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Abstract

The mammalian brain is composed of diverse neuron types that play
different functional roles. Recent single-cell RNA sequencing approaches
have led to a whole brain taxonomy of transcriptomically-defined cell types,
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yet cell type definitions that include multiple cellular properties can of-
fer additional insights into a neuron’s role in brain circuits. While the
Patch-seq method can investigate how transcriptomic properties relate to
the local morphological and electrophysiological properties of cell types,
linking transcriptomic identities to long-range projections is a major un-
resolved challenge. To address this, we collected coordinated Patch-seq
and whole brain morphology data sets of excitatory neurons in mouse vi-
sual cortex. From the Patch-seq data, we defined 16 integrated morpho-
electric-transcriptomic (MET)-types; in parallel, we reconstructed the com-
plete morphologies of 300 neurons. We unified the two data sets with
a multi-step classifier, to integrate cell type assignments and interrogate
cross-modality relationships. We find that transcriptomic variations within
and across MET-types correspond with morphological and electrophysio-
logical phenotypes. In addition, this variation, along with the anatomical
location of the cell, can be used to predict the projection targets of individ-
ual neurons. We also shed new light on infragranular cell types and cir-
cuits, including cell-type-specific, interhemispheric projections. With this
approach, we establish a comprehensive, integrated taxonomy of excita-
tory neuron types in mouse visual cortex and create a system for inte-
grated, high-dimensional cell type classification that can be extended to
the whole brain and potentially across species.

Introduction

The wildly varying neuronal shapes that were originally observed with the
Golgi stain provided the first clues about the cellular complexity of the brain1,2.
Our understanding of cell types has expanded greatly since then and contin-
ues to grow exponentially with recent technological advances in anatomical
tracing, single cell transcriptomic characterization, and electron microscopy3–6.
These techniques have revealed the cellular landscape of the brain at extraor-
dinary scale and detail. However, in many cases, individual cellular properties
have been studied in isolation, and we lack knowledge of the correspondences
among these properties to establish robust, integrated definitions of cell types.
Since cell types defined based on multiple properties7–9 form a stable founda-
tion for understanding brain organization and function, studies that link ge-
netic, functional, and circuit properties are needed.

Patch-seq is a powerful method that enables collection of electrophysiol-
ogy, morphology, and transcriptomic data from the same cell10,11. By map-
ping transcriptomic signatures of Patch-seq cells to an established taxonomy
of transcriptomic types (T-types)12, we can annotate and refine these cell type
taxonomies with additional electrophysiological and morphological proper-
ties13–18. For example, in the hippocampus, Patch-seq was used to identify cell-
type-specific expression of connectivity-related molecules17. In mouse and hu-
man neocortex, Patch-seq studies revealed that the morphoelectric properties
of neurons largely supported transcriptomically identified cell types in both
species13,15,16. However, these studies also observed large phenotypic varia-
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tion within certain T-types, leading to ambiguity about their potential roles
in the cortical circuit16. Patch-seq data have also been used to establish an
integrated cell type taxonomy based on the morphoelectric and transcriptomic
(MET) properties of neurons13. In mouse visual cortex, this led to the discovery
of 28 inhibitory MET-types, each with type-specific axonal laminar innervation
patterns that deepened our view of cell types and created priors for the circuits
that they might form13.

In mice, transcriptomic studies of long-range projecting excitatory neurons12

have relied on RNA-sequencing of retrogradely labeled neurons (Retro-seq)
to assign projection target subclass identity (projection subclass, for example
layer 5 (L5) intratelencephalic (IT) and L5 extratelencephalic (ET)), to T-types.
However, the relationship between T-types and the full set of long-range ax-
onal projections of individual neurons has largely been missing from tran-
scriptomic studies. This is a major gap in our knowledge since transcriptomic
characterization of excitatory cortical neurons has revealed more cell types (ap-
proximately 30 types) than had previously been captured by more traditional
morphoelectric characterization (9 to 19 types)12,19–21. Understanding the re-
lationship between T-types and neuronal long-range projection signatures in
mammals could help explain the wider transcriptomic diversity if specific pro-
jection target properties are encoded in the transcriptome of adult mice as they
are in the developing fly22. Studies aimed at describing the complete axonal
projections of single neurons are relatively few5,6,23–27 and describe complex
targeting patterns for individual neurons that are similar to those described
for the population28,29. Furthermore, the detailed axonal projections of indi-
vidual T-types have only been established for a small number of cell types in
mouse cortex30,31. It remains an open question for the thousands of transcrip-
tomic types that have now been described across the whole mouse brain3 and
for other mammalian species32,33.

In this study, we first generated a Patch-seq data set for mouse visual cor-
tical excitatory neurons and defined 16 multimodal MET-types. Using these
data, we characterized how transcriptomic variation frequently corresponds
with electrophysiological and morphological variation as well. In parallel, we
collected a mouse visual cortical data set of the complete morphology and
interareal projections of individual, excitatory neurons, which we refer to as
whole neuron morphology (WNM). Local morphology from Patch-seq MET-
types was used as the key link between the two datasets. MET-type labels,
anatomical location, and transcriptomically-correlated morphological proper-
ties were used to build models to predict specific projection targets for individ-
ual neurons. With this approach, we provide an integrated view of excitatory,
transcriptomically-defined, neuron types and their phenotypic properties in-
cluding neuron type-specific interareal projection patterns.
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Results

Taxonomy of morphoelectric and transcriptomic (MET) excita-
tory neuron types

We used Patch-seq to investigate the correspondences between transcriptomic
identity and intrinsic electrophysiological and morphological properties of ex-
citatory neurons in adult mouse visual cortex (VIS) (Fig. 1a, top). We recorded
from neurons in acute brain slices containing VIS, collected electrical responses
to a standardized set of hyperpolarizing and depolarizing current stimuli, ex-
tracted the nucleus and cytosol for single-cell RNA sequencing, and filled neu-
rons with biocytin for later morphological reconstruction. 1,544 Patch-seq record-
ings of excitatory neurons were included in this study (133 L2/3 neurons were
previously published16 and were re-analyzed as part of this study.) — 1,271
neurons from primary visual cortex (VISp) and 273 from higher visual areas
(HVAs). We combined cells in VISp and HVAs to describe the excitatory cell
type composition of visual cortex. Finally, we generated an image-based den-
dritic reconstruction for 689 of those neurons with adequate biocytin fills, then
calculated a set of morphological features from those reconstructions13,21.

For experiments in which whole neuron morphology (WNM) data was col-
lected (Fig. 1a, bottom), brains were sparsely labeled using transgenic and vi-
ral approaches, followed by whole brain fMOST imaging34,35and registration
to the Allen Common Coordinate Framework36. After that, the complete den-
dritic and axonal morphology of a neuron was reconstructed (Fig. 1a, bottom).
The local morphologies of neurons from both data sets were aligned to an av-
erage cortical framework derived from thousands of Patch-seq experiments for
integrated analyses (Fig. 1b, Extended Data Figs. 1 to 10).

Each Patch-seq neuron was assigned a transcriptomic type (T-type) using a
reference taxonomy12 based on dissociated neurons from primary visual cor-
tex (Fig. 1c). We visualized the transcriptomic landscape of dissociated FACS-
sorted cells from the reference taxonomy12 and Patch-seq cells in a common
Uniform Manifold Approximation and Projection (UMAP) embedding37 de-
rived from the expression of 1,398 differentially expressed genes. Cells col-
lected from Patch-seq experiments occupied similar locations within the tran-
scriptomic UMAP as reference cells assigned to the same T-types, and relation-
ships between transcriptomic groups were preserved between the two data
sets (Fig. 1c, left two panels).

To investigate the intrinsic electrophysiological properties of these same
neurons, we recorded electrical responses to a standardized current-clamp pro-
tocol13 and calculated a set of electrophysiological features based on those re-
sponses (Methods). We also calculated morphological features for cells that
had local dendritic reconstructions. These feature sets were visualized by UMAP
embedding to attain an initial visual assessment of their coherence within and
diversity across T-types (Fig. 1c, right two panels). Excitatory Patch-seq neu-
rons did not appear to be as clearly separable into distinct T-types by their
intrinsic electrophysiological properties alone, but cells mapping to broader
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transcriptomic subclasses occupied different regions of the E-UMAP.
To establish cell types based on all three modalities, we defined MET-types

using previously established techniques13 (Extended Data Fig. 11, Methods).
We identified 16 excitatory MET-types from our data set of 384 neurons with
transcriptomic and electrophysiological data and a manually-curated dendritic
reconstruction (Fig. 1d, e). MET-types were named by their laminar locations,
transcriptomically-derived projection types, and marker genes that distinguished
them from other related MET-types (if present; see Methods and Extended
Data Fig. 13). MET-types with the same layer and projection type were also
distinguished with numerical suffixes. A river plot (Fig. 1d) illustrates the re-
lationship between T-types and MET-types. T-types frequently either merged
into single MET-types (e.g., L2/3 IT VISp Rrad/Adamts2/Agmat into L2/3
IT), or had one-to-one relationships with MET-types (e.g., L4 IT VISp Rspo
to L4 IT; L5 IT VISp Col27a1 to L5 IT-2 Pld5; L5 ET VISp Chrna6 to L5 ET-1
Chrna6). We also mapped Patch-seq neurons to a recently published whole
brain transcriptomic taxonomy3 and observed a similar consolidation of those
T-types into MET-types (Extended Data Fig. 12). Given the tight link between
MET-type and T-type, we used T-type labels to infer MET-type labels for the re-
maining cells that had electrophysiological and transcriptomic data but lacked
a manually-curated morphological reconstruction (Methods).

We identified eight IT MET-types (Fig. 1e, Extended Data Fig. 13): a single
type per layer in L2/3 and L4, three IT MET-types in L5, two in L6, and one
type that spanned infragranular layers, L5/L6 IT Car3. We also identified three
ET MET-types, one L5 NP MET-type, and three L6b MET-types. Some MET-
types were familiar from previous studies19,20, like the L2/3 IT type, which
contained wide branching neurons located throughout the depth of L2/3, or
the L4 IT type that had neurons with little to no apical tuft14,38. Other MET-
types had more novel phenotypes, such as L5 IT-2 Pld5 with untufted apical
dendrites, which differed from the more typical simple tufted neurons found

Figure 1 (preceding page): a, Schematic of parallel experimental strategies. b, Inte-
gration of the two datasets based on shared dendritic properties. c, UMAPs based on
principal components of gene expression (left: dissociated cells, second from left: cells
from Patch-seq recordings), electrophysiology features (second from right) and mor-
phology features (right), with T-types shown in colors. Broader transcriptomic sub-
classes are labeled for clarity. d, River plot showing the relationships between T-types
(left) and assigned MET-types (right) for cells from Patch-seq recordings with all three
data modalities available. e, Example cortical layer-aligned morphological reconstruc-
tions and electrophysiological responses for each excitatory cortical MET-type. Elec-
trophysiology examples include responses evoked by a hyperpolarizing current step
(−70 or −90 pA), and the response evoked by a rheobase + 30 pA or + 40 pA stimu-
lus. f, Whole neuron morphologies (WNM) registered to the Allen CCFv3, horizontal
and frontal views. Each panel shows individual WNMs located in VISp (right) and/or
HVAs (left), that were classified into an integrated MET-type using local morphology
features.
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in L5 IT-1. The L5/L6 IT Car3 type consisted of a single T-type and exhibited
a stellate morphology particularly unusual for deep excitatory neurons. The
L5 ET-1 Chrna6 MET-type also contained neurons from a single T-type with
notably distinct gene expression patterns compared to other L5 ET neurons
Extended Data Fig. 13.

When we examined the spatial distributions of MET-types across the vi-
sual cortex (Extended Data Fig. 14a-b), most MET-types had spatial distribu-
tions consistent with our sampling distribution, except for L5/L6 IT Car3 (Ex-
tended Data Fig. 14c). This MET-type was more frequently found in lateral
VISp and lateral HVAs like VISl, similar to previous studies27,39. We also ex-
amined the cortical layer distributions of Patch-seq neurons (Extended Data
Fig. 14d). MET-types were either found predominantly in a specific layer or in
two neighboring layers, in accordance with previous findings12,15,19,21,39,40.

In order to link MET-types to neurons from the WNM data set, we devel-
oped a multi-step classification protocol. This method leveraged both dendritic
morphology and projection subclass (derived transcriptomically for Patch-seq
and anatomically for WNM) to generate robust MET-type predictions (Extended
Data Fig. 15). These MET-type assignments enabled predictions about the
axonal properties of excitatory MET-types, and, conversely, about the elec-
trophysiological and transcriptomic properties that accompany neurons with
these axonal phenotypes. Individual neurons within each MET-type had com-
plex targeting patterns (Fig. 1f), similar to what has been described previously
for other brain regions5,24,27. However, on average, each predicted MET-type
had interareal projection patterns distinct from each other. This morphology-
based cross-data set mapping provided a more complete description of neu-
ronal cell types.

Transcriptomic variation and cross-modal correspondence

Though several T-types were typically merged into a single MET-type, we ob-
served that neurons within a given MET-type sometimes exhibited heteroge-
neous transcriptomic, electrophysiological, and morphological properties. To
examine whether these variations were coordinated across properties, we per-
formed principal component analysis (PCA) on the highly-variable genes ex-
pressed in reference FACS-derived neurons within each transcriptomically de-
fined subclass (Methods). These transcriptomic PCs (Tx PCs) were generated
in the same way as those used to define T-types in the original taxonomy12, and
the first few Tx PCs within each subclass could usually distinguish its member
T-types (Extended Data Fig. 16a). We also performed a dimensionality reduc-
tion with weighted gene co-expression network analysis (WGCNA)41 to iden-
tify gene modules associated with those PCs that could be linked to function-
ally relevant categories (Extended Data Figs. 17 and 18). To examine the cor-
respondence between transcriptomic variation and morphoelectric properties
within single neurons collected with Patch-seq, we measured the correlations
between the Tx PCs and electrophysiological and morphological features. Sta-
tistically significant correlations (after adjustment for multiple comparisons)
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were examined to characterize the coordinated heterogeneity with MET-types
or groups of MET-types.

IT MET-types

In the L2/3 IT MET-type, we found a number of significant correlations, espe-
cially with the second transcriptomic principal component (L2/3 IT Tx PC-2,
Fig. 2a, Extended Data Fig. 19a). For example, electrophysiology features relat-
ing to the shape of the action potential were correlated with Tx PC-2 (Fig. 2b);
neurons with higher Tx PC-2 values had narrower action potentials with a
steeper downstroke (Fig. 2c). Morphological features, such as the depth of the
neuron from the pial surface, also were correlated with this transcriptomic PC
(Fig. 2d, f).

We were interested in whether the expression of certain functionally rel-
evant categories of genes, such as voltage-gated ion channels, varied along
these same transcriptomic dimensions; however, these genes were not reli-
ably found in the set of highly variable genes used to calculate the PCs and
therefore often did not have a PC weight to examine. Therefore, we measured
the correlations between the Tx PCs and the expression of voltage-gated ion
channels (Extended Data Fig. 20), ligand-gated ion channels (Extended Data
Fig. 21), cell-adhesion molecules (CAMs, Extended Data Fig. 22), and synaptic
exocytosis-related molecules (Extended Data Fig. 23). Interestingly, for L2/3 IT
neurons, few ion channels were strongly correlated with Tx PC-2, but several
CAMs (e.g., Ptprk, Fam19a1) and synaptic molecules (e.g., Rims3, Syt4) were
correlated with the transcriptomic gradient.

A previous study42 identified differentially expressed genes within L2/3 IT
neurons of mouse primary visual cortex that were related to their HVA projec-
tion targets; the authors of that study identified genes that were associated with
axonal projections to either VISpm or VISal. While we do not know the pro-
jection targets of the neurons in our Patch-seq data set, we tested whether the
VISpm-projecting vs. VISal-projecting transcriptomic signature was related to
other properties of the cells. We calculated the first PC of the projection target-
specific differentially expressed genes of Kim et al. [42] and compared them
with the Patch-seq transcriptomic PCs and other features. The projection tar-
get PC-1 was most strongly correlated with L2/3 IT Tx PC-3 (Fig. 2e). It, too,
was correlated with soma depth, with deeper cells exhibiting a more VISal-
targeting transcriptomic signature, consistent with the relationship between
cortical depth and projection target reported by Kim et al. [42].

Interestingly, the L2/3 IT Tx PC-1, which represented 13.5% of the vari-
ance in the population, was not correlated with many electrophysiological or
morphological features (Fig. 2a). This PC was, however, highly correlated with
activity-dependent gene expression (Extended Data Fig. 24a-c), consistent with
the results of Tasic et al. [12] who reported that activity-dependent genes were
differentially expressed across the L2/3 IT T-types. Several activity-dependent
genes (e.g., Fos, Fosb, and Npas4) exhibited increased expression in Patch-seq
cells compared to the reference FACS data set12 (Extended Data Fig. 24e-f). We
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also noted relatively few Patch-seq cells mapping to the L2/3 IT VISp Adamts2
T-type and relatively more to the L2/3 IT VISp Rrad T-type12 (reference data
set: 68% Agmat, 21% Adamts2, 11% Rrad; Patch-seq data set: 53% Agmat,
41% Rrad, 6% Adamts2). When we removed the activity-dependent signal and
reclustered the reference cells (Methods), those two T-types were merged to-
gether (Extended Data Fig. 24d), suggesting that these T-types may represent
high and low activity states, respectively, and that the process of preparing and
recording from Patch-seq cells may increase the expression of certain genes that
results in mapping to the latter type.

Next, we examined coordinated variation across modalities for the MET-
types belonging to the L4 and L5 IT subclass (L4 IT, L4/L5 IT, L5 IT-1, and L5
IT-2 Pld5). Multiple significant correlations with electrophysiological and mor-

Figure 2 (preceding page): MET characterization of IT subclasses. a, Spearman cor-
relations between transcriptomic principal components (Tx PCs) and electrophysiol-
ogy/morphology features for the L2/3 IT subclass. Only statistically significant cor-
relations are shown (B-H adjusted p-values < 0.05); the number of significant correla-
tions per PC and modality are shown above the points. b, Relationship between L2/3
IT Tx PC-2 and the first sparse principal component (sPC-1) of the action potential (AP)
waveform. c, Average AP waveforms for cells grouped by transcriptomic PC-2 values.
d, Relationship between L2/3 IT Tx PC-2 and soma depth. e, Relationships between
a PC derived from VISpm- vs VISal-targeting differentially expressed genes identified
by Kim et al. [42] and L2/3 IT Tx PC-3 (top) and soma depth (bottom). f, Example
L2/3 IT morphologies (top) ordered by their Tx PC-2 values (bottom). g, Correlations
between L4 & L5 IT (L4 IT, L4/L5 IT, L5 IT-1, and L5 IT-2 Pld5) Tx PCs and electrophysi-
ology/morphology features. h, Relationship between L4 & L5 IT Tx PC-1 and the sPC-1
of instantaneous firing frequency. i, Example responses to depolarizing current steps for
cells corresponding to points i to iv in (i). j, Average instantaneous firing frequencies
by interspike interval (ISI) index for cells grouped by L4 & L5 IT transcriptomic PC-1.
k, Example L4 & L5 IT morphologies (top) ordered by their Tx PC-1 values (bottom). l,
Correlations between L6 IT (L6 IT-1 and -2) Tx PCs and electrophysiology/morphology
features. Note that L6 IT Tx PC-2 is not shown as it did not exhibit any significant corre-
lations with electrophysiology/morphology features. m, Relationship between L6 IT Tx
PC-3 and normalized instantaneous firing frequency sPC-1. n, Average instantaneous
firing frequencies, normalized to the first ISI, by ISI index for cells grouped by L6 IT
Tx PC-3. o, Relationship between L6 IT Tx PC-1 and the apical depth profile PC-1. p,
Example L6 IT morphologies (top) ordered by their Tx PC-1 values (bottom). Example
L5/L6 IT Car3 morphologies are also shown for comparison; they were not included in
the L6 IT PCA as they exhibit highly distinct transcriptomic profiles and so do not have
Tx PC-1 values (gray). q, Relationship between the apical vertical bias and maximum
path distance within the apical dendrite. r, Example responses to subthreshold (thick
line) and suprathreshold (thin line) depolarizing current steps. The interval in which
the voltage rose between 10% and 90% of its steady-state value is indicated (black) and
the rise time shown. Colors indicate MET-types as in (q). s, Comparison of rise times
(left), membrane time constants (middle), and depolarizing ”hump” amplitudes (right)
between L6 IT-1, -2, and L5/L6 IT Car3 cells. t, Differentially expressed ion channels
between L6 IT-1 and L5/L6 IT Car3. L6 IT-2 also shown for comparison.
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phological features were identified (Fig. 2g, Extended Data Fig. 19b), includ-
ing a relationship between instantaneous firing frequency during depolarizing
current steps and Tx PC-1 (Fig. 2h). Cells of the L4 IT type typically had lower
values of L4 & L5 IT Tx PC-1, while L5 IT-1 had higher values, with L4/L5 IT
and L5 IT-2 Pld5 in between. This corresponded with a higher sustained firing
frequency among the cells with lower Tx PC-1 values (Fig. 2i-j). Tx PC-1 was
also correlated with several morphological features (Extended Data Fig. 19b),
which could be observed by sorting the cells by Tx PC-1 (Fig. 2k): L4 IT cells
at shallower depths with smaller apical tufts transitioned to L4/L5 IT cells and
L5 IT-1 cells deeper in cortex. Interestingly, L5 IT-2 Pld5 cells (which had in-
termediate Tx PC-1 values) were found deeper in cortex but had less elaborate
apical tufts than L4/L5 IT and L5 IT-2 cells. The L4 & L5 IT Tx PC-1 was also
correlated with several voltage-gated ion channel genes (e.g., positively with
Cacna1d and Kcna6 and negatively with Kcnh5, Extended Data Fig. 20), ligand-
gated ion channel genes (e.g., positively with Grik3 and negatively with Grik1,
Extended Data Fig. 21), and CAMs (e.g., positively with Ilrapl2, negatively with
Nrxn3, Extended Data Fig. 22).

To compare transcriptomic variations with morphoelectric features for L6
IT neurons, we performed PCA on L6 IT-1 and L6 IT-2 cells, but not L5/L6 IT
Car3 cells, since the latter cells are quite transcriptomically distinct and have
been classified into their own subclass in recent cortical taxonomies3,39. L6
IT-1 and L6 IT-2 neurons had somewhat weaker correlations with electrophys-
iological and morphological features compared with L4 & L5 IT cells (Fig. 2l,
Extended Data Fig. 19c) but did exhibit some relationships, such as with the
normalized instantaneous firing frequency (Fig. 2m). Cells with higher val-
ues of L6 IT Tx PC-3 had higher normalized steady-state firing frequencies
(Fig. 2n). Tx PC-3 was negatively correlated with Kcnc2 expression and pos-
itively correlated with Kcnq5 (Extended Data Fig. 20). L6 IT Tx PC-1 was the
most correlated with morphological features, including the apical depth profile
PC-1 feature (Fig. 2o); however, this PC did not clearly separate L6 IT-2 cells
(with an inverted apical dendrite) from L6 IT-1 cells (Fig. 2p). This PC exhib-
ited strong positive correlations with several CAMs (Nptx2, Ptpru, Extended
Data Fig. 22) and synaptic exocytosis-related molecules (Cplx2, Extended Data
Fig. 23).

None of the transcriptomic PCs calculated from L5/L6 IT Car3 cells alone
were significantly correlated with electrophysiological or morphological fea-
tures, though this could be in part due to the smaller number of cells collected
for that type (n = 11 with triple-modality data, n = 13 with only E/T data).
The L5/L6 IT Car3 neurons could be distinguished morphologically from other
L6 IT cells by their smaller inverted apical dendrites (Fig. 2p-q). They also ex-
hibited distinct electrophysiological features, such as a faster rise time during
depolarizing current steps despite having similar membrane time constants
(Fig. 2r-s). Several of the L5/L6 IT Car3 cells also exhibited large depolarizing
”humps” at potentials just below the AP firing threshold (Fig. 2r-s); the timing
of this hump frequently corresponded to the timing of the first AP at rheobase.
The L5/L6 IT Car3 cells expressed several different ion channels compared
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with L6 IT-1 cells (Fig. 2t) — the L5/L6 IT Car3 cells did not express genes
for P/Q-type Ca channels (Cacna1a), Kv3.4 channels (Kcnc4), or Kv5.1 channels
(Kcnf1) but did express several Trpc channels (Trpc3, Trpc5, and Trpc6) that were
absent in L6 IT-1 and L6 IT-2 cells.

ET, NP, CT, and L6b MET-types

L5 ET cells had several transcriptomic PCs that were correlated with electro-
physiological and morphological features; L5 ET Tx PC-1 had stronger correla-
tions with morphology, while L5 ET Tx PC-2 was more correlated with electro-
physiology (Fig. 3a, Extended Data Fig. 25a). The L5 ET-1 Chrna6 cells, along
with L5 ET-2 cells, typically did not fire AP bursts during depolarizing current
steps, unlike many (but not all) of the L5 ET-3 Stac cells (Fig. 3b). This could
be seen by comparing the maximum instantaneous firing frequency during a
current step to the total number of APs fired during that step (Fig. 3c, left) —
cells that fired bursts had very high instantaneous frequencies but only fired
a few APs. The ratio between those two values was significantly correlated
with Tx PC-2 (Fig. 3c). In addition, several voltage-gated ion channels were
differentially expressed between L5 ET-1 Chrna6 and L5 ET-3 Stac (Fig. 3d),
including a T-type Ca channel (Cacna1h) that was present in L5 ET-3 Stac but
not L5 ET-1 Chrna6 cells. In accordance with those findings, several of these
channels (e.g., Cacna1h, Trpc4, Trpc5) were positively correlated with Tx PC-2,
along with others (such as Hcn1) that did not meet the criteria for differential
expression but did vary along the similar gradient (Extended Data Fig. 20).

The morphologies of L5 ET cells varied systematically in the relationship
between their apical and basal dendritic fields; cells with more branching in
their apical tufts had narrower basal fields, and vice versa (Fig. 3e). This vari-
ation corresponded with Tx PC-1 (Fig. 3e, f), as cells with lower values of Tx
PC-1 (which included most L5 ET-1 Chrna6 and L5 ET-2 cells) had simpler api-
cal tufts and wider basal dendrites. Tx PC-1 exhibited strong correlations with
multiple CAMs (e.g., positively with Cdh13, Cntnap5a, and Pcdh7; negatively
with Nrg1, Fat3, and Car4; Extended Data Fig. 22) and synaptic molecules (e.g.,
Snca and Stxbp6, Extended Data Fig. 23).

The L5 NP cells did not exhibit significant correlations between transcrip-
tomic PCs and electrophysiological or morphological features, although our
ability to detect those correlations could be limited by the smaller number of
L5 NP cells recorded (n = 19 triple modality cells, n = 16 with only E/T
data). Still, L5 NP cells exhibited high input resistances, relatively strong spike-
frequency adaptation (Fig. 3g, i), and long basal dendrites (Fig. 3h), which dis-
tinguished them from other L5 excitatory MET-types (Fig. 3i).

The transcriptomic PCs of neurons in the L6 CT MET-type were moder-
ately correlated with electrophysiological features but more strongly correlated
with morphology (Fig. 3j, Extended Data Fig. 25b). L6 CT Tx PC-1 was corre-
lated with the responses to hyperpolarizing current steps (Fig. 3k); higher val-
ues corresponded to greater hyperpolarization from the same current stimulus
(Fig. 3l). Many of the morphological features that were correlated with L6 CT
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Tx PC-2 were related to the size of the apical dendrite (Fig. 3m, Extended Data
Fig. 25). When cells were sorted by their Tx PC-2 values, the tallest cells were
found at the lower end and the smallest at the higher end (Fig. 3n). Tx PC-2
was positively correlated with CAMs such as Cdh13 and Nptx2 (Extended Data
Fig. 22).

Cells in the L6b MET-types (L6b-1, L6b-2 Ngf, and L6b-3) had relatively
strong correlations between transcriptomic PCs and electrophysiological fea-
tures (Fig. 3o, Extended Data Fig. 25), especially L6b Tx PC-2, which corre-
sponded to differences in the upstroke/downstroke ratio across APs during
current steps (Fig. 3p-q). Tx PC-2 was positively correlated with Cacna1b and
Kcnk2 expression (Extended Data Fig. 20). L6b Tx PC-1 was correlated with
additional electrophysiological features as well as morphological ones. Cells

Figure 3 (preceding page): MET characterization of ET, NP, CT, and L6b subclasses.
a, Spearman correlations between transcriptomic principal components (Tx PCs) and
electrophysiology/morphology features for the L5 ET (L5 ET-1 Chrna6, L5 ET-2, and L5
ET-3 Stac) subclass. Only statistically significant correlations are shown (B-H adjusted
p-values < 0.05); the number of significant correlations per PC and modality are shown
above the points. b, Example responses to depolarizing current steps showing different
initial activity, including bursting. c, Relationship between the maximum instantaneous
firing frequency during a current step and the number of total APs in that step (left), and
the relationship between that ratio and the L5 ET Tx PC-2 (right). d, Differentially ex-
pressed ion channels between L5 ET-1 Chrna6 and L5 ET-3 Stac. L5 ET-2 also shown
for comparison. e, Relationship between the width of the basal dendrites and the max-
imum branch order of the apical dendrite. Colors indicate the L5 ET Tx PC-1 value; see
(f) for color scale. f, Example L5 ET morphologies (top) ordered by their Tx PC-1 values
(bottom). g, Example responses to hyperpolarizing and depolarizing current steps from
L5 NP cells. h, Example L5 NP morphologies. i, Comparison of input resistance (left)
and basal dendrite maximum path distances (right) across L5 MET-types. L5 NP cells
had significant differences in input resistance to all other classes except L5 IT-1 (post
hoc Dunn’s test p = 3.4 × 10−30 to 1.3 × 10−7 following K-W test p = 3.8 × 10−61), and
significant differences in path distances to all others but L5 IT-2 Pld5 (post hoc Dunn’s
test p = 3.1× 10−12 to 0.018 following K-W test p = 2.3× 10−11). j, Correlations between
L6 CT Tx PCs and electrophysiology/morphology features. k, Relationship between L6
CT Tx PC-1 and the first sparse principal component (sPC-1) of the step subthreshold
responses. l, Average responses to −90 pA current steps grouped by L6 CT Tx PC-1.
m, Relationship between L6 CT Tx PC-2 and the maximum path distance within the
apical dendrite. n, Example L6 CT morphologies (top) ordered by their Tx PC-2 val-
ues (bottom). o, Correlations between L6b (L6b-1, L6b-2 Ngf and L6b-3) Tx PCs and
electrophysiology/morphology features. p, Relationship between L6b Tx PC-2 and up-
stroke/downstroke ratio sPC-1. q, Average upstroke/downstroke ratio by AP number
grouped by L6b Tx PC-2. r, Relationship between L6b Tx PC-1 and instantaneous firing
frequency sPC-3. s, Example initial responses to depolarizing current steps from each
L6b MET-type. t, Average instantaneous firing frequencies versus ISI index grouped
by L6b Tx PC-1. u, Relationship between L6b Tx PC-1 and number of branches in the
apical dendrite. v, Example L6b morphologies (top) ordered by their Tx PC-1 values
(bottom).
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with lower values of Tx PC-1 (which were often of the L6b-1 MET-type) had
wider initial interspike intervals (ISIs), while high values (typically L6b-2 Ngf
and L6b-3) had faster doublets at the start of the AP train (Fig. 3r-t). Higher
values of Tx PC-1 were also correlated with less branched apical dendrites,
which were often oriented in directions other than toward the pia (Fig. 3u-v).
Tx PC-1 was positively correlated with the ion channel genes Kcnn3 and Kcnt2
(Extended Data Fig. 20) along with multiple CAMs such as Cntn5, Epha7, and
Fam19a5 (Extended Data Fig. 22).

Whole neuron morphology of predicted MET-types

A major question about transcriptomically-defined cell types is to what extent
they reflect the detailed, axonal projections of a neuron. To understand the rela-
tionship between MET-types and the pattern of local and interareal axonal pro-
jections, we generated a dataset of 306 VIS cortical neurons reconstructed from
whole brain fMOST images (Fig. 1a,f, Fig. 4, Fig. 5). Neurons were labeled us-
ing transgenic mouse lines and viral labeling strategies to achieve broad cover-
age across layers and projection neuron subclasses (Supplementary Data Table
1). Successful strategies sparsely and robustly labeled neurons either across the
brain or only within VIS27. Where available, we also used mouse lines that se-
lectively label T-types (i.e., Chrna6-IRES2-FlpO-WPRE-neo) and/or subclasses
(i.e., Nxph4-T2A-CreERT2; Nxph4 is a marker gene for L6b subclass neurons).
We prioritized neuron reconstructions in L2/3 through L6b of VISp (n = 161),
but a smaller set of neurons was also reconstructed in HVAs (VISl n = 22,
VISam n = 22, VISpm n = 21, VISpor n = 18, VISal n = 18, VISrl n = 16, VISa
n = 14, VISpl n = 9, VISli n = 5). A subset of these neurons, 36 VISp, 3 VISa,
8 VISal, 4 VISam, 6 VISl, 2 VISli, 2 VISpm, 2 VISpor, and 10 VISrl neurons, was
previously published27 and was re-registered and re-analyzed for this study.
We examine the full morphologies of VISp neurons (Fig. 4) and then compare
to HVA neurons in (Fig. 5).

Linking MET-types to axonal projections through dendritic morphology

To link MET-types defined with Patch-seq to WNM data, we used the classifier
described above (see Fig. 1) that relied on dendritic features and projection
subclass assignments from both data sets (Extended Data Fig. 15). Examples
of WNMs by predicted MET-types are shown in Figure 4a. Before running
the classifier, multiple processing steps were performed on the WNM data to
ensure feature alignment with Patch-seq (Extended Data Fig. 15). A UMAP
derived from dendritic components suggested good alignment between the
two datasets (Fig. 4b); as expected, neurons that mapped to the same MET-
type were grouped together, regardless of data set.

For VISp neurons, we identified six of the eight Patch-seq-defined IT MET-
types in the VISp WNM dataset. The missing MET-types were likely the result
of fewer whole brain morphologies from the L5 and L6 IT subclasses. We iden-
tified all three L5 ET MET-types and the L6 CT MET-type in the VISp WNM
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dataset. Since L6b MET-types, as mentioned, could not reliably be distin-
guished from their dendritic morphologies alone (Extended Data Fig. 15), we
mapped WNMs to the L6b subclass rather than individual MET-types. When
we visually compared MET-types across data sets, we found consistent den-
dritic phenotypes (Fig. 4c, Extended Data Fig. 26, Extended Data Fig. 27).

Importantly, our VISp mapping results also agreed with the type and subclass-
specific transgenic mice from which these neurons were sampled (Extended
Data Fig. 28). Specifically, all predicted L5/L6 IT Car3 neurons in VISp were
labeled by the Gnb4 mouse line, which has previously been described to la-
bel neurons in the Car3 subclass27. Similarly, 10 out of 13 neurons labeled by
the T-type-specific Chrna6-IRES2-FlpO mouse mapped to the L5 ET-1 Chrna6
MET-type (for comparison, in the Patch-seq data set, 24 out of 26 neurons from
the Chrna6-IRES2-FlpO mouse mapped to the L5 ET VISp Chrna6 T-type). L6b
neurons were all labeled by the Nxph4-CreER line, which selectively labels
these neurons throughout the brain43.

Local axon of predicted MET-types

When we examined the local axon (defined as the axon within a 500 µm radius
cylinder centered on the soma) of these predicted MET-types, we also saw clear
differences across types (Fig. 4c, histograms to the right of each morphology
panel). L2/3 IT neurons predominantly innervated superficial L1, L2/3 and
L5. L4 IT neurons had the very distinct, dense, and highly columnar local
axon, predominantly found in L2/3 and L4, typically observed for L4 sensory

Figure 4 (preceding page): Local morphology and long-range projections of predicted
VISp MET-types. a, Example WNMs of predicted MET-types registered to CCFv3. b,
UMAP based on principal components of dendritic morphology and soma location,
colored by MET-type. WNMs are also circled in black. c, Local morphologies of pre-
dicted MET-types shown in (a). Example morphologies were selected by calculating a
pairwise similarity score for dendrites, local axon, and laminar location. Dendrites of
example neurons appear in MET-type colors. Local axon appears in gray. Starred neu-
rons indicate the reconstructions that were generated based on T-type-specific Chrna6-
IRES2-FlpO mice. d, UMAP based on principal components of dendritic and local axon
morphology and soma location, colored by MET-type (WNMs only). e, Binary projec-
tion target matrix ordered first by MET-type and then by normalized cortical depth.
Transgenic mouse line and soma depth are also indicated with a color bar at the top.
Histograms at the bottom show the total number of targets per neuron. A ”target”
was defined as a CCFv3 brain region containing a branch node or tip. Targets shown
were contacted either by at least three neurons or at least two neurons from the same
MET-type. A full projection target matrix appears in Supplementary Data Table 1. Stars
indicate ”local” neurons that do not project out of their soma region. f, Box-and-whisker
plots showing the average number of targets per MET-type. To determine significant
differences in the number of MET-type targets, Kruskal-Wallis tests were performed
followed by post-hoc Dunn tests. g, Projection target histogram summaries ordered by
MET-type. Mean (lines) +/- SEM (shaded regions).
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cortical neurons38. Predicted L4/L5 IT neurons had radially projecting axon
that elaborated in L1 and superficial L5. In contrast, the one L5 IT-1-typed
neuron densely innervated L2/3 and deep L5. L6 IT-1 had axonal projections
largely restricted to L6, while L5/L6 IT Car3 neurons had sparse axon in all
layers.

L5 ET-1 Chrna6 and L5 ET-3 Stac neurons had relatively minimal local axon
distributed in L5 and, to a lesser extent, in L1. In contrast, the single L5 ET-
2-typed neuron had abundant L1 axon. L6 CT neurons had very distinct local
axon largely restricted to L4 to L6. The deeper neurons also had one or two
axon collaterals that reached L1. L6b neurons most strongly innervated L1,
which agreed with previous descriptions of these neurons44,45. The UMAP in
Figure 4d, generated from WNM dendritic and axonal features, suggested how
local axon could distinguish MET-types, in particular the neurons in L6 (L6b,
L6 CT, L5/L6 IT Car3) that were grouped together in the dendritic-only UMAP
(Fig. 4b). To confirm, we tested how well local axon alone could predict MET-
types in the WNM data and we achieved 81% accuracy (Extended Data Fig. 29).
These findings supported our MET-type assignments by demonstrating that
local axon was also consistently different across MET-types.

Long-range projections of predicted MET-types

When we examined the long-range projections of MET-types, we found dis-
tinct rules for their projection target patterns (Fig. 4e-g) and axonal properties
(e.g., total axon length) (Fig. 4g, Extended Data Fig. 30), though there was
still variation across individual neurons in the specific set of targets. We de-
fined a ”target” as any CCFv3 structure containing at least one axonal branch
point or ending46. This target definition was more inclusive than that used
in previous studies requiring a minimum 1 mm axon length24,26,27, which re-
sulted in a comparatively larger number of per-neuron targets identified here.
For example, L2/3 IT neurons had an average of six cortical targets, mostly
restricted to the HVAs (Fig. 4f). They rarely projected contralaterally, consis-
tent with other observations24,27. When they did, they contacted contralateral
HVAs only (Fig. 4e,g). Interestingly, we observed two “local” L2/3 neurons
with axon restricted to VISp (starred in Fig. 4e). L4 IT neurons had few targets
and rarely projected contralaterally. When they did, they exclusively contacted
VISp (Fig. 4e,g, arrow). L4 neurons have often been considered to be ”local”
neurons; however, in our data set most of them did project to other brain re-
gions (Fig. 4e,g), consistent with previous observations in the mouse12,28.

L4/L5 IT neurons targeted a much larger number of ipsilateral and con-
tralateral brain regions (up to 23). Over 60% of these neurons projected con-
tralaterally, compared to less than 20% of either L2/3 and L4 IT MET-types
(Fig. 4e). Like contralateral-projecting L4 IT neurons, contralateral-projecting
L4/L5 IT neurons most consistently targeted VISp (Fig. 4e, g, arrow; Extended
Data Fig. 31). L4/L5 IT neurons targeted multiple HVAs on both sides of
the brain, with ipsilateral VISpm targeted most commonly for this set of neu-
rons (Extended Data Fig. 31). Of note, this was also the most common target
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for L2/3 neurons in a previous study24; however, for our L2/3 dataset, VISrl
was the most common target (Extended Data Fig. 31). Variables that influ-
ence the targeting of specific cortical brain regions are discussed further below.
L4/L5 IT neurons also frequently projected to ipsilateral association areas such
as RSPagl. L4/L5 IT neurons, compared to L2/3 and L4 IT types, also more
frequently contacted ACA and CP, as well as other sensory-motor areas (e.g.,
MOs) and HPF, though the trend was not significant for the latter two regions
(Extended Data Fig. 32).

We only identified a single neuron in each of the L5 IT-1 and L6 IT-1 MET-
types. The L5 IT-1 neuron projected to HVAs, RSP, and contralateral VISp only.
The L6 IT-1 neuron was unusual in that it remained mostly within ipsilateral
visual areas. More neurons are needed to characterize the axonal projection of
these two types. Finally, there were few L5/L6 IT Car3 neurons found in VISp
(a larger number were located in lateral HVAs; see Fig. 5); each projected to
VISp, VISl, VISrl, and VISal (Fig. 4e, g, arrow) and across connectional mod-
ules28 to contralateral SSp-bfd (Fig. 4e). Interestingly, these neurons are unique
in that they have relatively symmetrical projection target strength across brain
hemispheres (as assessed by average total axon length, Fig. 4g, arrow).

L5 ET neurons had many interareal projection targets in common, regard-
less of MET-type, including multiple nuclei in the thalamus, superior collicu-
lus, and the pretectal region (Fig. 4e, g). However, L5 ET-1 Chrna6 neurons
on average had significantly fewer projection targets per neuron than L5 ET-3
Stac (Fig. 4f). This was largely the result of fewer cortical targets (Extended
Data Fig. 33, Extended Data Fig. 30). We only identified one L5 ET-2 neuron,
which had projections similar to the the other ET types. L5 ET-3 Stac neurons
were more likely to target thalamic structures (like LP) and hindbrain (Fig. 4e,
Extended Data Fig. 32). Projections to hindbrain structures, though, were rela-
tively rare within the L5 ET group (Extended Data Fig. 33), but when they did
occur, neurons were located in deep L5 (Fig. 4e, soma depth bar, top).

L6 CT neurons had significantly fewer targets than L5 ET types. Within
cortex, they rarely projected outside of VISp. In the thalamus, they most reli-
ably targeted LGd-core and other thalamic nuclei (Extended Data Fig. 33). L6b
neurons most consistently targeted ipsilateral HVAs and RSPagl. They rarely
projected contralaterally, but when they did, they targeted non-VIS cortex, RSP
and ACA (Fig. 4e, g, arrow; Extended Data Fig. 33). We are not aware of previ-
ous WNM studies of these neurons.

Higher Visual Areas (HVAs)

To examine the extent to which the properties of MET-types vary across visual
areas, we plotted HVA neurons in the same dendrite and local axon feature-
derived UMAP that we presented in Fig. 5a, top. In this visualization, HVA
neurons also grouped cleanly by MET-type and were found in regions of the
UMAP that largely overlapped with VISp neurons. For some MET-types (L4
IT, L4/L5 IT, L5 ET-1 Chrna6, and L5 ET-3 Stac), HVA neurons appeared to be
concentrated within a subregion of each MET-type domain in the UMAP, sug-
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gesting their local morphologies differed from VISp neurons (Extended Data
Fig. 34, Extended Data Fig. 35). To understand the effect of specific HVA region
on this distribution, we plotted neurons colored by their soma location (Fig. 5a,
bottom). For MET-types where we had the most coverage across HVAs (e.g.,
L2/3 IT, L4/L5 IT), there were no obvious region-specific clusters. Of interest,
though, L4/L5 IT neurons did appear to be roughly ordered across medial-
anterior to lateral-posterior structures.

Among the HVA neurons, we identified six of the eight Patch-seq defined IT
MET-types (missing only L5 IT-1 and L5 IT-2 Pld5) (Fig. 5b). Importantly, mul-
tiple neurons from lateral VIS structures mapped to L5/L6 IT Car3, facilitating
additional morphological characterization of these unique neurons. We also
identified two of the three ET MET-types (L5 ET-1 Chrna6 and L5 ET-3 Stac)
along with the L6 CT and L6b types. Additionally, we identified several L5 NP
neurons. Looking across brain regions, dendritic and axonal morphologies ap-
peared to be fairly consistent within a MET-type, with some feature variation
as mentioned above, and agreed with the dendritic phenotypes observed with
Patch-seq (Fig. 5c).

In order to examine differences in axonal projections between VISp and
HVAs, we plotted the binary projection target matrix ordered by total num-
ber of projection targets (Fig. 5d,e). For each MET-type, VISp neurons had the
fewest projection targets. When MET-types were well represented across areas,
we found that most MET-types in VISp had significantly fewer axonal targets
per neuron than at least one other HVA (L4/L5 IT and L6b were exceptions)
(Extended Data Fig. 34, Extended Data Fig. 35). L2/3 IT and L4 IT neurons
in HVAs contacted more VIS regions on average compared to VISp (Extended
Data Fig. 31). L2/3 IT and L4/L5 IT HVA neurons also more frequently tar-
geted other sensory cortical regions (somatosensory, auditory), HPF, and mul-
tiple, contralateral cortical regions (Extended Data Fig. 32). Most HVA L4/L5
IT neurons targeted the striatum, while L2/3 IT and L4 IT neurons rarely did.
Interestingly, there was an inverse relationship between the amount of local
axon and the number of projection targets across VISp and HVAs (Fig. 5f),
which could have interesting functional implications for local versus interareal
information processing across structures. L5/L6 IT Car3 neurons in VISl and
VISpor had the largest number of targets in the IT division, with multiple con-
tralateral targets (Fig. 5g, far right, bottom histogram).

Given the projection differences between HVA neurons and VISp neurons,
we looked at whether there were transcriptomic differences as well between
the HVA and VISp neurons. Using the Patch-seq data set, we trained a logistic
regression model based on gene expression to predict HVA vs VISp location
for the three most populous MET-types (L5 ET-3 Stac, L6 CT, and L4/L5 IT;
see Methods). The models on average did not outperform chance predictions
of VISp vs HVA location (50% chance accuracy based on equal subsampling;
95% confidence intervals for test accuracy: [50%, 75%] for L5 ET-3 Stac, [39%,
66%] for L6 CT, [28%, 66%] for L4/L5 IT), which suggested that there were not
dramatic transcriptomic differences between VISp and HVA neurons for these
MET-types. However, our ability to detect subtler differences may be limited
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by our relatively small number of HVA neurons in each MET-type.
In analyzing contralateral projections, we found that L4/L5 ITs and L5/L6

Car3 ITs had the largest proportions of contralateral-projecting neurons across
MET-types (Extended Data Fig. 36a ). We then compared the total axon length
of the contralateral projections between these two MET-types and found that
Car3 neurons had significantly more axon in contralateral cortex (Extended
Data Fig. 36b,c). Furthermore, the laminar distribution patterns of these two
MET-types differed markedly: L4/L5 IT neurons strongly innervated L5 and
L6 (VISp and HVAs) and L1 (e.g., VISal, VISl) compared to Car3 neurons,
which seemed to avoid L1 (Extended Data Fig. 36d ).

L5 ET neurons also increased in projection target complexity from VISp to
the HVAs (Fig. 5h,i). When these neurons had somas in anterior structures
(e.g., VISa, VISal, and VISam), they had more midbrain and hindbrain targets.
HVA L5 ET-3 Stac neurons contacted additional targets in VIS as well as other
sensory cortical regions (Extended Data Fig. 33). Similarly, L6 CTs in VISpm
and VISpor targeted additional VIS targets and other sensory thalamic nuclei
(e.g., PO) relative to VISp neurons; they also more consistently targeted LP
(Extended Data Fig. 33).

VISp L6b neurons had significantly more local axon than L6b neurons in
HVAs (Extended Data Fig. 34), although they had similar total axon lengths.
Looking at their laminar innervation patterns, we found that L6b neurons,
regardless of soma location, consistently innervated cortical L1 across brain
regions and hemispheres (Extended Data Fig. 36 d). L6b innervation of con-

Figure 5 (preceding page): Local morphology and long-range projections of predicted
MET-types in higher visual areas (HVAs), compared to VISp. a, Top: UMAP based on
principal components of dendritic and local axon morphology. HVA neurons are col-
ored by MET-type; VISp neurons appear in gray. Middle: VIS cortical flatmap colored
by structure. Bottom: UMAP based on principal components of dendritic and local
axon morphology. HVA neurons are colored by soma location; VISp neurons appear
in gray. Only WNMs shown in top and bottom. b, WNM of example neurons regis-
tered to CCFv3 by predicted IT MET-types and non-IT MET-types. c, Example local
morphologies of predicted IT MET-types and non-IT MET-types in different VIS brain
regions. Dendrites appear in MET-type colors. Local axon, which was not collected
for the Patch-seq dataset, appears in gray. Only abundantly represented MET-types are
shown in the figure. d, Binary projection target matrices for IT MET-types. Matrix is
ordered first by MET-type, then by brain region sorted by the smallest to largest num-
ber of projection targets per region. Transgenic mouse line and soma depth are also
indicated with a color bar at the top of the matrix. Histograms at the bottom show
the total number of targets per neuron. e, Binary projection target matrices for non-IT
MET-types. Matrix is ordered first by MET-type, then by brain region sorted by the
smallest to largest number of projection targets per region. Transgenic mouse line and
soma depth are also indicated with a color bar at the top of the matrix. Histograms at
the bottom show the total number of targets per neuron. f, Scatter plots illustrating the
relationship between local axon total length and the number of projection targets for IT
MET-types in VISp and HVA neurons.
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tralateral L1 differed again from the contralateral laminar innervation patterns
described above for L4/L5 ITs and L5/L6 IT Car3 neurons. There were no
significant differences in the number of targets across VIS areas for L6b neu-
rons. As target number increased (independent of brain region), other sensory
cortical areas (SS, AUD) were more likely to be targeted (Extended Data Fig.
33).

The few NP (”near projecting”) neurons in the WNM dataset were located
only in HVAs and had projections restricted to VIS. Each neuron contacted 3 to
6 regions, which was low compared to other types. VISp was the only region
targeted by all NP neurons.

Linking multimodal properties across datasets

Within and across MET-types, local morphological and electrophysiological
properties were highly correlated with gene expression gradients (Figs. 2 and
3). Using a morphological classifier, we could reliably link MET-type identity
(and the corresponding morphoelectric-transcriptomic properties) to the com-
plete axonal phenotype of excitatory neurons (Figs. 4 and 5). In doing this, we
identified distinct patterns of interareal projections across MET-types, but still
found considerable variation among the sets of targets of individual neurons
belonging to the same MET-type. We hypothesized that the transcriptomic
PCs that are correlated with local dendritic and electrophysiological properties
might also be related to axonal properties, including projection targets.

To test this, we derived a transcriptomic correlated dendritic PC for each
MET-type from the dendritic features that were highly correlated with tran-
scriptomic variation (Fig. 6a; see also Extended Data Figs. 19 and 25). For ex-
ample, soma depth and apical and basal dendrite overlap were highly corre-
lated with the transcriptomic variation captured by L2/3 IT Tx PC-2 (Fig. 6b).
Thus, these features were used to calculate the dendritic PC for this type; the
same approach was applied to the other major excitatory subclasses. When
we ordered dendrites by their transcriptomic-correlated dendritic PC, we saw
clear differences in soma location and/or dendritic complexity across the con-
tinuum (Fig. 6b-e, top panels). Furthermore, we confirmed that our calculated
transcriptomic-correlated dendritic PCs and matching Tx PCs were highly cor-
related for each Patch-seq subclass (Fig. 6b-e, bottom panels). Our goal in cal-
culating transcriptomic-correlated dendritic PC for the WNM data set was to
transfer this relationship across data sets and allow us to relate transcriptomic
gradients to axonal properties (Fig. 6b-e, middle and bottom panels).

To test whether integrating multimodal properties of individual neurons
could be used to predict their specific projection targets, we used logistic re-
gression with the VISp WNM data set to model the probability of projection
to each target area based on predicted MET-type, cortical surface location, and
transcriptomic-correlated dendritic PCs (or subsets of those features, see Meth-
ods, Extended Data Figs. 37 and 38). We could identify models that outper-
formed a null model for each target region (Methods), and different regions
could be best predicted by different combinations of features (Fig. 6f, left).
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Figure 6: Projection target prediction using multimodal properties. a, Dendritic fea-
tures that were highly correlated with the transcriptomic PCs described in Figs. 2 and
3 were used to calculate a dendritic PC for each MET-type. b-e, Morphologies from
Patch-seq and WNM ordered and colored by dendritic PC value. Correlations between
dendritic PC and transcriptomic PC are shown for Patch-seq neurons. Correlations be-
tween dendritic PC and local axon features are shown for WNM neurons. f, Types of
logistic regression models used to predict whether WNM neurons project to specific tar-
gets (left) and pseudo-R2 values for the selected models (right). Models were selected
by Akaike information criterion (Methods). g, MET-type odds ratios for models that
used MET-type to predict projection targets. Higher odds ratios represent higher prob-
abilities of projection associated with those MET-types. Odds ratios were defined rela-
tive to L2/3 IT (always set to 1). h, Effects of transcriptomic-correlated dendritic PCs on
projection probabilities. Higher values of the L5 ET dendritic PC were associated with
a higher chance of projecting to CP and PG. Lower values of the L6 CT dendritic PC
were associated with a higher chance of projecting to LP and LD thalamus. i, Effects of
cortical surface location on projections to different cortical and subcortical targets.
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For example, nearly all cortical area targets were best predicted by models
that made use of the cortical surface location (though in most cases they also
made use of other features), while most midbrain targets were best predicted
by models that made use of MET-type. These models did not explain all the
variance in projection targets (estimated by pseudo-R2 ranging from 0.17 to
0.78, mean = 0.41, Fig. 6f, right, Methods), but examining the model properties
could still provide insights into the relationships between projection targets
and various cell features.

For models that used MET-type, the relative weights given to different
types aligned with expectations about the types of neurons projecting to those
targets (Fig. 6g). Cortical area models gave more similar weights to most MET-
types (apart from L6 CT, which was overall less likely to project to those tar-
gets). Thalamus models predicted much higher projection probabilities for L5
ET and L6 CT neurons versus IT neurons, and midbrain models predicted high
projection probabilities only for L5 ET neurons. Models that used transcriptomic-
correlated dendritic PCs highlighted relationships between local morphology
and projection targets. For example, deeper L5 ET cells with more complex
tufts were predicted as being more likely to project to CP and PG (Fig. 6h).
Shorter L6 CT cells were predicted to be less likely to project to the LP and
LD thalamic nuclei (Fig. 6h). For most cortical targets, cells nearer to the tar-
get areas had a much higher probability of projecting there than more distant
cells (Fig. 6i), which is consistent with the sections of visual space most well-
represented by those HVAs47. For subcortical targets where cortical surface lo-
cation was informative for the predictions, cells located in anterior VISp were
predicted to be more likely to project to CP but less likely to project to LD tha-
lamus (Fig. 6i).

Using these models, we predicted the probabilities that different MET-types
would project to target regions across a range of VISp cortical locations and
transcriptomic-correlated dendritic PC values (Fig. 7, Extended Data Fig. 39).
For example, the predicted probability that L4/L5 IT MET-type neurons project
to cortical targets was strongly dependent on the proximity of the neuron to
those regions; in contrast, variations in the morphology along the dendritic PC
axis had smaller effects on the projection probabilities (Fig. 7a). The predicted
probability that L5 ET-3 Stac neurons project to cortical targets also strongly
depended on their locations within VISp, although the overall probabilities
were lower than L4/L5 IT neurons (Fig. 7b, left). The locations within VISp
also strongly affected the probability of projecting to CP but had more mod-
est effects on thalamic and midbrain projection probabilities. The projections
to CP were also strongly influenced by the morphology of the L5 ET-3 Stac
neuron (Fig. 7b, right; see also Fig. 6h), as was the probability of projecting to
several other regions. We summarize the effects of location and transcriptomic-
correlated dendritic PC variation in Figure 7c across the six MET-types used to
fit the models. These prediction ranges illustrated the neuronal properties that
were more important for accurately predicting their potential projections.
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Figure 7: Predicting target projections for MET-types. a, Predicted probabilities of
projecting to cortical targets for L4/L5 IT neurons. Probabilities are predicted at differ-
ent VISp locations (left) and for different transcriptomic-correlated dendritic PC values
(right). Example neurons (right, above) were chosen at low, medium, and high values
of the dendritic PC range for projection probability calculations. b, Predicted probabili-
ties of projecting to cortical and subcortical targets for L5 ET-3 Stac neurons. The effects
of VISp location and dendritic PC are shown as in (a). c, Summary of the effects of lo-
cation and dendritic PC variation by MET-type. Probability ranges for major structures
(cortex, striatum, thalamus, midbrain, and hindbrain) were calculated by averaging the
lowest and highest predictions across the regions belonging to the structure, either by
varying location (second column) or dendritic PC (third column). The rightmost col-
umn summarizes the morphological features that vary along the relevant dendritic, the
genes inferred to vary by the corresponding Tx PC, and the distributions of dendritic
PC values by MET-type.
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Discussion

The relationship between the thousands of transcriptomically defined cell types
and other phenotypic properties, including long-range axonal projections, has
yet to be described for the vast majority of neurons in the mouse and hu-
man brain. Here we used the Patch-seq method to collect a large dataset of
mouse visual cortical, excitatory neurons (n = 1544). We characterized the
morphoelectric and transcriptomic properties of these neurons, mapped them
to an established transcriptomic taxonomy12, and defined 16 excitatory MET-
types. Using those types, we interrogated cross-modal relationships within
and across types, in particular those between transcriptomic gradients and
other phenotypic variation.

To extend MET-type descriptions to include local and long-range axonal
properties, we reconstructed a dataset of 306 visual cortical neurons from whole
brain images generated as part of the BICCN27,31, then built a multi-step classi-
fier based on projection subclass identity (either transcriptomically or anatomically-
defined), and dendritic features common to both datasets, to assign MET-type
to WNMs. We characterized the complete axons of predicted MET-types and
used a computational model to identify transcriptomically-related phenotypic
properties that could best predict specific axonal projection targets.

Relationships between T-types and MET-types

From our Patch-seq MET-type definitions, we found that multiple T-types were
either consolidated into a single MET-type or mapped one-to-one to a MET-
type. T-types were consolidated when there was considerable overlap or con-
tinuous variation in morphoelectric properties across those types. However,
the presence of multiple T-types within a MET-type does suggest transcrip-
tomic heterogeneity within a MET-type, which led us to examine how this
variation corresponded with differences in the other modalities measured by
the Patch-seq technique (Figs. 2 and 3). Transcriptomic variation (as quanti-
fied by transcriptomic principal components) often was correlated with elec-
trophysiological and morphological feature variation, but this does not neces-
sarily translate into strict separability along these feature dimensions between
T-types as T-types can be distributed within transcriptomic space in complex
ways (Extended Data Fig. 16a). However, characterizing the relationships be-
tween transcriptomics, electrophysiology, and morphology, as we have done
here, allows us to understand how the properties interrelate in MET-types and
T-types.

We also noted transcriptomic variation associated with neuronal activity
(Extended Data Fig. 24a-c), which appeared to be responsible for a few T-type
definitions in L2/3 IT cells and L6 IT cells, since removing those dimensions led
to the merging of T-types in each of those subclasses (Extended Data Fig. 24d).
Though recent work has suggested that L2/3 IT T-types may have functional
differences48,49, two of them (L2/3 IT VISp Rrad and L2/3 IT VISp Adamts2)
are primarily distinguished by differential expression of several activity-regulated
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genes, which could reflect transient variation in activity levels and be subject to
experimental perturbation. Indeed, the Patch-seq technique appears to elevate
the expression of several of those genes (Extended Data Fig. 24e-f) resulting
in proportionately more cells mapping to the higher-activity T-type (L2/3 IT
VISp Rrad) than in the reference data set. Other transcriptomic variation within
L2/3 IT cells, though, did correlate with electrophysiological and morpholog-
ical feature differences (Fig. 2a-f), such as action potential shape, depth within
the cortex, and the shape of the dendritic arbor. This graded transcriptomic
and spatial variation is consistent with that described by others50; for example,
the gene Cdh13, found by those authors to be expressed more strongly by L2/3
IT neurons near the pia, had strong weights in both Tx PC-2 (correlated with
AP shape) and Tx PC-3 (correlated with VISpm/VISal projection signature),
which were both also correlated with depth in the cortex.

Characterization of distinctive MET-types

Excitatory MET-types that mapped one-to-one with a T-type, like L5/L6 IT
Car3 and L5 ET-1 Chrna6 neurons, were particularly interesting candidates
for cross-data set integration. In our Patch-seq experiments, L5/L6 IT Car3
neurons look like deep spiny stellate neurons, usually found in L4, which are
typically thought to be a local neuron38. However, the WNM data showed
that these neurons have the most elaborate long-range projections within the
IT group 5. Many of these neurons also have extensive contralateral projections
to multiple VIS structures.

Neurons of another one-to-one type, L5 ET-1 Chrna6, are wider thick-tufted
neurons that, compared with L5 ET-3 Stac neurons, project to a similar set of
targets but with lower probability. Unlike L5 ET-3 Stac neurons, however, the
L5 ET-1 Chrna6 cells rarely fire bursts of APs. Differences in bursting could
have interesting functional implications for these deep brain projecting neu-
rons (e.g.,51). These different ET types were first characterized transcriptomi-
cally by Tasic et al. [12], and our study is the first detailed description of their
interareal projections. In motor cortex, different L5 ET types have been demon-
strated to have functional differences30, and it will be interesting to determine
if that is also true for VIS L5 ET types.

The multiple L5 IT MET-types identified with Patch-seq will also be inter-
esting to investigate further with respect to WNM. There were hints that L5 IT-1
and/or L5IT-2 Pld5 may have very different axonal profiles than the L4/L5 IT
neurons, but additional data are needed. With advances in whole brain imag-
ing, data processing, and automated reconstruction, much more WNM data
will become available in the near future52,53.

These more novel T-types have already been identified in multiple corti-
cal regions and may be considered worthy of consideration in the canonical
cortical circuit, especially L5/L6 IT Car3, which provides strong projections to
contralateral cortex and may play an important role in interhemispheric, multi-
sensory processing.
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Cross-modality predictions

We used logistic regression to model how well multi-modal cell properties
could predict specific projection targets. We found that the location of the pro-
jecting cell within the cortex was important for some targets (e.g., HVAs, CP),
while the MET-type of the cell and/or its transcriptomically-correlated den-
dritic properties were important for others (e.g., PG). The MET-type-specific,
transcriptomically-correlated dendritic PC creates a useful link between the
transcriptomic taxonomy and dendritic properties, which helps to narrow the
transcriptomic space into which we can map neurons from other data sets.
In addition, neurons on one side of certain dendritic continua can display
preferential targeting compared to the other (Fig. 6h, Fig. 7), suggesting that
there could be genes that encode and/or give access to ”MET-P” types (MET-
types that project to specific brain regions). Genes given high weights in the
transcriptomic principal component analysis (Extended Data Fig. 16b, Fig. 7c)
could be potential candidates for that: for example, CP-targeting L5 ET Stac
cells might be selected by identifying cells of that type with high Cdh13 or
Crym expression. These analyses thus allow us to go beyond transcriptomic
descriptions of major projection subclasses (e.g., ET, IT, CT) by characterizing
other factors that link them to specific projection targets.

Future directions

In this study, we focused on interareal, axonal targeting patterns. In subse-
quent studies, axon terminal morphology and subregion innervation patterns
will also be of great interest. This may help to refine functional domains of
downstream target structures beyond what we have learned from bulk label-
ing approaches36.

The availability of an increasing number of T-type and subclass specific vi-
ral and transgenic tools54,55 is essential for validating our findings and for fu-
ture whole brain morphology studies. These tools offer critical benchmarks for
feature registration across datasets and can offset the need for difficult, post-
hoc, spatial transcriptomic studies to directly test these relationships.

The flexibility and extensibility of the classifier needs further testing on
other data sets, as well as other brain regions and species. Thus far, we have
successfully mapped mouse visual cortex inhibitory Sst MET-types and in-
hibitory subclasses from Patch-seq to neurons in the MICrONS EM dataset4,56

and found that Sst MET-types have differential connectivity57. Ongoing stud-
ies at our and other institutes aim to extend these results to the entire MICrONS
volume. It will be of particular interest to understand the relationship between
MET-types and connectivity-defined types58.

Although our models of projection target probability characterized how
several neuronal properties influence projection patterns in cortex, a high amount
of variance in projection patterns remains unexplained for many target regions
(see Fig. 6f). It is possible that additional variance could be related to devel-
opmental processes regulating these projections which are inaccessible in this
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study or could reflect stochastic processes that may underlie an individual neu-
ron’s targeting choices. Future models built from larger data sets that more
fully characterize projection pattern relationships may better explain the vari-
ance, as well.

Concluding remarks

With this work, we add to existing data13 to produce a comprehensive taxon-
omy of neuronal morpho-electic-transcriptomic (MET) types in mouse visual
cortex. We extend these findings beyond previous Patch-seq studies of excita-
tory cortical neurons15 to characterize the local and long-range axons of exci-
tatory MET-types. We also create computational approaches for morphology-
based, cross-data set mapping and cross-modality predictions, including the
relationship to long-range projections. The transcriptome provides one of the
most powerful links for translating cell types across species. Wherever we can
draw close associations between it and other phenotypic neuronal properties,
it will help us to better understand cell types and their contribution to brain
organization and function across animal species, including our own.

Methods

Animal care and use

Experimental procedures that involved the use of mice were all conducted
with approved protocols in accordance with NIH guidelines. They were also
approved by the Allen Institute for Brain Science Institutional Animal Care
and Use Committee (IACUC). Mice were housed ≤ 5 mice per cage and were
maintained on a 12-hour light/dark cycle, in a humidity- and temperature-
controlled room with water and food available ad libitum.

Transgenic mice and sparse labeling

Transgenic driver and reporter mice used in Patch-seq and WNM studies are
listed in Supplementary Data Table 2. Characterization of the expression pat-
tern of many of the transgenic mouse lines can be found in the AIBS Transgenic
Characterization database (http://connectivity.brain-map.org/transgenic/
search/basic). Many of the brains used for WNM studies were described
in a previous manuscript27. Additional brains were sparsely and robustly la-
beled for WNMs studies using Supernova virus, which was provided as a
generous gift of pAAV-TRE-fDIO-GFP-IRES-tTA (Addgene plasmid # 118026
;http://n2t.net/addgene:118026 ; RRID:Addgene 118026) by Minmin Luo, and vari-
ants.
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Tissue processing and slicing procedure

For preparation of acute brain slices, adult male and female mice (ages P45-
P70) were first fully anesthetized by 5% isoflurane inhalation. Intracardiac
perfusion was then performed with 25-50 mL of ice-cold cutting artificial cere-
brospinal fluid (ACSF; 0.5 mM calcium chloride (dehydrate), 25 mM D-glucose,
20 mM HEPES buffer, 10 mM magnesium sulfate, 1.25 mM sodium phosphate
monobasic monohydrate, 3 mM myo-inositol, 12 mM N-acetyl-L-cysteine, 96
mM N-methyl-D-glucamine chloride (NMDG-Cl), 2.5 mM potassium chloride,
25 mM sodium bicarbonate, 5 mM sodium L-ascorbate, 3 mM sodium pyru-
vate, 0.01 mM taurine, and 2 mM thiourea (pH 7.3), which had been continu-
ously bubbling with a mixture of 95%O2/5%CO2). 350 µm sections were sliced
on a vibrating microtome (Compresstome VF-300 vibrating microtome, Pre-
cisionary Instruments or VT1200S Vibratome, Leica Biosystems), either coro-
nally or at a 17° angle from the coronal plane. For visual cortex, this latter slice
angle helps to maximize the integrity of neuronal processes. In order to opti-
mize registration to the CCFv3, a block-face image was collected before each
section was cut (Mako G125B PoE camera with custom integrated software).
Immediately after slicing, brain slices were placed in warm (34 °C) oxygenated
cutting ACSF for 10 minutes, then allowed to further recover in holding ACSF
(2 mM calcium chloride (dehydrate), 25 mM D-glucose, 20 mM HEPES buffer,
2 mM magnesium sulfate, 1.25 mM sodium phosphate monobasic monohy-
drate, 3 mM myo-inositol, 12.3 mM N-acetyl-L-cysteine, 84 mM sodium chlo-
ride, 2.5 mM potassium chloride, 25 mM sodium bicarbonate, 5 mM sodium
L-ascorbate, 3 mM sodium pyruvate, 0.01 mM taurine, and 2 mM thiourea (pH
7.3)), bubbling with a mixture of 95%O2/5%CO2 at room temperature until
transferred to the microscope for recordings.

Patch-clamp recording

Slices were bathed in warm (34 °C) recording ACSF (2 mM calcium chloride
(dehydrate), 12.5 mM D-glucose, 1 mM magnesium sulfate, 1.25 mM sodium
phosphate monobasic monohydrate, 2.5 mM potassium chloride, 26 mM sodium
bicarbonate, and 126 mM sodium chloride (pH 7.3)) and continuously bubbled
with 95% O2/5% CO2. The bath solution contained blockers of fast glutamater-
gic (1 mM kynurenic acid) and GABAergic synaptic transmission (0.1 mM pi-
crotoxin). Thick-walled borosilicate glass (Warner Instruments, G150F-3) elec-
trodes were manufactured (Narishige PC-10) with a resistance of 4–5 MΩ. Be-
fore recording, the electrodes were filled with ∼1.0 to 1.5 µL of internal solution
with biocytin (110 mM potassium gluconate, 10.0 mM HEPES, 0.2 mM ethy-
lene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid, 4 mM potas-
sium chloride, 0.3 mM guanosine 5′-triphosphate sodium salt hydrate, 10 mM
phosphocreatine disodium salt hydrate, 1 mM adenosine 5′-triphosphate mag-
nesium salt, 20 µg/mL glycogen, 0.5U/µL RNAse inhibitor (Takara, 2313A)
and 0.5% biocytin (Sigma B4261), pH 7.3). The pipette was mounted on a Mul-
ticlamp 700B amplifier headstage (Molecular Devices) fixed to a micromanip-
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ulator (PatchStar, Scientifica).
Electrophysiology signals were recorded using an ITC-18 Data Acquisition

Interface (HEKA). Commands were generated, signals processed, and ampli-
fier metadata were acquired using MIES (https://github.com/AllenInstitute/
MIES/), written in Igor Pro (Wavemetrics). Data were filtered (Bessel) at 10 kHz
and digitized at 50 kHz. Data were reported uncorrected for the measured (Ne-
her, 1992) liquid junction potential of −14 mV between the electrode and bath
solutions. Prior to data collection, all surfaces, equipment and materials were
thoroughly cleaned in the following manner: a wipe down with DNA away
(Thermo Scientific), RNAse Zap (Sigma-Aldrich), and finally with nuclease-
free water.

After formation of a stable seal and break-in, the resting membrane poten-
tial of the neuron was recorded (typically within the first minute). A bias cur-
rent was injected, either manually or automatically using algorithms within the
MIES data acquisition package, for the remainder of the experiment to main-
tain that initial resting membrane potential. Bias currents remained stable for
a minimum of 1 s before each stimulus current injection.

To be included in the analysis, neurons needed to have a >1 GΩ seal recorded
before break-in and an initial access resistance <20 MΩ and <15% of the Rinput.
To stay below this access resistance cut-off, cells with a low input resistance
were targeted with larger electrodes. For an individual sweep to be included,
the following criteria were applied: (1) the bridge balance was <20 MΩ and
<15% of Rinput; (2) bias (leak) current within ±100 pA; and (3) root mean
square noise measurements in a short window (1.5 ms, to gauge high frequency
noise) and longer window (500 ms, to measure patch instability) <0.07 mV and
<0.5 mV, respectively.

After electrophysiological recording, the pipette was centered on the soma
or placed near the nucleus (if visible). A small amount of negative pressure
was applied (∼ −30 mbar) to begin cytosol extraction and to attract the nucleus
to the tip of pipette. After approximately one minute, the soma visibly shrank
and/or the nucleus was near the tip of the pipette. While maintaining negative
pressure, the pipette was slowly retracted; slow, continuous movement was
maintained while monitoring the pipette seal. Once the pipette seal reached
>1 GΩ and the nucleus was visible on the tip of the pipette, the speed was
increased to remove the pipette from the slice. The pipette containing internal
solution, cytosol, and the nucleus was removed from pipette holder, and its
contents were expelled into a PCR tube containing the lysis buffer (Takara,
634894). Metadata for all Patch-seq neurons including in this study are located
in Supplementary Data Table 3.

Electrophysiology feature analysis

Electrophysiological features were measured from responses elicited by short
(3 ms) current pulses and long (1 s) current steps as previously described13,21.
Action potentials (APs) were detected, and the threshold, peak, fast trough,
and width (at half-height) were calculated for each AP along with the ratio of
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the peak upstroke dV/dt to the peak downstroke dV/dt (upstroke/downstroke
ratio). Several voltage trajectories (the initial AP elicited by the lowest-amplitude
current pulses and steps, the derivatives of those APs, and the interspike inter-
val) were analyzed as previously. AP features across responses to long cur-
rent steps were averaged in time bins and concatenated across step ampli-
tudes; bins without APs had interpolated values from their neighbors. This
was done for steps starting at a given cell’s rheobase and increasing at 10 pA
intervals. Sweeps from intervals without data were interpolated from sweeps
at neighboring intervals. Subthreshold responses to hyperpolarizing current
steps were analyzed as before by downsampling to 10 ms bins and concatenat-
ing responses from different stimulus amplitudes (ranging from -90 pA to -10
pA). Sparse principal component analysis was performed separately on data
from each of these categories (e.g., AP waveform, AP features across current
steps), and sparse principal components (sPCs) that exceeded 1% adjusted ex-
plained variance were kept. This yielded 61 sPCs in total from twelve data
categories. The components were z-scored and combined to form the reduced
dimension electrophysiology feature matrix.

cDNA amplification and library construction

For Patch-seq experiments, we reverse transcribed the collected nuclear and
cytosolic mRNA, and sequenced the resulting cDNA using the SMART-Seq v4
method described in Tasic et al. [12]. We used the SMART-Seq v4 Ultra Low
Input RNA Kit for Sequencing (Takara, 634894) to reverse transcribe poly(A)
RNA and amplify full-length cDNA according to the manufacturer’s instruc-
tions. We performed reverse transcription and cDNA amplification for 20 PCR
cycles in 0.65 mL tubes, in sets of 88 tubes at a time. At least 1 control 8-
strip was used per amplification set, which contained 4 wells without cells
and 4 wells with 10 pg control RNA. Control RNA was either Mouse Whole
Brain Total RNA (Zyagen, MR-201) or control RNA provided in the SMART-
Seq v4 kit. All samples proceeded through Nextera XT DNA Library Prepa-
ration (Illumina FC-131-1096) using either Nextera XT Index Kit V2 Set A-D
(FC-131-2001,2002,2003,2004) or custom dual-indexes provided by IDT (Inte-
grated DNA Technologies). Nextera XT DNA Library prep was performed ac-
cording to manufacturer’s instructions except that the volumes of all reagents
including cDNA input were decreased either to 0.4x or to 0.2× by volume. Each
sample was sequenced to approximately 500,000 - 1 million reads.

Sequencing data processing

Fifty-base-pair paired-end reads were aligned to mm10 GENCODE vM23/Ensembl
98 reference genome, downloaded from 10X cell ranger (refdata-cellranger-arc-
mm10-2020-A-2.0.0). Sequence alignment was performed using STAR aligner
(v2.7.1a) with default settings. PCR duplicates were masked and removed us-
ing STAR option “bamRemoveDuplicates.” Only uniquely aligned reads were
used for gene quantification. Gene counts were computed using the R Genomic
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Alignments package59 summarizeOverlaps function using “IntersectionNotEmpty”
mode for exonic and intronic regions separately. Exonic and intronic reads
were added together to calculate total gene counts; this was done for both the
reference dissociated cell data set and the Patch-seq data set. Data were ana-
lyzed as counts per million reads (CPM).

Transcriptomic mapping and analysis

We followed the procedures previously used by Gouwens et al. [13] to assign
transcriptomic types to Patch-seq neurons by mapping Patch-seq transcrip-
tomes to a reference dataset of scRNA-seq transcriptomes obtained from disso-
ciated cells collected by Tasic et al. [12]. We used the same reference taxonomy
here as in Gouwens et al. [13], starting with the 24,411 dissociated cells from
VISp and ALM regions and 4,020 differentially expressed genes from Tasic et
al. [12], but keeping only neuronal cells from the VISp region and their corre-
sponding T-types (13,464 cells encompassing 93 cell types). We note that the
T-types and subclasses that used the ”PT” nomenclature in the original study
have been renamed ”ET” here to be consistent with a recently generated whole-
brain taxonomy3.

Mapping to the VISp reference taxonomy

We mapped the transcriptomes of Patch-seq samples to the reference taxon-
omy above using the methods described previously for inhibitory neurons13.
Briefly, for each Patch-seq transcriptome, we traversed the reference hierar-
chical transcriptomic tree, computing the correlation of its expression of select
marker genes at each branch point of the tree with the expression profile of the
reference dissociated cell types below that branch point. We chose the more
correlated branch and repeated the process until the leaves (i.e., T-types) of the
hierarchical tree were reached. This procedure was bootstrapped with 100 it-
erations at each branch point using a random subsampling (70%) of markers
and reference cells. We defined a mapping probability based on the fraction of
times that a cell mapped to a leaf or node of the reference taxonomy. The T-type
with the highest mapping probability was assigned to that Patch-seq cell.

Mapping to the whole brain reference taxonomy

We also mapped Patch-seq cells to a recently generated whole-brain taxonomy3

and examined the correspondence between transcriptomic types assigned from
this taxonomy and the VISp-derived reference taxonomy. Here we used the
Hierarchical Approximate Nearest Neighbor (HANN) method implemented in
the scrattch-mapping package (https://github.com/alleninstitute/scrattch-mapping).
This method involved traversing the WB taxonomy hierarchy, selecting off-
spring node-differentiating marker genes at each node, and finding the ap-
proximate nearest neighbor T-type using marker gene correlation as the dis-
tance metric.
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Assessing mapping quality

As in Gouwens et al. [13], we evaluated the T-type mappings by considering
the confidence with which a Patch-seq transcriptome mapped to one or more
reference T-types, and the expected level of ambiguity between reference T-
types. We classified mapping quality measures (based on the correlation and
the Kullback-Leibler (KL) divergence between the mapping probability distri-
butions of Patch-seq cells and the reference mapping probability distribution;
see Gouwens et al. [13]) into ”highly consistent,” ”moderately consistent” and
”inconsistent” categories. 1,544 excitatory neurons that passed our QC crite-
ria for both electrophysiological and transcriptomic data were included in this
study. 1,290 of these cells mapped to T-types with ”high consistency”, a similar
fraction to what we found for inhibitory neurons using the same method13. In
this study, we excluded cells with inconsistent mapping from further analyses.

Visualization of reference cells and Patch-seq cells

For visual comparison of reference dissociated and Patch-seq cells, we selected
the 7,339 dissociated FACS-sorted neurons from primary visual cortex from the
Tasic et al. [12] reference data set that were within the glutamatergic branch of
the hierarchy (32 T-types) and used 1,398 differentially expressed (DE) genes
(the top 50 DE genes in each direction for all pairwise cluster comparisons
within only those excitatory types). The log2(CPM + 1) values of these DE
genes were combined across the Patch-seq and reference cells and reduced to
20 components with PCA. Three ”technical bias” PCs were removed as they
were found to be correlated (Pearson’s r =0.65, 0.45, and 0.45) with the collec-
tion method. We visualized the variation in the remaining 17 PCs in two di-
mensions using Uniform Manifold Approximation and Projection (UMAP)37.

Dimensionality reduction for continuous transcriptomic variation

Because Patch-seq transcriptomes are known to suffer from increased contam-
ination and gene dropout11,13,60, we defined transcriptomic dimensions from
reference dissociated cells collected from mouse visual cortex. For each tran-
scriptomic subclass (L2/3 IT, L4 & L5 IT, L6 IT, L5/L6 IT Car3, L5 ET, L5
NP, L6 CT, and L6b), we identified highly variable genes using Brennecke’s
method (https://github.com/AllenInstitute/scrattch.hicat/). We then
performed PCA and omitted PCs with a tolerance below 0.01 (i.e., PCs with
standard deviations ≤ 0.01 times the standard deviation of the first principal
component), which resulted in 3–7 principal components per subclass. We then
projected data from Patch-seq cells assigned to the different MET-type groups
into this lower dimensional space using the gene loadings from PCA.

Gene ontology analysis of gene modules

To validate the transcriptomic dimensions derived from PCA and infer biolog-
ical functions from the continuous variation within transcriptomically-defined
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subclasses, we performed a dimensionality reduction with weighted gene co-
expression network analysis (WGCNA)41. Unlike PCA, WGCNA identifies
modules of genes that are co-expressed, which could be advantageous for gene
ontology analysis. We projected the transcriptomic data from Patch-seq cells
assigned to their respective MET-type groups into both the PCA and WGCNA
spaces defined from reference cells and computed the Spearman correlation of
each principal component and WGCNA-derived eigengene for that group of
cells. We found that many of the PCA-derived transcriptomic dimensions were
highly correlated with at least one eigengene (Extended Data Figs. 17 and 18).

To find functional associations with transcriptomic principal components,
we performed a gene ontology analysis on the set of genes in any gene mod-
ule that was correlated with a transcriptomic PC (> 0.85 Spearman correla-
tion) using g:Profiler with g:SCS multiple testing61. We applied a significance
threshold of 0.05. For visualization purposes, we dropped associations with
very large terms (> 5, 000 associations), which tended to be non-specific in na-
ture; we also limited the number of displayed associations to at most 15 terms
(Extended Data Figs. 17 and 18).

Calculation of VISpm-projecting vs VISal-projecting transcriptomic signa-
ture

In order to examine whether the genes identified as differentially expressed
between VISpm-projecting and VISal-projecting L2/3 cells42 were related to
other cellular properties, we projected L2/3 IT Patch-seq data into a PC space
derived from these genes. We first identified the cells in the Kim et al. [42]
study with the best transcriptomic quality, selecting cells identified as ”L23
AL” or ”L23 PM” with ”highly consistent” or ”moderately consistent” qual-
ity when mapped to the same reference VISp taxonomy as Patch-seq cells. We
limited analysis to genes with a log fold change > 1 and adjusted p-threshold
< 0.05, combining the genes from both Zinbwave-EdgeR or Zinbwave-DESeq2
analyses in the study. We then performed PCA, reducing the log-transformed
expression of the resulting 838 differentially expressed genes in 345 upper cor-
tical layer neurons to 20 features (total explained variance = 0.21). We projected
Patch-seq data mapping to L2/3 IT T-types onto this common PC space for
further comparison of cellular properties with this HVA projection-associated
transcriptomic signature.

Differential gene expression analysis

Differentially expressed ion channels were identified using the scrattch.hicat
package (https://github.com/AllenInstitute/scrattch.hicat/) as previ-
ously described12, except that the proportions of cells expressing the gene in
each type were not required to differ by ≥ 0.7, as we did not want to limit
our identified genes to only those expressed in an on/off manner. Only genes
that were identified as being differentially expressed in both the reference and
Patch-seq data sets were included.
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Morphological reconstruction

Biocytin histology

Neurons were filled with biocytin via the patch pipette. To visualize the la-
bel, a horseradish peroxidase (HRP) enzyme reaction using diaminobenzidine
(DAB) as the chromogen was used after the electrophysiological recording. 4,6-
diamidino-2-phenylindole (DAPI) stain was also used identify cortical layers
as described previously21.

Imaging

Slices from Patch-seq experiments were mounted on slides and imaged as de-
scribed previously21. Briefly, operators captured images on an upright AxioIm-
ager Z2 microscope (Zeiss, Germany) equipped with an Axiocam 506 monochrome
camera and 0.63x optivar lens. Two-dimensional tiled overview images were
also captured (Zeiss Plan-NEOFLUAR 20X/0.5) in brightfield transmission and
fluorescence channels. Higher resolution image stacks of individual cells were
acquired in the transmission channel only for the purpose of morphological
reconstruction. Light was transmitted using an oil-immersion condenser (1.4
NA). High-resolution, multi-tile image stacks were captured (Zeiss Plan-Apochromat
63x/1.4 Oil or Zeiss LD LCI Plan-Apochromat 63x/1.2 Imm Corr) at an inter-
val of 0.28 µm (1.4 NA objective) or 0.44 µm (1.2 NA objective) along the Z axis.
Image tiles were stitched in ZEN software and exported as single-plane TIFF
files.

Anatomical location of Patch-seq cells

Layer and anatomical location were determined based on DAPI stained overview
images mentioned above. The soma position of reconstructed neurons, as well
as the pia, white matter, and L1–L6b borders (using DAPI for reconstructed
neurons) were drawn and used in subsequent analyses. Individual cells were
manually aligned to the Allen Mouse Common Coordinate Framework ver-
sion 3 (CCFv3) by matching the overview image of the slice with a “virtual”
slice at an appropriate location and orientation within the CCFv3. Laminar lo-
cations were calculated by finding the path connecting pia and white matter
that passed through the cell’s coordinate, identifying its distance to pia and
white matter as well as position within its layer, then aligning those values to
an average set of layer thicknesses.

Computer-assisted morphological reconstruction of Patch-seq neurons

Dendritic reconstructions were performed for a subset of neurons with good
quality transcriptomics, electrophysiology, and labeling. Reconstructions were
generated based on 63X image stacks described above. Stacks were run through
a Vaa3D-based image processing and reconstruction pipeline62. An automated
reconstruction of the neuron was produced using TReMAP63. Alternatively,
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initial reconstructions were created manually using the reconstruction soft-
ware PyKNOSSOS (Ariadne-service) or through the citizen neuroscience game
Mozak (Mozak.science)64. Automated or manually initiated reconstructions
were then extensively manually corrected and extended using a range of tools
(e.g., virtual finger, polyline) in the Mozak extension (Zoran Popovic, Center
for Game Science, University of Washington) of Terafly tools65,66 in Vaa3D.
Where possible, the local axon was also reconstructed. After 3D reconstruc-
tion, morphological features were calculated as previously described13,21.

Automated morphological representations

All neurons that were eligible for reconstruction were automatically segmented
and post-processed to produce a quantifiable neuron reconstruction using the
approach described in Gliko et al. [53]. These automated reconstructions were
used to make inferred MET-type assignments for cells from T-types that split
across different MET-types (see below).

MET-type definition

We defined MET-types from our Patch-seq data set as previously described13.
Briefly, we first used electrophysiological and morphological features to de-
fine ME-clusters by several methods and defined consensus clusters from the
combined results13,21. We used the per-cell cross-T-type mapping probabilities
(see ”Mapping to the reference data set” above) and cross-ME-cluster map-
ping probabilities (by subsampled random forest classification) to construct
the edges of a graph in which the nodes represented cells with specific T-
type/ME-type combinations. We then used the Leiden community detection
algorithm67 to group strongly-connected nodes into MET-types (see Extended
Data Figure 11b). The analysis was performed on the 384 neurons with elec-
trophysiological data, transcriptomic data, and morphological features from a
manually-curated reconstruction.

We observed that nearly all T-types were strongly associated with a single
MET-type; therefore, T-types were used to infer MET-type labels for an addi-
tional 1,090 Patch-seq neurons that lacked a manually-curated reconstruction.
For the handful of T-types that split across two MET-types (L6 IT VISp Penk
Col27a1, L6 IT VISp Penk Fst, L6 IT VISp Col23a1 Adamts2, L5 ET VISp Lgr5),
we used morphological features from automated morphological reconstruc-
tions to assign the final MET-type label (78 neurons from those T-types lacked
an automated reconstruction and therefore were not assigned an inferred MET-
type).

fMOST imaging

As described previously27, resin-embedded, GFP-labeled brains underwent
chemical reactivation to recover GFP fluorescence and facilitate wide-field or
two-photon block-face imaging34,68. For the entire mouse brain, a 15–20 TB
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dataset containing 10,000 coronal planes of 0.2 to 0.3 µm X-Y resolution and
1 µm Z sampling rate was generated within 2 weeks. Tissue was prepared and
imaged as previously described69,70. A 40X water-immersion lens with NA 0.8
was used to provide an optical resolution (at 520 nm) of 0.35 µm in XY axes and
voxel size of 0.35 x 0.35 x 1.0 µm, appropriate for neuron reconstruction. GFP
was imaged with an excitation wavelength of 488 nm and a bandpass emission
filter of 510–550 nm.

Whole neuron morphology (WNM) reconstruction and analysis

Vaa3D-TeraVR was used for WNM reconstructions of fMOST images. All den-
drites and the complete local and long-range axonal arbor was traced using
the virtual finger or polyline tool. Special care was taken to mark all putative
axonal terminals, which were identified based on a large, well-labeled bouton,
for secondary review by an experienced annotator. For this quality control step,
the entire reconstruction was reviewed using Tera-VR. At high magnifications,
the axon proximal to the soma or the main branches of distal axon collaterals
were carefully examined for missed branches. Post-processing steps were run
on completed reconstructions to ensure that there were no errors (i.e., breaks
or loops).

fMOST image registration to CCF

Whole brain fMOST images were registered to the average mouse brain tem-
plate of CCFv3 by one of two methods: BrainAligner27 or DeepMAPI71. For
the DeepMAPI method, reconstruction data was supplied for several neurons
labeled across individual brains and registration was performed iteratively
as previously described. For the BrainAligner method, in brief, images were
down-sampled by 64× 64× 16 (X, Y, Z), and outer contours were affine-aligned
using the Robust Landmark points Matching algorithm (RLM). Intensity was
then normalized by matching the local average intensity of raw fMOST im-
ages to that of the CCFv3, and local alignment was then iteratively deformed.
As a final step, mBrainAligner was used, as necessary, to manually or semi-
automatically adjust the boundaries of brain regions. With either method,
once images were CCF-aligned, the reconstructed neurons were transformed
into the CCFv3 space using the generated deformation fields. DeepMAPI-
registered reconstructions were used in the WNM analyses presented through-
out the paper. With this method, VIS WNM projection targets largely agree
with what has previously been described in the literature for population stud-
ies. Where there are differences, they may result from issues with registration
accuracy, particularly for smaller structures (e.g., SCig), differences in the loca-
tion and/or type of neurons labeled, and/or the type of labeling method used.
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Calculating the WNM projection matrix

CCF-registered reconstructions were translated such that all somas were po-
sitioned in the left hemisphere. SWC files were subsequently resampled to
ensure uniform spacing between nodes. To quantify the pattern of axonal pro-
jection targets, a projection matrix was derived based on reconstruction node
counts per anatomical target structure (see structure list below). Target regions
were represented in both ipsilateral and contralateral hemispheres. To reduce
the size of the projection matrix, only regions containing a branch or tip node
were included.

Nomenclature and abbreviations in the Allen Mouse Brain Common Coor-
dinate Framework, version 3 (CCFv3) ontology of brain regions referred to
in this study

Isocortex: frontal pole (FRP), primary motor area (MOp), secondary motor area
(MOs), primary somatosensory area (SSp), supplemental somatosensory area
(SSs), gustatory area (GU), visceral area (VISC), dorsal auditory area (AUDd),
primary auditory area (AUDp), posterior auditory area (AUDpo), ventral audi-
tory area (AUDv), primary visual area (VISp), anterolateral visual area (VISal),
anteromedial visual area (VISam), lateral visual area (VISl), posterolateral vi-
sual area (VISpl), posteromedial visual area (VISpm), laterointermediate area
(VISli), postrhinal area (VISpor), anterior cingulate area, dorsal part (ACAd),
anterior cingulate area, ventral part (ACAv), prelimbic area (PL), infralimbic
area (ILA), orbital area, lateral part (ORBl), orbital area, medial part (ORBm),
orbital area, ventrolateral part (ORBvl), agranular insular area, dorsal part
(AId), agranular insular area, posterior part (AIp), agranular insular area, ven-
tral part (AIv), retrosplenial area, lateral agranular part (RSPagl), retrosple-
nial area, dorsal part (RSPd), retrosplenial area, ventral part (RSPv), posterior
parietal association area (PTLp), anterior area (VISa), rostrolateral visual area
(VISrl), temporal association area (TEa), perirhinal area (PERI), ectorhinal area
(ECT).

Olfactory areas (OLF): piriform area (PIR).
Hippocampal formation (HPF): hippocampal region (HIP), fields CA1, CA2,

CA3, dentate gyrus (DG), entorhinal area, lateral part (ENTl), entorhinal area,
medial part (ENTm), parasubiculum (PAR), postsubiculum (POST), presubicu-
lum (PRE), subiculum (SUB), prosubiculum (ProS).

Cortical subplate (CTXsp): claustrum (CLA), endopiriform nucleus, dor-
sal part (EPd), endopiriform nucleus, ventral part (EPv), lateral amygdalar nu-
cleus (LA), basolateral amygdalar nucleus (BLA), basomedial amygdalar nu-
cleus (BMA).

Cerebral nuclei (CNU): caudoputamen (CP), nucleus accumbens (ACB),
fundus of striatum (FS), central amygdalar nucleus (CEA), medial amygdalar
nucleus (MEA), globus pallidus, external segment (GPe), globus pallidus, in-
ternal segment (GPi), bed nuclei of the stria terminalis (BST). STR-unspecified
(STR) corresponds to areas of the striatum that have not be assigned to a child
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structure.
Thalamus (TH): ventral anterior-lateral complex (VAL), ventral medial nu-

cleus (VM), ventral posterolateral nucleus (VPL), ventral posterolateral nu-
cleus, parvicellular part (VPLpc), ventral posteromedial nucleus (VPM), ven-
tral posteromedial nucleus, parvicellular part (VPMpc), posterior triangular
thalamic nucleus (PoT), medial geniculate complex, dorsal part (MGd), me-
dial geniculate complex, ventral part (MGv), medial geniculate complex, me-
dial part (MGm), lateral geniculate complex, dorsal part (LGd), lateral pos-
terior nucleus (LP), posterior complex (PO), anteromedial nucleus (AM), in-
teranterodorsal nucleus (IAD), lateral dorsal nucleus (LD), mediodorsal nu-
cleus (MD), submedial nucleus (SMT), paraventricular nucleus (PVT), nucleus
of reuniens (RE), central medial nucleus (CM), paracentral nucleus (PCN), cen-
tral lateral nucleus (CL), parafascicular nucleus (PF), reticular nucleus (RT).
Thalamus-unspecified (TH) corresponds to areas of the thalamus that have not
be assigned to a child structure.

Hypothalamus (HY): subthalamic nucleus (STN), zona incerta (ZI).
Midbrain (MB): substantia nigra, reticular part (SNr), midbrain reticular

nucleus (MRN), superior colliculus, motor related (SCm), periaqueductal grey
(PAG), anterior pretectal nucleus (APN), red nucleus (RN), pedunculopontine
nucleus (PPN), dorsal nucleus raphe (DR). Midbrain-unspecified (MB) corre-
sponds to areas of the midbrain that have not be assigned to a child structure.

Pons (P): parabrachial nucleus (PB), pontine grey (PG), pontine reticular
nucleus, caudal part (PRNc), tegmental reticular nucleus (TRN), pontine retic-
ular nucleus (PRNr), locus ceruleus (LC). Pons-unspecified (P) corresponds to
areas of the pons that have not been assigned to a child structure.

Generating local morphology

To analyze the local axon of the WNM, axon nodes that were more than 500
µm from the soma in the x-z dimensions were excised. Any orphaned seg-
ments were also removed. In 115 cells, a fraction of superficial axon nodes
were registered outside of the cortex. To correct this, the cell was translated
along the streamline passing nearest to the soma until the stopping criterion
was met. The stopping criterion was that either all superficial axon nodes were
in the cortex or that the soma was at the L6b–white matter boundary.

Calculating morphological features in WNM

To extract local features for WNM data, a CCF driven protocol was devel-
oped to replicate the patch-seq laminar annotations. A 2-dimensional slice
was drawn through the CCF which passed through a given cell’s soma. The
slice was drawn such that it minimized the curvature of the cortex at both
the pial and white matter surfaces. Cortical layers were annotated on the 2-
dimensional slice using the CCF structure annotations.

From here, morphological features were extracted as outlined earlier for
Patch-seq cells. However, in this study, we did not differentiate between api-
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cal and basal dendrites when calculating interaction features with local axons,
such as the percentage of overlap.

Summary features were derived from the projection matrix, including the
total number of projection targets, total projection length, total length in visual
cortex, total length in ipsilateral visual cortex, the length of axon within the
soma structure, total number of targets in visual cortex, total number of targets
in contralateral visual cortex, and proportion of the total axon length within
the soma structure.

Morphological feature alignment

Reconstructions from the WNM data set were uprighted and cut to imitate
the slicing that occurs when preparing Patch-seq samples from visual cortex.
The slice thickness and average soma depth-in-slice for patch-seq were 350 µm
and 48.2±12.6 µm, respectively. To imitate this, WNM reconstructions were
positioned 48.2 µm into a 350 µm wide rostral-caudal bounding box. Any den-
drites extending beyond this rostral-caudal bounding box were excised. (Step
1a Extended Data Fig. 15).

To further align the Patch-seq and WNM data sets, the chamfer distance
was minimized between two-dimensional feature point clouds. For each fea-
ture, a depth by feature point cloud was created for each data set. These
point clouds were subsequently aligned by imposing a linear transformation
on the feature, which reduced the chamfer distance between the respective
point clouds. (Step 1b Extended Data Fig. 15).

Multi-step MET-type prediction

A systematic multi-step approach was developed to predict MET-types within
the WNM dataset. The method aimed to first predict a projection subclass
label—namely IT-NP-L6b, ET, or CT—and subsequently channel the data to a
specialized classifier that exclusively predicted MET-types based on a desig-
nated subclass.

The first step involved predicting projection subclass (IT-NP-L6b, ET and
CT) using dendritic morphology features. Training data was aggregated from
Patch-seq and WNM neurons. Patch-seq subclass labels were derived explic-
itly from MET-type labels. A projection-derived subclass was found for WNM
using high-level projection patterns (Step 2 Extended Data Fig. 15). Together,
the Patch-seq and WNM data were shuffled and split into training and testing
sets (80%/20%, respectively). The support vector classifier achieved 96% pre-
diction accuracy on the hold-out data set using a radial based kernel function,
balanced class weight, and a C value of 1. Final dendrite-derived projection
subclass labels were predicted for WNM using a leave-one-out approach (Step
3 Extended Data Fig. 15).

In WNM, when projection-derived subclass and dendrite-derived subclass
labels were aligned (n = 293), cells were routed to the corresponding MET-type

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.25.568393doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.25.568393
http://creativecommons.org/licenses/by-nc-nd/4.0/


classifier. Discrepancies between projection and dendrite derived subclass la-
bels (n = 12) were resolved using local axon features. For these twelve cells, sil-
houette scores were calculated to determine which subclass a cell’s local axon
was most consistent with. If the silhouette analysis for the local axon matched
either the projection- or dendrite-derived subclass (n = 11), cells were then
routed to the appropriate MET-type classifier. One cell had a different subclass
assignment at each step; this cell was routed to a MET-type classifier using the
dendrite-derived subclass.

To predict ET MET-types, a random forest classifier with 25 estimators, a
maximum depth of 7, balanced class weights, a minimum of 5 samples per
split, and at least 2 samples per leaf node was used. 5-fold cross validation
was repeated 20 times and achieved a mean accuracy of 77.2% ± 11.5%. The
cumulative confusion matrix was recorded (Step 4 Extended Data Fig. 15). L5
ET-3 Stac was randomly undersampled in each iteration of cross validation to
reduce the impact of class size imbalance. For IT-NP-L6b MET-type classifica-
tion, a random forest classifier with 250 estimators, a maximum depth of 10,
balanced class weights, a minimum of 3 samples per split, and at least 4 sam-
ples per leaf node was used. 5-fold cross validation was repeated 20 times and
achieved a mean accuracy of 91% ± 3.6%. The cumulative confusion matrix
was recorded (Step 4 Extended Data Fig. 15). L6b was randomly undersam-
pled in each iteration of cross validation to reduce the impact of class size im-
balance. CT cells were directly mapped to the L6 CT MET-type.

Over the course of 500 iterations, the Patch-seq training data was sampled
without replacement at 95% with selection probabilities proportional to the
MET-type class size. During each iteration, a new classifier was trained on this
sub-sampled data set, subsequently predicting MET-types for all WNM cells.
The final MET assignment was determined based on the most frequently pre-
dicted MET-type label. Prediction probabilities are reported as the fraction of
iterations a cell was assigned to the most frequently predicted MET-type label.

Cells predicted to a L6 IT MET-type but having a soma in L6b were reas-
signed to the L6b class (n = 2). A single cell, which exhibited notably sparse
apical dendrite obliques given its overall local morphology, was initially cate-
gorized as L5 NP. However, due to its prominent long contralateral projections,
it was reassigned to L4/L5 IT.

Logistic regression models

Logistic regression was used to predict VISp vs. HVA locations for Patch-seq
neurons using transcriptomic data. Highly variable genes were identified from
the Patch-seq data set for the three most populous MET-types (L5 ET-3 Stac,
L6 CT, L4/L5 IT). PCA was performed on those sets of genes, and the top 10
PCs were used as predictors for logistic regression. Since Patch-seq VISp neu-
rons substantially outnumbered Patch-seq HVA neurons (L5 ET-3 Stac: n=298
VISp, n=64 HVA; L6 CT: n=255 VISp, n=55 HVA; L4/L5 IT: n=116 VISp, n=25
HVA), we repeatedly subsampled equally from both location types so that the
chance accuracy level would be 0.5. We divided the HVA neurons with a 50%
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train/test split, then selected the same number of VISp neurons for training
and test sets, as well. We then trained the regression model and calculated the
test accuracy; we repeated this procedure 1000 times and calculated the 95%
confidence interval of the mean accuracy across those repetitions.

The probabilities of individual VISp WNM neurons projecting to specific
target regions was modeled by logistic regression. Only regions that were tar-
geted by at least 10 VISp cells in the data set were used. For each region, bi-
nomial generalized linear models were fit using the cortical surface location,
MET-type, and the subclass-specific transcriptomic-correlated dendritic PCs as
predictors. Only predicted MET-types with at least 5 cells were included. Note
that the transcriptomic correlated dendritic PCs were calculated for each class
for every cell so that all cells would have the same set of predictor variables.
Models were fit using all the predictors as well as using different subsets (seven
model types in all). To select among the model types for each area, the Akaike
information criterion (AIC) was calculated for each model, and the model with
the lowest AIC was chosen, unless a simpler model using fewer predictors had
a comparable AIC (i.e., the difference in the AIC was less than 272). For each se-
lected model, we calculated a pseudo R2 = 1 − log(Lmodel)/ log(Lnull) where
Lmodel was the likelihood of the data with the selected model and Lnull was the
likelihood of the data with a null model73 to estimate the variance explained
by the selected model.

To estimate the effects of dendritic PC on target projection probability in
Figure 6h, probabilities were calculated at the average cortical location of the
neurons in the examined MET-type. For the effects of cortical location on target
projection probability in Figure 6i, the probabilities were calculated for a given
MET-type (L4/L5 IT for cortical targets, L5 ET-3 Stac for CP, and L6 CT for LD)
and used the average dendritic PC values for neurons of that MET-type. For
the effect of cortical location plots in Extended Data Figure 39, the probabilities
were calculated using the MET-type associated with the highest odds ratio and
used average dendritic PC values for all cells in the data set. Prediction error
rates were estimated based on the predicted probabilities with a threshold of
p = 0.5 and are reported both from the full training data set and from a leave-
one-out cross validation (LOOCV) procedure.

Statistics and research design

No statistical methods were used to predetermine sample sizes, but the sam-
ple sizes here are similar to those reported in previous publications. No ran-
domization was used during data collection as there was a single experimen-
tal condition for all acquired data. The different stimulus protocols were not
presented in a randomized order. Data collection and analyses were not per-
formed blind to the conditions of the experiments as there was a single experi-
mental condition for all acquired data.

Correlations were measured by the non-parametric Spearman rank correla-
tion coefficient unless otherwise noted. Kruskal-Wallis tests followed by post
hoc Dunn’s tests were used to identify significant differences across multi-
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ple groups. The p-values of multiple comparisons (e.g., correlations between
all Tx PCs and electrophysiology/morphology features) were adjusted by the
Benjamini-Hochberg method74 for an family-wise error rate of 0.05.

Data and software availability

Transcriptomic data supporting the findings of this study will be available at
the NeMO archive upon publication. Similarly, electrophysiological data for
this study will be available at the DANDI archive and morphological recon-
structions from this study, as well as the fMOST whole brain images used for
WNM reconstructions, will be available at the BIL archive.

The electrophysiology data acquisition software (MIES) used for this study
is available at https://github.com/alleninstitute/mies. The morphologi-
cal reconstruction software (Vaa3D-TeraFLY-Mozak is freely available at http:
//home.penglab.com/proj/vaa3d/home/index.html and the code is available
at https://github.com/Vaa3D. The code for electrophysiological and mor-
phological feature analysis and clustering is available as part of the open-source
Allen SDK repository (https://github.com/AllenInstitute/AllenSDK), skeleton-
keys repository (https://skeleton-keys.readthedocs.io/en/latest/), py-
ropractor repository (https://github.com/AllenInstitute/pyropractor/),
IPFX repository (https://github.com/alleninstitute/ipfx), and DRCME
repository (https://github.com/alleninstitute/drcme).
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