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Abstract 
Recent work suggests that AlphaFold2 (AF2)–a deep learning-based model that can 

accurately infer protein structure from sequence–may discern important features of folded protein 

energy landscapes, defined by the diversity and frequency of different conformations in the folded 

state.  Here, we test the limits of its predictive power on fold-switching proteins, which assume 

two structures with regions of distinct secondary and/or tertiary structure.  Using several 

implementations of AF2, including two published enhanced sampling approaches, we generated 

>280,000 models of 93 fold-switching proteins whose experimentally determined conformations 

were likely in AF2’s training set.  Combining all models, AF2 predicted fold switching with a 

modest success rate of ~25%, indicating that it does not readily sample both experimentally 

characterized conformations of most fold switchers.  Further, AF2’s confidence metrics selected 

against models consistent with experimentally determined fold-switching conformations in favor 

of inconsistent models.  Accordingly, these confidence metrics–though suggested to evaluate 

protein energetics reliably–did not discriminate between low and high energy states of fold-

switching proteins.  We then evaluated AF2’s performance on seven fold-switching proteins 

outside of its training set, generating >159,000 models in total.  Fold switching was accurately 

predicted in one of seven targets with moderate confidence.  Further, AF2 demonstrated no ability 

to predict alternative conformations of two newly discovered targets without homologs in the set 

of 93 fold switchers.  These results indicate that AF2 has more to learn about the underlying 

energetics of protein ensembles and highlight the need for further developments of methods that 

readily predict multiple protein conformations. 
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Introduction 

Deep learning-based algorithms have made it possible to predict protein structure from 

amino acid sequence, sometimes with impressively high accuracy.  The most successful of these 

algorithms, AlphaFold2 (AF2) (1), has inspired numerous new approaches to predict and design 

other important structural features of proteins.  These features include protein-protein interaction 

sites (2), conditionally folding regions of intrinsically disordered proteins (3), and structures of 

novel protein folds from metagenomic sequences (4). 
The many successes of AF2 suggest that it may also be able to predict subtle-yet-important 

protein properties previously revealed only through sophisticated techniques.  These properties 

include conformational ensembles and functionally important alternative conformations (5).  

Consistent and accurate predictions of these properties would suggest that AF2 may do more than 

simply associate protein sequence with structure through sophisticated pattern recognition (6).  

Rather, it may leverage learned folding physics to accurately approximate folded protein energy 

landscapes (7).  These landscapes are defined by the diversity and frequency of protein 

conformations in the folded state.  Supporting this possibility, AlphaFold2 has successfully 

predicted alternatively folded states in over a dozen cases (5, 8).   

Yet despite AF2’s impressive accuracy and broad success, several uncertainties remain 

about how much it has learned about protein energy landscapes, particularly its ability to predict 

alternative protein conformations.  These uncertainties relate to the two major tasks on which 

protein structure prediction relies: adequate sampling and accurate scoring.  First, sampling refers 

to AF2’s ability to generate distinct experimentally consistent conformations of the same protein.  

As a deep learning algorithm, AF2 relies on a large training set of hundreds of thousands of solved 

and predicted structures, their amino acid sequences, and multiple sequence alignments (MSAs) 

containing the evolutionary information used to infer structure (1).  Compared to this large training 

set, the number of experimentally determined alternative protein conformations is small (9).  

Furthermore, AF2’s ability to sample alternative conformations has been tested on only a handful 

of examples (5, 8).  Thus, it is unknown how well AF2 would accurately sample experimentally 

consistent alternative protein conformations more broadly (9).  Second, scoring refers to AF2’s 

ability to distinguish between good and poor predictions.  Currently, AF2 assigns good and poor 

scores to its predictions of single protein conformations very reliably (7).  To our knowledge, 
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however, no studies have systematically assessed how accurately it scores alternative protein 

conformations.   

Here, we systematically assess AF2’s ability to sample and score both experimentally 

determined conformations of 93 fold-switching proteins (10).  This newly emerging class of 

proteins has been evolutionarily selected to assume two distinctly folded states (11), presumably 

for functionally important reasons (12).  Previously, we showed that AF2.2.0 is systematically 

biased to predict one conformation of fold switchers while missing the other (13).  Since then, 

AF2.3.1 has been released: this version now makes accurate predictions of oligomeric assemblies 

and protein-protein interactions (14).  Because at least one conformation of most fold switchers 

forms an oligomer or interacts with another protein (10), we aimed to assess AF2.3.1’s ability to 

predict fold switching when information about oligomeric state or binding partner is provided.  

Both conformations of all 93 fold switchers were deposited in the Protein Data Bank (15) (PDB) 

before AF2.3.1 was trained, suggesting that they are likely in its training set.  Furthermore, two 

methods for predicting alternative protein conformations or protein ensembles with AF2 have 

recently been proposed (16, 17).  Thus, we tested the performance of these methods on the same 

set of 93 fold switchers, generating >280,000 predictions in all.  Upon assessing these predictions, 

we found that AF2 predicts fold-switching proteins likely in its training set with modest success 

(23/93).  Further, its confidence metrics select against alternatively folded protein conformations 

and cannot discriminate between low and high energy conformations of fold-switching proteins.  

Because AF2’s predictions are most useful for proteins without experimentally determined 

structures, we also tested it on a set of seven fold-switching proteins whose structures were not 

deposited in the PDB at the time AF2.3.1 was trained, generating >160,000 additional predictions.  

It failed to predict the alternative folds of 6/7 fold switchers.  These results call into question how 

much AF2 has learned about protein folding energetics and indicate the need for further 

developments of methods that accurately predict alternative protein conformations. 

 

 

 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted December 13, 2023. ; https://doi.org/10.1101/2023.12.12.571380doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.12.571380


 4 

Results 

AF2 samples both conformations of ~25% of fold switchers  

AF2’s ability to sample two folds assumed by single sequences was tested on 93 pairs of 

experimentally determined fold switchers.  The structures of all 93 pairs (Table S1) are from many 

diverse fold families and source organisms (13).  All structures were deposited in the PDB before 

2022 and are therefore likely in AF2.3.1’s training set.  All protein pairs have identical or nearly 

identical sequences and regions of distinct secondary and tertiary structure (Methods).  AF2 

predictions are defined as successful when they accurately capture both experimentally determined 

conformations, called Fold1 and Fold2.  Prediction accuracy is assessed by calculating the TM-

score (18) between each AF2 prediction and both experimentally determined structures.  TM-

scores quantify the similarity of topology and connections between secondary structure elements 

(19), a reliable metric since fold-switching proteins are identified by secondary structure 

differences (10). Because whole-protein TM-scores often overestimate the prediction accuracies 

of fold-switching regions, we assessed predictions using TM-scores of fold-switching regions only 

(Figure S1).  Higher TM-scores indicate predictions closer to experimentally determined 

conformations. We ordered each pair of fold switchers so that Fold1 corresponds to the target 

conformation most frequently predicted by AF2, and Fold2 corresponds to the less frequently 

predicted target conformation (Methods).   

First, four different AF2.3.1 modes were tested on each fold-switching sequence: with 

templates, without templates, multimer model on single chains, and multimer model on protein 
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complexes (Table S2).  AF2.3.1’s 

performance increased slightly above 

AF2.0’s (Figure 1A), capturing 11/93 fold 

switchers (combining results both with and 

without templates) rather than 8/93 (13).  

Furthermore, AF2_multimer successfully 

predicted both conformations of 12/93 fold 

switchers.  Although fold switching is often 

triggered by protein-protein interactions 

(10), supplying information about binding 

partners and oligomeric states to the 

Multimer model yielded only four fold-

switch predictions, all of which were 

predicted using single chains by other AF2.3.1 methods (Table S2).  To augment this TM-score-

based assessment, we also performed root-mean-square-deviation (RMSD) calculations of fold-

switching regions and found similar results (Figure S2).  Together, these assessments demonstrate 

that running AF2.3.1 with default inputs and parameters rarely produces successful fold switch 

predictions: <13% in total. 

Figure 1.  AF2 predicts fold switching with 
modest success. (a) Numbers of successful fold-
switch predictions for each AF2 method 
compared with coevolutionary information 
found for both folds (ACE) and the total number 
of possible successes (dotted red line).  All_AF2 
combines all unique successful predictions from 
all AF2-based methods: >282,000 predictions.  
(b). Fraction of predicted structures that match 
experimentally determined conformations for 
all methods.  Fold1 is the conformation most 
frequently sampled by AF2.3.1, Fold2 is the less 
frequently sampled (or unsampled)  
conformation.  Conformations designated as 
Other are inconsistent with both experimentally 
determined structures. 

A

B

AF-Cluster

SPEACH_AF

AF2.3.1

AF2_Multimer

AF2.2.0

Fraction of predictions

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted December 13, 2023. ; https://doi.org/10.1101/2023.12.12.571380doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.12.571380


 6 

We then tested whether AF2-based enhanced sampling approaches can predict more fold 

switchers than AF2 runs with standard inputs.  Recently, two such approaches have been proposed 

to predict alternative conformations of proteins including fold switchers. The first, SPEACH_AF 

(16), masks coevolutionary information in AF2’s input MSA by mutating selected columns to 

alanine in silico.  Masking this information is expected to allow AF2 to identify coevolutionary 

signals in the MSA corresponding to alternative protein conformations, allowing it to sample a 

more diverse conformational ensemble.  SPEACH_AF was tested on 16 different proteins and 

generated alternative conformations for almost all of them.  Though none of these proteins were 

fold switchers, SPEACH_AF’s potential to predict fold switching was proposed (16).  The second 

approach, AF-cluster (17), clusters sequences from a deep MSA by similarity and runs AF2 on 

different clusters or combinations thereof.  This approach is based on the hypothesis that different 

MSA subsets may contain coevolutionary information distinct from deep MSAs, allowing AF2 to 

predict alternative protein conformations, though recent work suggests that AF-cluster infers 

alternative conformations from sequence similarity rather than coevolution (20).  Regardless, AF-

cluster was tested on six families of fold-switching proteins and successfully predicted both 

conformations in three families (17).   

To gauge how frequently SPEACH_AF and AF-cluster predict fold switching, we tested 

both approaches extensively on the set of 93 fold switchers tested previously, generating >77,000 

structures with SPEACH_AF and >200,000 structures with AF-cluster (Table S2).  Both methods 

missed fold switching in most cases (Figure 1A): 94% for SPEACH_AF (6/93 successes) and 

81% for AF-cluster (18/93 successes).  Interestingly, the alternative folds of 6/17 AF-cluster 

predictions were also correctly predicted from single sequences.  Because AF2 requires an input 

MSA to make coevolutionary inferences, these single-sequence predictions indicate that AF-

cluster’s predictive success did not result from coevolutionary inference in these cases and may 

have arisen from overtraining instead ((9, 20, 21) Table S2, Figure S3).   

As mentioned previously, both SPEACH_AF and AF-cluster postulate that AF2 can 

predict alternative protein conformations when sufficient coevolutionary information is provided.  

A recent computational approach called Alternative Contact Enhancement (ACE) identified 

coevolutionary information unique to both folds of 56 fold-switching proteins, confirming that 

MSAs often contain structural information unique to both conformations (11).  Nevertheless, after 

combining all correctly predicted fold switch pairs from 282,000 predicted structures (Figure 1B), 
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AlphaFold2 misses this information in 43/56 cases.  Thus, current enhanced sampling approaches 

typically do not enable AF2 to consistently detect the dual-fold coevolutionary information present 

in many MSAs of fold-switching proteins.  

AF2 confidence metrics select against alternative conformations of fold switchers 

Though AlphaFold2 often produces structural models with remarkably high accuracy, 

some of its predictions can be inaccurate (1).  We quantified the frequency of inaccurate 

predictions relative to correct predictions of Fold1 and Fold2 generated by all methods (Figure 

1B).  In all cases, 30-49% of predictions did not correspond well to either experimentally 

determined structure.   

 To see if AF2 could distinguish between good and inaccurate predictions, the relationship 

between prediction quality and AF2’s confidence metrics was assessed.  AF2 estimates prediction 

quality with two confidence metrics: the per Residue Local Difference Distance Test (pLDDT) 

and predicted template modeling (pTM) scores.  We sought to determine whether either or both 

metrics discriminate between the good and poor fold-switch predictions generated by AlphaFold2 

and AF-cluster.  AF-cluster was selected because it predicted substantially more fold switchers 

than SPEACH_AF (18 rather than 7), generated fewer inaccurate predictions overall (~30% rather 

than 43%), and comprised a larger set of predictions. 

 Neither of AF2’s confidence metrics successfully discriminated between good and 

inaccurate fold-switch predictions (Figures 2A, S4-S6).  Rather, both pLDDT and predicted 

template modeling (pTM) scores assigned lower confidences to diverse correctly predicted 

conformers and higher confidences to incorrect predictions.  Whereas 30% of all AF-cluster 

structures did not match experimentally determined structures of Fold1 or Fold2–the fewest 

incorrect predictions of all methods (Figure 1b)–nearly 70% of the highest ranked structures were 

inconsistent with experiment (Figures 2A, S4, Table S3).  A similar trend was observed for 

AF2.3.1 runs with standard settings (Figures S5, S6).   

These results strongly indicate that AF2’s confidence metrics select against experimentally 

consistent predictions of fold switchers, especially Fold2, in favor of experimentally inconsistent 

predictions.  For instance, while AF-cluster correctly predicted 19/93 Fold2 conformations overall, 

only 7/93 were identified amongst high quality predictions (p < 8.1*10-4, one-sided binomial test).  

Further, significantly fewer correctly predicted conformations (either Fold1 or Fold2) were 
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identified amongst high-quality models (37) than amongst all (53, p < 6.6*10-4, one-sided binomial 

test).  Some of these experimentally unobserved conformations have been proposed to correspond 

to folding intermediates (5).  To the best of our knowledge, there is no experimental evidence 

supporting this claim for fold-switching proteins.  In fact, a recently characterized folding 

intermediate of the transcriptional regulator RfaH suggests the opposite (22).  AF2-multimer 

predicted a hybrid a-helical/b-sheet fold with high confidence for its fold-switching C-terminal 

domain (Figure S7).  This prediction is not consistent with experiment: most notably, the N-

terminal portion of the AF2 prediction folds into a b-hairpin, while the experimentally observed 

intermediate has helical propensities in that region (22).  Thus, high confidence AF2 predictions 

that differ from experimentally determined structures do not necessarily correspond to folding 

intermediates, consistent with previous observations (23). 

 
AF2’s inability to discriminate between good and poor predictions of fold switchers 

suggests that its confidence metrics may have broader limitations.  To further assess this 

possibility, we used AF2’s structure module to energetically rank fold-switching protein pairs 

(Methods).  This approach–based on hypothesis that the AF2’s structure module has learned 

protein folding physics–correctly selected experimentally consistent structures among diverse 

models of 283 proteins (7).  Here, it correctly selected the ground state conformations of fold-

A

B

Lower energy conformation predicted with higher confidence
Higher energy conformation predicted with higher confidence
Experimentally isoenergetic conformations

Figure 2.  AF2 confidence metrics select against alternative 
conformations and do not predict the most energetically favorable 
fold-switch conformations. (A) Bar-plot representation of 
prediction success in Top1, Top10 and All fold-switch predictions 
select more incorrect conformations as prediction confidence 
increases. These trends are apparent in trendline plots showing the 
change in fraction of predictions as a function of prediction 
confidence.  The leftmost 3 trendlines are from All predictions, the 
middle/rightmost are from Top10/Top1 most confident for each of 93 
fold switchers.  For each column of trendlines, the leftmost dot 
represents all conformations (not weighted by confidence), the next 
is predictions with medium confidence, then good confidence, and 
finally high confidence.  Confidences are determined by ≥70% 
(medium), 80% (good), 90% (high) of residues with pLDDT scores 
≥70. (B). AF2’s structure module predicts the lower energy 
conformations of fold switchers with better accuracy and higher 
confidence than higher energy conformations 50% of the time, equal 
to random chance.  Blue dots represent correctly predicted ground 
state conformers with higher confidence; red dots represent correctly 
predicted excited state conformers with higher confidence than low 
energy, and gray dots have been observed to sample both folds at 
roughly equal proportions at equilibrium. Axes represent TM-scores 
of both conformation relative to experiment. 
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switching proteins 50% of the time (Figure 2B, Methods).  In other words, the selective power of 

AF2’s structure module was tantamount to random guessing for fold-switching proteins. It may 

seem reasonable to hypothesize that this selective failure arises in cases where the ground states 

of fold switchers are oligomeric and the excited states are monomeric.  This may not be the case, 

however, because AF2 predicts the folds of ground state oligomeric structures, such as KaiB, with 

the monomer model (17).  Furthermore, including oligomeric states and binding partners in the 

multimer model did not produce any new fold-switch predictions (Table S2); instead, all 

alternative conformations were predicted from monomeric sequences without the need for 

additional information about oligomeric state or binding partner.  Thus, AF2 can correctly predict 

the conformations of single chains of homo- or hetero-oligomers without additional information 

about oligomeric state or protein binding partner. 

AF2 rarely predicts newly identified fold switchers 

 AF2’s modest success in sampling the conformations of fold switchers likely within its 

training set raises the question of how well it can predict fold switching of sequences without.  

After all, AF2 is most valuable when used to infer structural properties of uncharacterized proteins, 

such as conditionally folding regions of IDPs (3) and novel folds (4).  Thus, we identified seven 

fold switchers with sequences outside of AF2’s training set and divided them into two categories: 

distant homologs of a known fold switcher and newly discovered fold switchers.  The alternative 

conformations of all seven fold switchers were either (1) determined after AF2.3.1’s last training 

or (2) inferred by other experimental methods without depositing the alternative structure in the 

PDB.   

First, we assessed AF2’s ability to predict fold switching of five distant homologs of the 

known fold-switching protein Escherichia coli RfaH (24), a bacterial transcription factor whose 

C-terminal domain reversibly switches from an all a-helical ground state to an all b-sheet excited 

state upon binding RNA polymerase and a specific DNA sequence called ops (25).  Both 

conformations of E. coli RfaH have been determined experimentally (26, 27).  Previous work 

provided circular dichroism (CD) and nuclear magnetic resonance (NMR) evidence for switching 

in all five of these sequence-diverse RfaH homologs (24), all <35% identical to one another and 

to E. coli RfaH.  As a control, AF2’s ability to predict single folding was assessed in five additional 
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experimentally characterized single folding RfaH homologs whose CTDs were found to assume 

the b-sheet fold only (Table S4).   

Although both AF2 and AF-cluster correctly predict that E. coli RfaH–likely in AF2’s 

training set–switches folds, neither reliably predicted fold switching in the experimentally 

confirmed variants not deposited in the PDB.  Specifically, AF2.3.1 predicted a helical CTD in 1/5 

cases with moderate confidence (Figure S8).  In the other four cases, it predicted the b-sheet 

conformation only, as it did correctly for all single-folding controls.  To extensively search for fold 

switching with AF-cluster, we generated 50 models per input MSA with 10 seeds for a total of 

140,050 predictions of 10 proteins (Table S5, Methods).  AF-cluster predicted both folds for 4/5 

conformations and only well-folded b-sheet conformers in the remaining case (Figure S9).  All 

helical conformations were predicted with low confidence (average pLDDT ≤ 50), indicating that 

AF2.3.1 can generate more trustworthy helical CTD predictions thant AF-cluster. This finding is 

consistent with the original AF2 paper’s observation that MSAs with ≥32 sequences are needed 

for reliable predictions (1); AF-cluster-generated MSAs often have ≤10 sequences.  Importantly, 

AF-cluster predicted low-confidence helical conformations in two RfaH homologs with CTDs 

experimentally confirmed to assume b-sheet folds rather than a-helical (Figure S9).  NMR 

evidence from a previous study strongly suggests that the Candidatus Kryptonium thompsoni 

variant assumes the b-sheet conformation only (24).  Furthermore, the CD spectrum of the T. 

diversioriginum variant also suggests that it assumes a ground state b-sheet structure consistent 

with previously characterized RfaH variants whose CTDs do not assume helical conformations 

(Figure S10).  Together, these results demonstrate that neither AF2 nor AF-cluster reliably predict 

fold switching of distant RfaH homologs. 

Structures of the two remaining prediction targets were deposited into the PDB in 2023, 

after AF2.3.1 was trained.  Fold switching of Sa1–a 95 amino acid protein that reversibly 

interconverts between a 3-a-helix bundle and an a/b plait fold in response to temperature–was 

demonstrated by NMR spectroscopy (28). We also included the structure of BCCIPa, a human 

protein whose sequence is 80% identical to its homolog BCCIPb.  Although BCCIPa has not been 

shown to switch folds, it assumes a completely different structure than BCCIPb and has a different 

binding partner (29).  Previous work has shown that when run with default parameters, AlphaFold2 

fails to predict the unique structure of BCCIPa, whose most similar PDB analog differs by 9.9Å 
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(29).  Thus, we included BCCIPa because (1) we wanted to see if AF-cluster could produce its 

unique structure and (2) although BCCIPa might not switch folds, it tests AF2’s limits in 

predicting novel protein folds. 
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Figure 3.  AF2 fails to predict fold switching 
in two newly discovered cases outside of its 
training set.  (A). Sa1 is a designed protein 
that switches reversibly between α/β-plait ( 
PDBID:8e6y, Fold1) and 3α helix (PDBID: 
2fs1, Fold2) folds triggered by temperature 
changes. Cartoon representations of Fold1 
are colored blue for N-terminal residues (1 to 
10), orange for the fold-switching residues 
(11 to 66 aligning with the amino acid 
sequence in Fold2, also in orange) and C-
terminal residues (67 to 95) are red. 
Heatmaps of 50 predictions (M0 to M49) for 
each of 51 sequence clusters showing the 
similarity (TM-scores) to Fold1(left panel) 
and Fold2 (right) are presented below the 
cartoon representations of the two states. AF-
cluster consistently predicts Fold1 but misses 
Fold2.  (B). BCCIPβ and BCCIPα are human 
protein isoforms with 80% sequence identity 
that adopt distinct folds. (13Å RMSD). AF-
cluster was run on BCCIPα’s sequence.  In 
the right panel, a cartoon representation of 
BCCIPα (colored blue to red from N-
terminus to C-terminus) is shown with the 
heatmap of TM-scores of 50 predictions (M0 
to M49) for each of 75 sequnce clusters 
compared to the fold adopted by the α 
isoform (PDBID:8exf, chain B). In the left 
panel, the BCCIPβ experimental structure 
(PDBID:7kys) is shown with the heatmap of 
TM-scores compared to the fold adopted by 
the β isoform. AF-cluster frequently predicts 
the structure of the β-isoform but misses the 
experimentally consistent α-isoform 
structure.   
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AF-cluster missed fold switching completely for both Sa1 and BCCIPa (Figure 3).  

Specifically, 98.8% (2520/2550) of the Sa1 predictions assumed the a/b plait fold, and 54% 

(2022/3750) of the BCCIPa predictions assumed the structure of its PDB homolog BCCIPb.  By 

contrast, AF-cluster failed to predict both the 3-a-helix bundle conformation of Sa1 and the 

experimentally determined conformation of BCCIPa.  BCCIPa’s structure was solved in complex 

with another protein (29).  Running the Multimer model with BCCIPa’s binding partner still 

yielded the BCCIPb structure (Figure S11).  Because its apo structure has not yet been determined, 

it is possible that apo BCCIPa assumes the same structure as BCCIPb, in which case AF2 and AF-

cluster fail to predict its alternative conformation.  It is also possible that apo BCCIPa assumes 

the same structure in its apo and bound forms, in which case AF2 and AF-cluster fail to predict its 

structure altogether.  These results cast doubt on the AF2’s reliability and consistency in predicting 

the alternative conformations of fold switchers outside of its training set.  

 

Discussion 
Although AF2 has revolutionized protein structure prediction and protein design, its 

current ability to predict alternative protein conformations is limited.  We tested multiple versions 

of AF2 and two published enhanced sampling methods on 93 fold-switching proteins, which 

assume two distinct biologically important conformations (10, 12).  Although both conformations 

of all 93 fold switchers were likely in the latest version of AF2’s training set, combining all models 

from all methods and sampling techniques–>280,000 predictions in all–captured fold switching 

with a modest success rate of 24% (23/93).  For context, a BLAST search of all 93 sequences 

would have yielded all alternative conformations.  Furthermore, AF2 showed less success 

predicting fold switchers outside of its training set: 13% (1/8).  This one success was a homolog 

of E. coli RfaH, a fold switcher with both conformations likely in AF2’s training set.  Notably, 

AF2 failed to predict correct conformations of both new targets.  It missed the 3-a-helical bundle 

conformation of an engineered protein that switches folds in response to temperature (28), and it 

predicted a conformation of the human protein isoform BCCIPa that differed completely from its 

experimentally determined structure (29).  Since this structure is in complex with another protein, 

it is possible that BCCIPa may assume the AF2-predicted conformation in its uncharacterized apo 

state or in complex with a different binding partner.  Nevertheless, neither AF2 nor AF-cluster 
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predicted its experimentally characterized structure.  These results suggest that current 

implementations of AF2 are unlikely to foster broad discovery of new fold switchers. 

This study involved extensive sampling of fold-switching proteins, generating >450,000 

structures for 100 fold switchers.  Nevertheless, more sampling with more sophisticated techniques 

may enable AF2 to predict more alternative conformations not identified here.  Though there is 

value in exploring and developing these techniques, our results indicate that AF2 is currently not 

sensitive enough to predict many new fold switchers from genomes.   

AF2’s inability to accurately predict and score the multiple experimentally determined 

conformations of fold switchers suggests that the model has more to learn about protein energy 

landscapes (23).  Complete understanding would enable AF2 to accurately predict both 

conformations of fold-switching proteins and their relative frequencies.  AF2’s lack of 

understanding is evidenced by (1) its inability to predict >75% of fold switchers likely in its 

training set, (2) its inability to predict >87% of fold switchers outside of its training set, (3) its 

failure to accurately score models of alternative conformations, and (4) the inability of its structure 

module to distinguish between low and high energy conformations of fold-switching proteins.  

These findings are consistent with recent reports of unphysical and imbalanced AF2 predictions 

of experimentally determined protein kinase conformations (21).  AF2 was trained mainly on 

single-fold proteins.  Thus, its tendencies to predict one fold from a fold-switching sequence and 

inaccurate scoring of fold switchers likely reflect the limitations of what it has learned from its 

training set (9). 

Some of AF2’s predictive unreliability appears to arise from faulty associations between 

sequence and structure.  For instance, both AF2 and AF-cluster completely miss the experimentally 

determined conformation of BCCIPa, instead associating its sequence with the structure of 

BCCIPb, a close homolog likely in AF2’s training set (29).  Further, both AF2 and AF-cluster 

incorrectly predict only b-roll folds for CTDs of three fold-switching NusG proteins with ground 

state a-helical conformations.  AF-cluster also incorrectly predicts that the b-roll CTDs of two 

single-folding NusG proteins can assume a-helical conformations indicative of fold switching.  

Thus, unlike its recently reported performance on some KaiB proteins (17), all of which were ≥ 

47% identical to sequences of their PDB homologs, AF-cluster does not reliably associate 

sequence-diverse NusG proteins with their experimentally observed conformations.   
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Our results suggest a way to potentially improve AF2-based predictions of fold-switching 

proteins.  Previous work from our lab shows that coevolutionary signals for both folds of fold-

switching proteins are often present in MSAs (11).  Deep MSAs show strong signal for a dominant 

conformation, while shallower subfamily-specific MSAs show increased signal for the alternative.  

AF2 misses this information in 44/56 cases.  Better results may be obtained by fine-tuning AF2 to 

associate MSAs of different depths with different folds.  AF-cluster’s success at predicting the 

structures of some KaiB homologs with shallow subfamily-specific MSAs indicates that such an 

approach has potential, and additional fine-tuning may strengthen the sequence-structure 

associations needed to predict alternative conformations of fold-switching proteins. 

Nevertheless, deep learning models are limited by both their underlying assumptions and 

their training datasets.  With very limited mechanistic understanding (23) and relatively few atomic 

resolution examples of fold switchers (10), it may not yet be possible to leverage deep learning to 

consistently predict this emerging phenomenon.  There may be much about the protein universe–

and particularly fold switching–that has not yet been observed.  This “dark matter” is a new frontier 

of protein science. 

Methods 

The dataset. 

The dataset of fold-switching proteins having identical to high sequence similarity but assuming 

two distinct secondary/tertiary structures (folds) with experimentally determined structures (13) 

was used for the analysis (Table S1). Sequences of experimentally characterized RfaH/NusG 

variants (24) and two examples of folds-switching proteins identified in 2023 (28, 29) were also 

analyzed.   

Defining Fold1 and Fold2 

Fold-switching proteins have two distinct conformations, A and B.  Proteins with higher TM-

scores in the fold-switching region for at least 3 out of 5 of their AlphaFold2.3.1 predictions were 

designated “Fold1” and the other conformation in the protein pair was denoted as “Fold2”, 

following the same ordering as in (13).   
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AlphaFold2 (AF2) predictions. 

AF2.3.1 and AlphaFold-Multimer 

The open-source version of AlphaFold2.2.0 and 2.3.1 (6) maintained on the NIH HPS Biowulf 

cluster (https://hpc.nih.gov/apps/alphafold2.html) was used to generate predictions. The template 

database contained PDB structures and sequences released till 2022-12-31. The pipeline was run 

both with and without templates, the predictions from the AlphaFold2-Multimer /AF2_multimer 

(7) pipeline were generated using both “monomer” and “multimer” option. Table S1B shows 

change in oligomeric state between the two folds/conformations. 

AlphaFold2 with single sequences 

Additional runs were performed using AF2.3.1 and AF2.2.0, with and without templates, simply 

putting in the target sequence in the prediction pipeline without generating MSA, to exclude any 

coevolutionary information that may be present in the MSA. 

Sampling prediction ensembles with AF2. 

Modified implementation of SPEACH_AF  

Alanine-masked multiple sequence alignments (MSAs) were generated by identifying all amino 

acids in contact with a region of interest and mutating all contacting amino acids to alanine those 

within 4 residues of primary sequence to the region of interest (16). The region of interest was 

defined as a sliding window of 11 residues that moved by increments of 1 from the beginning to 

the end of the fold-switching region of each of 93 proteins.  Positions in the MSA corresponding 

to residues within 4Å of any amino acid within a given region of interest–except those within 4 

residues of primary sequence of that region–were converted to alanine except for the target 

sequence. Runs using the modified MSAs were carried out with AF2, with three random seeds for 

each MSA for a total of 15 models for each 11-residue window. A total of 77,160 predictions were 

generated using this method.  
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AF_Cluster 

To perform more extensive sampling of conformations, AF-cluster was run with ColabFold (30) 

maintained on the NIH HPS Biowulf cluster (https://hpc.nih.gov/apps/colabfold.html).  This 

module was used to generate multiple sequence alignments (MMseqs2-based routine (31)) for the 

proteins in our dataset using the UniProt database (32). The AF_Cluster pipeline 

(https://github.com/HWaymentSteele/AF_Cluster) (17) was then implemented to cluster the 

MSAs and these shallower MSAs were then used to generate predictions using ColabFold1.5.2 

(which uses AF2.3.1) and ColabFold1.3 (utilizes AF2.2.0, to match the results presented in  

Wayment-Steele et. al, 11).  The ColabFold1.3 run reproduced Wayment-Steele et al.’s predictions 

of both conformations of KaiB, RfaH, and Mad2.  Both versions of ColabFold were run on all fold 

switchers, each generating 5 relaxed structures from two random seeds, 10 structures/shallow 

MSA, 3 recycles.  Additionally, we ran ColabFold1.5.2 generating 50 relaxed models from 10 

random seeds and 3 recycles on all NusG variants not in the PDB along with Sa1 and BCCIPa.  

Results for these variants outside of the PDB comprise all runs.  Further, we repeated the 50-

structure ColabFold1.5.2 runs with dropout and found no increase in alternative conformation 

sampling. 

A table of total number of predictions generated for each protocol is presented in Table S2. All 

predictions following the AF_Cluster pipeline, were generated without templates, as in the original 

manuscript (17).  

Assessment of prediction quality. 

The per-residue Local Distance Difference Test (pLDDT) scores (a per-residue estimate of the 

prediction confidence on a scale from 0 – 100), quantified by determining the fraction of predicted 

Cα distances that lie within their expected intervals were used to determine confident predictions 

(33).  The values correspond to the model's predicted scores based on the lDDT-Cα metric, a local 

superposition-free score to assess the atomic displacements of the residues in the model. Values  ≥ 

90 were denoted as high confidence, and values between 70 to 90 are deemed confident.  

Predictions were compared to the original experimentally determined structures using TM-align 

(18), (an algorithm for sequence-independent protein structure comparisons) and root mean square 
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deviations (RMSDs) involving backbone atoms (C,Cα,N and O) calculated using biopython’s 

PDB.Superimposer module (34). TM-align first generates an optimized residue-to-residue 

alignment based on connections among secondary structural elements using dynamic 

programming iterations and then builds an optimal superposition of the two structures. TM-score 

(ranging from 0 to 1) is reported as the measure of overall accuracy of prediction for the models 

after the alignment, 0.6 signifying roughly similar folds for protein regions of interest. RMSD 

values ≤ 5 Å were used to infer similar structures.  

Reranking predictions based on pLDDT scores for AF_Cluster predictions. 

For an agnostic view of the pool of predictions generated for each protein, we reranked the 

predictions according to the percentage of confident residues (residues having pLDDT scores ≥70)  

and then compared them to the experimental structures. The predictions were designated as 

Medium (≥70% residues with pLDDT scores ≥ 70), Good (≥80% residues with pLDDT scores 

≥70) and High (≥90% residues with pLDDT scores ≥70) confidence models. The predictions were 

rescored according to the percentage of confident residues in each pool of Medium, Good, High 

and All (includes all predictions for the protein) confidence models.  

To determine which conformations were present among models within each of the four categories 

(All, Medium, Good, and High), the total number, Nij, of models corresponding to each 

conformation (i) of each fold-switching protein (j) were tabulated.  A given conformation (ij) was 

considered to be predicted if Nij ≥1. 

Prediction success  

Success rate or prediction success is defined as the fraction of proteins for which at least one 

prediction corresponds well (TM-score of fold-switching region>0.6 (35)) to Fold1 or Fold2 

(Defining Fold1 and Fold2). If the TM-scores for both Fold1 and Fold2 (TM-score1 and TM-

score2, respectively) are greater than 0.6 the conformation is assigned to the conformation that 

produces the larger TM-score. The third label (other than Fold1 and Fold2) is “Other”, a.k.a. 

experimentally unobserved predictions, are designated to those predictions with TM-scores (TM-

score1 and TM-score2) less than 0.6. After reranking, we checked for prediction success in Top1 
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(most confident prediction overall), Top10 (10 most confident predictions overall) and All (all 

predictions regardless of confidence) in the pool of predictions.  

 

AF2Rank. 

Starting with our original dataset (13), any proteins where one structure included only a short 

fragment or that had long gaps in the fold-switching region were excluded from the AF2Rank 

protocol. The final dataset consisted of 76 proteins (PDB IDs highlighted in supporting data, Table 

S1A).  

Structures corresponding to each fold-switched conformation were passed to the AF2Rank 

protocol (7) as templates, and the candidate structure’s accuracy is assessed based on confidence 

scores of the AF2 output model. Before being passed to AlphaFold2, sidechain atoms were 

removed to prevent AF2 from using the underlying amino acid sequence to influence its prediction 

confidence. Beta carbons were added to glycine residues to mask their identity. AF2 was run 

without a MSA to remove coevolutionary influence from protein structure prediction. As in the 

original publication, a composite score of predicted local distance difference test (pLDDT), 

predicted template modeling score (pTM), and template modeling (TM) score was considered to 

be an energy function that evaluates model quality: the more confident and closer to the 

experimental structure, the higher the score (7). For each fold-switching protein, we passed 

AF2Rank each of the two folds as a template structure, using its amino acid sequence as the input 

sequence. pLDDT, pTM, and composite scores were compared between the two runs to determine 

which fold AF2 assigns higher confidence scores. TM-scores were also calculated between the 

output and template structures to assess prediction quality. 

To ensure that we passed the same sequence to AF2 for fold-switched conformations, we truncated 

extraneous N- and C-terminal residues used for purification but endogenous to their respective 

sequences. If one structure included a domain that was not present in the other structure, that 

protein was excluded from the dataset. Any short gaps in the structures were modeled with 

RosettaCM (36), and the top scoring Rosetta model (minimum 1000 models generated) with a 

TM-score greater than 0.9 compared to the native structure were then selected for use. Hetero-
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atoms from non-standard residues such as the selenium in seleno-methionine and seleno-cysteine 

were replaced with their standard analogs (e.g. methionine and cysteine) using RosettaCM. 

 

 

Scripts and figures 

The scripts used for all analyses were written in Python3; PyMOL (37) was used to visualize 

protein and plots were created using Matplotlib (38) and seaborn (39).  

 
Data sharing 
 
Data and code used to generate the results in this manuscript can be found at: 
https://github.com/porterll/AF2_benchmark 
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