601 
with p-values < 0.05 and magnitudes > 0.015 for communication events with B, CD8+ T, cM, and pDC cells as 602 
receiver cell types. Positive disease effects are colored in red while negative disease effects are colored in blue. 603 
Positive disease effects indicate positive associations between CCC events and SLE, while negative disease 604 
effects indicate negative associations.  605 
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Figure 3. STACCato results with the ASD dataset. (A) Bar plots of the estimated values in the factor matrices 607 
of sender and receiver cell types. Each color represents one cell type. (B) Significantly enriched KEGG pathways 608 
with false discovery rate (FDR) adjusted p-value (q-value) < 0.05 across AST-PP, Endothelial, IN-PV, L2/3, 609 
and Neu-NRGN-I sender and receiver cell types. Colors represent the normalized enrichment scores. Positive 610 
enrichment scores indicate positive associations with ASD, while negative enrichment score indicate negative 611 
associations with ASD.  612 
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Figure 4. STACCato simulation results: MSE of estimated disease effects (A) and chordal distance of 614 
estimated factor matrices (B) in balanced, moderate unbalanced, and extreme unbalanced scenarios. The bar 615 
plot shows the average MSEs across 100 simulations from Model 1 considering disease status and batch (red 616 
bars) and Model 2 considering disease status only (green bars) with black error bars showing standard errors.  617 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2023. ; https://doi.org/10.1101/2023.12.15.571918doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571918
http://creativecommons.org/licenses/by-nc/4.0/

