
 

 

The complete diploid reference genome of RPE-1 identifies human phased 

epigenetic landscapes 
 

 

Emilia Volpe1, Luca Corda1, Elena Di Tommaso1, Franca Pelliccia1, Riccardo Ottalevi2, Danilo 

Licastro3, Andrea Guarracino4, Mattia Capulli5, Giulio Formenti6, Evelyne Tassone1, Simona 

Giunta*1,7 

 
1 Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University 

of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy 
2 Department of Bioinformatic, Dante Genomics Corp Inc., 667 Madison Avenue, New York, NY 10065 USA and 

S.s.17, 67100, L’Aquila, Italy 
3 Area Science Park, Padriciano 99, 34149 Trieste, Italy 
4 Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 

38163, USA 
5 Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy 
6 The Rockefeller University, 1230 York Avenue, 10065 New York, USA 

 
7 Lead Contact and Correspondence: Simona Giunta (simona.giunta@uniroma1.it) 

 

 
Highlights 

 

• We generated the complete phased genome assembly of one of the most widely used non-cancer 

cell lines (RPE-1) with a stable diploid karyotype 

 

• We used this genome as a matched reference to analyze sequencing data from RPE-1 

 

• Mapping to the RPE1v1.0 genome improves alignment quality, faithful assignment of reads to each 

haplotype, and epigenome peak calling accuracy uncovering inter-haplotype variation 

 

• Use of the matched reference genome enables epigenetic precision in identifying for the first time 

the kinetochore site at base pair resolution for each haplotype 

 

• The RPE-1 genome represents a new telomere-to-telomere (T2T) human diploid reference for the 

scientific community that will advance genetic and epigenetic research across fields using this cell 

line 

 

 

 

Running title 

 

Matching the reference genome to multi-omics sequencing data identifies phased epigenetic 

landscapes at base pairs resolution within human centromeres 
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SUMMARY 

 

Comparative analysis of recent human genome assemblies highlights profound sequence divergence 

that peaks within polymorphic loci such as centromeres. This raises the question about the adequacy 
of relying on human reference genomes to accurately analyze sequencing data derived from 

experimental cell lines. Here, we generated the complete diploid genome assembly for the human 

retinal epithelial cells (RPE-1), a widely used non-cancer laboratory cell line with a stable karyotype, 

to use as matched reference for multi-omics sequencing data analysis. Our RPE1v1.0 assembly 

presents completely phased haplotypes and chromosome-level scaffolds that span centromeres with 

ultra-high base accuracy (>QV60). We mapped the haplotype-specific genomic variation specific to 

this cell line including t(Xq;10q), a stable 73.18 Mb duplication of chromosome 10 translocated onto 

the microdeleted chromosome X telomere t(Xq;10q). Polymorphisms between haplotypes of the same 

genome reveals genetic and epigenetic variation for all chromosomes, especially at centromeres. The 

RPE-1 assembly as matched reference genome improves mapping quality of multi-omics reads 
originating from RPE-1 cells with drastic reduction in alignments mismatches compared to using the 

most complete human reference to date (CHM13). Leveraging the accuracy achieved using a matched 

reference, we were able to identify the kinetochore sites at base pair resolution and show unprecedented 

variation between haplotypes. This work showcases the use of matched reference genomes for multi-

omics analyses and serves as the foundation for a call to comprehensively assemble experimentally 

relevant cell lines for widespread application. 
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INTRODUCTION 

 

Recent advances in DNA sequencing and genome assembly have led to the achievement of complete 

human genomes. These include the near-homozygous CHM13 1 and genomes from individuals of 
diverse ancestry 2,3. These and others that have since been added 4–6 represent an important step toward 

a more equitable representation of human genomic diversity 3,7. Comparative analyses of the currently 

available assemblies have revealed an unexpected level of sequence variation 3,8, including inter-

individuals divergence 3 and population-level variants 9–11. Differences within an individual genome 

pertaining to the parental alleles are largely unexplored 2,12 due to lack of high-quality human diploid 

genomes with fully phased haplotypes. Early evidence of the maternal and paternal haplotypes in 

HG002 show remarkable sequence divergence was shown between, with non-synonymous amino acid 

changes in almost 48% protein-coding genes that peaks at polymorphic loci 2, in contrast with previous 

evidence pointing to low haplotype variation 13. This profound genomic diversity 3 underlies 

phenotypic traits 14–16 and significantly affects targeted gene editing and in turn, clinical outcomes 17. 
The extent of sequence variation highlights the need to reconsider our current approach based on 

reference genomes. In particular, the analysis of multi-omics sequencing data isolated from laboratory 

cell lines presents challenges when using a non-matched reference, the so-called ‘reference bias’ 18. 

These challenges are particularly important for faithful studies of our most polymorphic and divergent 

regions including centromeres 8. Human centromeres consist of repetitive monomers of alpha-satellite 

DNA hierarchically organized into near-identical reiterating higher order repeats (HORs) arrays 19–22. 

While centromere DNA varies between individuals, their essential function in chromosome 

segregation is epigenetically supported by the centromere-specific histone H3 variant CENP-A 23,24. 

Two features point to the kinetochore binding site within the active HORs: a sudden drop in DNA 
methylation named centromere dip region (CDR) 22, and increased density of CENP-A nucleosomes 

estimated to reach ~1 every 4 canonical nucleosomes compared to 1 every 20 canonical nucleosomes 

in the rest of the active region 25. In spite of advances in computational tools and long-reads sequencing 

technologies 1,22,26–29, reliable assembly of centromeres for all chromosomes remains a challenge 30. In 

fact, centromeres were largely omitted in the recent human pangenome draft 3, with no complete 

diploid human reference genome of experimentally amenable cell lines available to date. Recent 

genetic and epigenetic characterization of complete centromeres leveraged near-homozygous ad hoc 

cell lines derived from anucleate fertilized oocyte of non-viable molar pregnancy 1,22,31, that do not 

allow for the assessment of inter-haplotype polymorphism within the same diploid individual. While 

not experimentally amenable, these immortalized cell lines lack complications from allelic variation 
facilitating complete assembly 26,31–33 and centromere comparison 21,34. Here, we present the first to our 

knowledge high-quality human diploid reference genome from human cell line amenable to laboratory 

experimentation that can be used to interrogate genetic and epigenetic changes between genomes and 

haplotypes. The retinal pigment epithelial line (RPE-1) is one of the most commonly used non-cancer 

laboratory cell lines, counting thousands of scientific publications 35. Because of their stable diploid 

karyotype and extensive sequencing data publicly available, we chose this cell line to generate a new 

telomere-to-telomere (T2T) human diploid genome assembly with phased haplotypes and used it to 

baseline variation at centromeres. Using this assembly as diploid reference genome drastically 

improves alignments of RPE-1 reads from multi-omics experiments (Fig. 1a). We describe this novel 

approach to match reads with the assembly as ‘isogenomic’ reference genome. Our work represents a 
proof-of-concept that calls for a comprehensive catalog of complete genome assemblies for commonly 

used cells, including diploid embryonic and induced pluripotent stem cells (ESC and iPSC), primary 

and disease lines, for a widespread application of isogenomic reference genomes to enable faithful 

multi-omics analyses and high-precision epigenetics. 
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RESULTS 

 

A telomere-to-telomere human diploid reference genome for the RPE-1 cell line 

 
To improve the standard practice of aligning sequencing reads originated from laboratory cell lines 

against a human reference genome from a different individual, we present a new approach using the 

matched or ‘isogenomic’ reference genome (Fig. 1a). This approach enables (1) to assess differences 

between haplotypes, (2) optimal alignment and (3) for the first time, phased epigenetic mapping at 

base pair resolution. To achieve this, we generated the first complete de novo diploid assembly of one 

of the most commonly used non-cancer laboratory cell lines for multi-omics experiments, the human 

retinal pigment epithelial cells RPE-1 (Fig. 1a). We produced state-of-the-art sequencing data (Table 

1, Supplementary Fig. 1-2, Methods). After comparing two de novo whole-genome assemblers, Verkko 
12,36 (Supplementary Fig. 3a-b) and Hifiasm 37 (Supplementary Fig. 3c), we generated the final 

assembly using Verkko (Supplementary Note 1). To achieve complete phasing of the RPE-1 diploid 
genome in absence of parental information for trio-binning 2, we produced Hi-C data integrated onto 

the unphased Verkko’s output to obtain haplotype 1 (Hap 1) and haplotype 2 (Hap 2) and to guide 

resolution of possible missed joins by manual dual curation using the Hi-C contact map 2 

(Supplementary Fig. 4a-c, Supplementary Note 2, Methods). A variety of evaluation tools 38–40 

confirmed the high quality of the final RPE-1 assembly (i.e. HPRC, T2T, HGSVC), with estimated 

base accuracy over 99.9999%, specifically a QV of 64.1 on Hap 1 and 61.8 on Hap 2, (Table 1) and 

99.8% completeness without errors for both haplotypes 3,41 (Fig. 1b). Particularly, 6.01 Gb corresponds 

to the reliable genome flagged as haploid, 2.19 Mb were errors and 53 Mb collapsed regions (Fig. 1c). 

Each haplotype of RPE-1 human genome, as expected, was syntenic whole-genome compared to 
CHM13 (Fig. 1d), coherent with the absence of structural assembly errors. 

 

The RPE-1 total genomic content was 3.06 Gb and 2.99 Gb for Hap 1 and Hap 2, and chromosomes 

length was comparable to the previous genome assemblies CHM13, HG38 (GRCh38.p14) and HG002 

(HG002v0.7). The only exception is for a copy of RPE-1 chromosome X of Hap 1 with a total length 

of 227.21 Mb that deviates from the expected 155 Mb (Supplementary Fig. 5a-b). Notably, this is not 

a de novo somatic rearrangement but corresponds to a stable marker chromosome for the RPE-1 cell 

line that we 42,43 and others 35,44–46 had previously observed by cytological and sequencing analyses. 

The chromosome contacts between X and 10 were also flagged on the dual Hi-C contact map for both 

haplotypes (Supplementary Fig. 3a), leading an increase in gaps for chromosome 10 during assembly 
step, showing an increase in coverage in the string graph nodes confirmed a duplicated 10q 

(Supplementary Fig. 5c-d). Also, the interlinked triplex bandage of chromosome X q-arm fused to 

chromosome 10 q-arm is present on the DeBrujin graph of the unphased assembly, but not upon 

downsampling of Verkko with HiFi and ONT-UL over 100 kb alone (Supplementary Fig. 3b), striking 

evidence of a major long-range chromosomal translocation automatically detected by a genome 

assembler on a diploid human genome (Supplementary Fig. 5e). 

 

Ongoing chromosomal rearrangements in laboratory cell lines can represent a challenge in defining a 

consensus reference. To confirm that RPE-1 are a karyotypically stable diploid cell line, we 

cytogenetically analyzed variations across the cell population, in different batches and during passages 
in culture As expected, we did not observe overt karyotypic variations at the cytogenetic level, 

including stable presence of the t(Xq;10q) marker chromosome in all batches in this study 

(Supplementary Fig. 6a-d) and across our previous work using this cell line 42,43. RPE-1 showed a 

diploid karyotype (Supplementary Fig. 6c-d), with a subset of metaphases showing 42-45 

chromosomes likely due to sliding during metaphase preparation (Methods), and no evidence of 

polyploidy, tetraploid or pseudo-tetraploid clones in all samples analyzed (Supplementary Fig. 6a-d). 
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Furthermore, no gross chromosomal rearrangements (GCRs) or other cytologically visible 

chromosomal changes were observed through passages and comparing batches of RPE-1 acquired from 

different sources, implying that RPE-1 cells have a remarkably stable diploid asset maintained in 

culture (see “Discussion”). Altogether, the resulting final RPE-1 genome (RPE1v1.0) represents the 
first haplotype-resolved ultra-high quality complete reference of an experimentally-amenable diploid 

human cell line. 

 

Comparative characterization of RPE-1 inter-genomes and inter-haplotype variation 

 

Recent analyses of a completely phased diploid genome suggest that differences between the two 

haplotypes of the same individual carry variation within coding regions 2 that increase in polymorphic 

loci like centromeres which limit meiotic crossover 47,48. To establish RPE-1 specific variation, we 

characterized the specific genomic make-up of RPE-1 for each phased haplotype (Fig. 2a). First, we 

wanted to define the haplotype with the translocated X and map the precise breakpoint in the t(Xq;10q) 
at base pair resolution. A previous attempt determining chromosomal haplotypes inferred by bulk DNA 

sequencing reported high likelihood of the RPE-1 translocated segments belonging to the same 

haplotype 46. We instead developed a multi-step pipeline for the manual curation of the Structural 

Variant (SV) starting from the fully phased haplotypes (Fig. 2b, Supplementary Fig. 7). With this 

approach (Supplementary Note 3), we identified a 73.18 Mb segmental duplication of chromosome 10 

q-arm most likely to belong to Hap 2 (due to read alignment score) (Supplementary Fig. 7a), fused to 

the telomeric region of Hap 1’s chromosome X. Validation of the breakpoint also identified an ensuing 

deletion of 3603 bp mapping proximally to the X’s telomere and associated with the chromosomal 

fusion (Fig. 2b, Supplementary Fig. 7b-c). 
 

Next, we assessed genome variation between the two RPE-1 haplotypes and between each haplotype 

and the CHM13 using SyRI 49. As expected, we observed that RPE-1 and CHM13 are syntenic 

throughout most of the genome with 60% of whole-genome variants falling within highly diverged 

regions (HDRs), repetitive and polymorphic loci (Fig. 1c, Table 2). Similarly, RPE-1 haplotypes 

showed true-positive variation rates including a total of 62 inversions, 1646 translocations and 2565 

HDRs, with the greatest differences occurring in the centromeric and pericentromeric regions (~40%) 

(Fig. 2c). Notably, both RPE-1 haplotypes carried a similar number of SVs when compared against 

CHM13: 50 inversions, 876 translocations and 2589 HDRs for RPE-1 Hap 1, and 76 inversions 1602 

translocations and 2636 HDRs for Hap 2 (Table 2) associated with the Major Histocompatibility 
Complex (MHC), one of the most gene-dense and polymorphic stretches of human DNA 50 and 

centromeric and pericentromeric regions (Fig. 2c, Table 2). 

 

A resolved diploid genome gave us an opportunity to investigate intra-individual variation between the 

two haplotypes of RPE-1 for the first time (inter-haplotype differences, Fig. 2a). To do so, we focus 

on the most polymorphic regions and annotated centromeres with HumAS-HMMER_for_ANvil and 

RepeatMasker for all chromosomes 51 (Methods). We found that centromere alpha-satellite arrays in 

RPE-1 range from 0.4 (chromosome 21, Hap 2) to 7 Mb (chromosome 7, Hap 1) (Fig. 2d-e), a wider 

size range than previously found for other cell lines. Given previously reported recombination 

suppression in these regions 47, we anticipated observing substantial variation between centromeres of 
homologous chromosomes and likely, haplotypes. In line with this, RPE-1 centromeres of the same 

chromosome pairs show large differences not limited to their size (Fig. 2d-e) but also HOR structure 

inferred by pairwise sequence identity heatmaps (Fig. 2d) using StainedGlass (v6.7.0) 28 (Methods). 

Indeed, we found inter-haplotype differences in the centromeres of all chromosomes, with 49% of 

them showing variations in organization, number of monomers in the HOR, specific HORs SVs and 

length within the active centromere (Fig. 2d, Supplementary Fig. 8). For example, inter-haplotype 
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structural divergence was observed for chromosome 11, 22 and X, while chromosome 6 of Hap 1 also 

presented a unique Live Active HOR (LHOR) with two highly homozygous regions (Fig. 2d). 

Similarly, chromosome 4 of Hap 2 and chromosome 19 of Hap 1 showed several repetitions of the 

same monomer motif along the HOR region suggesting the insurgence of new active HORs (Fig. 2d, 
Supplementary Fig. 8, Table 3), likely through previously suggested layered expansion 22. These 

observations underscore that, structurally, centromere of one haplotype may be anchored within a 

specific type of single live HORs while the other relies on a different or expanded structure, reminiscent 

of metastable epialleles that had been cytologically shown for chromosome 17 52. 

 

Comparison with HG002v0.7 showed similar inter-haplotype variation for all chromosomes, 

indicating that our finding may be widely applicable to human centromere polymorphism in diploid 

genomes. Notably, previously reported centromeric inversion on chromosome 1 HORs of CHM13 1,22 

was not found in either RPE-1 or HG002 haplotypes 2, suggesting that it may represent a rare or specific 

polymorphism of that line 22. However, we found smaller haplotype-specific inversions 30 within the 
centromeres of RPE-1 and HG002, for chromosomes 5 and 6 for the maternal genome and for 

chromosome 3 of Hap 2. Next, we evaluated RPE-1 inter-haplotype variation by calculating the ratio 

of centromere sizes. We found a distribution between 0.5- and 1.5-fold differences, with chromosomes 

7, 11 and 21 having the greatest size divergence between haplotypes (Fig. 2e). Interestingly, the 

centromere of chromosomes 7 and 21 showed more than 1.5 increase in size when comparing the RPE-

1 haplotypes, suggesting that they may carry higher divergence or be more challenging to assemble 

and validate (Fig. 2e). This finding also raises the question of the biological impact of size divergence. 

For chromosome 21, this has been associated with ensuing chromosome missegregation during 

embryonic development that may underlie Down’s Syndrome 53; for chromosome 7, biological 
relevance remains to be established. Altogether, our data present evidence and quantify the extent of 

the polymorphism between haplotypes of the same genome. 

 

Alignment improves using RPE-1 genome compared to non-matched references 

 

The haplotype variation and divergence between genomes found using the RPE-1 reference is case-in-

point to support the need for matching the reads generated from multi-omics experiments with the 

reference genome used to align them. Non-aligned content to widely-used human reference HG38 has 

been shown in all human genomes analyzed 54. While for small genomes it has been possible to study 

genomic variation by whole-genomes comparison 55,56 for large human genomes, matched sequence-
reference has been previously considered but remained largely unexplored 57. Recent efforts addressed 

reference bias and its negative impact on read mapping by increasing representation of individuals’ 

genomes variation 3,18,58. We reasoned that alignment and analyses of multi-omics data may not always 

be successfully supported using a non-matched single reference, or a collection of them, particularly 

for regions that show considerable variation (Fig. 2c-d). To validate the improvement in read alignment 

when a matched reference genome is used, we aligned RPE-1 HiFi reads (~46x) against the RPE-1 

diploid genome using the complete CHM13 assembly as control (Fig. 3). Because CHM13 is a haploid 

genome, we chose a different approach to show not only the differences between completely matched 

and non-matched genomes, but also to highlight the different alignment between diploid and haploid 

genomes. (Fig. 3a). Long read alignment was performed using Minimap2 (Methods), without applying 
any quality or mapping filters, as the use of them led to the loss of the reads mapping in the homozygous 

regions of the diploid genome (~80%). We observed uniform coverage on both haplotypes compared 

to the expected 20x coverage, as opposed to CHM13 that showed relatively uniform alignment 

coverage but with higher mismatched bases. Diploid alignment of HiFi reads is equally distributed 

between each RPE-1 haplotype (20x) but secondary alignment and multimapping was much higher 

mapping to the CHM13 genome, further increasing within repetitive regions (Fig. 3b). We then tested 
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the improvements in quality and fidelity of alignment of isogenomic RPE-1 reference and CHM13 on 

centromeric regions for chromosome 1, 2, 4, 5, 6, 11, 16 which presented the highest diversity in read 

coverage between these two cell lines (Fig. 3b, Supplementary Fig. 9). We observed a lower coverage 

or absence of mapped reads for the CHM13 alignment, while a complete uniform coverage for the 
RPE-1 (Fig. 3b, Supplementary Fig. 9a). This result is explicable by the high divergence in sequence 

identity for centromeric regions comparing these two genomes (Fig. 3b, Supplementary Fig. 9b). These 

data point to an improvement in coverage, quality, fidelity and, consequently, a reduction in incorrectly 

aligned reads upon use of the isogenomic reference for sequencing alignment. 

 

To confirm and validate these improvements, we statistically evaluated the differences in read 

alignment using two main values: 1) mapping quality and 2) edit distance to the reference, defined as 

the number of changes necessary to make an aligned read equal to the reference, excluding clipping 

(NM value) (Supplementary Note 4). This analysis was performed using whole-genome sequencing 

(WGS) reads generated with a different batch of RPE-1 cells, sequenced with two different 
technologies: Illumina short reads and HiFi long reads. We mapped these reads using BWA and 

Minimap2 (Methods) against Hap 1, Hap 2 and CHM13, without using the final diploid genome and 

applying quality filters, excluding secondary, supplementary and multimapped reads during the 

alignment step. Mapping quality and NM value were evaluated for each read which belongs to the final 

alignment, comparing the distribution of both values for Hap 1, Hap 2 and CHM13 genomes. Whole 

genome alignment showed a decrease in NM value using RPE-1 haplotypes as a reference (Fig. 3c, 

Supplementary Fig. 10a-b) and an average distribution of mapping quality around score of 60 (which 

represents the highest value in mapping quality scores, highlighting the reliability of the mapped read) 

for all genomes (Supplementary Fig. 10c-d). Despite mapping quality of Hap 1 showed mostly a 
distribution around score of 60, we observed a statistically significant lower score compared to CHM13 

(p-value <0.0001 evaluated by student t-test) (Supplementary Fig. 10d). To explain this result, we then 

evaluated mapping quality and NM value for each chromosome separately (Fig. 3d, Supplementary 

Fig. 10e). In the marker chromosome (translocated chromosome X) of Hap 1 we observed a decrease 

in both the NM value (Fig. 3d) and the mapping quality score (Supplementary Fig. 10e), thus 

confirming that such lower values were determined by the presence of the duplicated long arm of 

chromosome 10, and not caused by the presence of misassembled regions for this chromosome. 

 

We then focused on syntenic HDRs, the most diverged between RPE-1 and CHM13. HDRs were 

extracted from the output of SyRI, obtaining a total of 37% and 57% (in bp) of HDRs belonging to 
LHOR when Hap 1 and Hap 2 were compared to CHM13 (Supplementary Fig. 11). Our de novo 

assembly did not show any regional or structural errors at these regions, ensuing the possibility to 

completely compare RPE-1 to CHM13 (Supplementary Fig. 11, Table 2). Within the HDRs, both 

mapping quality score and NM value significantly changed when RPE-1 was used instead of CHM13, 

with a ratio of 3.5 for mapping quality score (comparing Hap 1/Hap 2 on CHM13) (Fig. 3e-f) and a 

2.1 for the NM value (comparing CHM13 on Hap 1/Hap 2) (Fig. 3g-h). In particular, the HDR regions 

identified between Hap 2 and CHM13 showed a lower mean distribution of mapping quality score 

(Fig. 3e-f) and higher NM value (Fig. 3g-h) for CHM13 compared to Hap 2. Indeed, Hap 2 showed 

the lowest NM value, confirming the presence of peculiar sequences in its polymorphic loci, as 

highlighted by the higher number of SVs found using the syntenic region founder tool (Methods). The 
same level of accuracy is not supported by the latest complete human reference genome CHM13, in 

spite of being the most complete and validated genome available to date. Altogether, our results showed 

that the reference bias decreases while uniquely mapped reads increase when using a matched 

reference, carrying out an innovative resource in SVs analysis phasing evaluation in protein DNA 

interaction experiments 59. 
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Isogenomic reference enables correct epigenetic characterization of human centromeres 

 

To verify whether the isogenomic reference genome can improve the analysis of epigenetic data in 

highly polymorphic regions, we used a publicly available CUT&RUN dataset from RPE-1 cells and 
we compared the results by using different reference genomes: RPE-1 haplotypes (RPE1v1.0 Hap 1 

and Hap 2), CHM13, HG38 (GRCh38.p14) and the HG002 haplotypes (HG002v1.0 paternal and 

maternal). We focused on the analysis of centromeric chromatin enrichment and spread of the 

centromere-specific H3 histone variant, CENP-A. Recent studies have shown differential enrichment 

loci during the cell cycle 60, changes under different treatment conditions 61 and, more recently, shifts 

in the region of CENP-A enrichment called through non-isogenomic alignment 62. We used the RPE-

1 reference to re-assess and improve multi-omics analyses of human centromeres by aligning a 

CUT&RUN a publicly available dataset (GSE132193) 63 (Methods) performed on RPE-1 cells (Fig. 

4a). Since the epigenetic centromere identity is defined and maintained by the presence of the histone 

variant CENP-A, we used experiments conducted on RPE-1 to explore the power of isogenomic 
reference genome for the investigation of the structure and organization of the centromeres at higher 

level of epigenetic precision due to improved reads mapping (Fig. 3). Mapping of CENP-A-bound 

reads show dramatic differences in occupancy and spread at nearly all centromeres between the RPE-

1 haplotypes and HG38 (Fig. 4a-d, Supplementary Fig. 14). This is in line with lack of complete 

annotation, HG38 shows incomplete peak calling on chromosomes 1, 9 and 16 which all have a large 

array of HSat2 and HSat3 1, likely due to incomplete centromeres’ organization and annotation in the 

HG38 genome which impacts the ability to distinguish between centromeric and pericentromeric 

regions. However, even using CHM13, which has been used to study the epigenetic landscape of these 

loci 62 and contains complete linear sequence for all centromeres 1, CENP-A enrichment is not assigned 
correctly compared to peaks calling alignment on RPE1v1.0 (Fig. 4a-d). The variation in the position, 

size and shape of peaks of the centromere marker proteins between CHM13 and RPE-1 is likely due 

to the ability to allow reads originated from a diploid cell line to map on the phased haplotypes to better 

determine a bona fide primary alignment. This is especially significant for polymorphic and repetitive 

regions of the human genome where multimappers can present more than one possible alignment site, 

indicating that having the matched reference unlocks increased accuracy in the discernment of the most 

likely alignment site. To address whether the increased accuracy was truly dictated by the isogenomic 

references instead of the mapping on a diploid genome, we extended our comparison to the only other 

currently available complete diploid assembly of HG002 1,2,64. As we found for CHM13, the 

enrichment of CENP-A changed based on the haplotype used but was never comparable to using RPE-
1 genome as its own reference (Fig. 4d). Next, we wanted to determine if the epigenetic data mapping 

RPE1 reads isogenomically were indeed "the correct alignments". To do so, we investigated the 

structure of the active centromere by monitoring the presence and the spread of CENP-A enrichment 

via high confidence CENP-A peaks with a ueue ≤0.00001 (Fig. 4b, Methods). We found that the use 

of matched reads-reference was the only condition that enabled the detection of a single cluster of 

CENP-A peaks, while the high confidence peaks called on all other genomes analyzed were scattered 

along the active centromere array (Fig. 4a-b). We reasoned that this precise mapping of CENP-A 

enrichment may represent the exact positioning of the kinetochore (Fig. 4b). To validate if we were 

able to harness the isogenomic reference genome to determine the exact kinetochore site at an 

unprecedented precision, we confirmed the co-localization of the high-confidence CENP-A peaks 
(MAPQ >20, q-value ≤0.00001) with the cytosine methylation (5mC) positioning that identifies the 

hypomethylated CDR (Methods). The CDR has been recently highlighted as the site predictive of the 

functional region within the active centromere for the binding of the kinetochore 22. We found 

colocalization between high confidence peaks and the CDR (Fig. 4b-c). Notably, we were able to map 

the precise site within the region marked by the drop in methylation at base pair resolution, unveiling 

the sequence and structure of the centromere HOR underlying the kinetochore which differs within 
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haplotypes (Fig. 4b), further underscoring the need to use phased genomes for epigenetic precision at 

divergent loci. The centromere of chromosome 2 shows the lowest variation in kinetochore position 

between the two RPE-1 haplotypes and, interestingly, exhibits the lowest variation in size for the CDR 

(Fig. 4b). Moreover, chromosome 2 displayed the highest conservation of CENP-A mapping among 
the reference genomes, and this is further reflected by the high conservation in size of the active 

centromere (Fig. 4b). On the contrary, chromosome 7 presented the highest, near-2-fold expansion, in 

CENP-A occupancy both regarding RPE-1 haplotypes and to HG002 haplotypes, highlighting an 

underlying variation at the sequence level that, in turn, changes the epigenetic landscape of the 

centromere (Fig. 4a, Supplementary Fig. 14). Surprisingly, when assessing the CDRs, we noticed that 

these differences in chromosome 7 are not reflected in the kinetochore’s size of the RPE-1 haplotypes 

(Fig. 4a). The centromeres of chromosome X and 7 both exhibited an interesting 440-500 kb respective 

range of distance between the CDRs of the two haplotypes (Supplementary Fig. 14). One can 

appreciate the power of the isogenomic referencing especially when focusing on the reliable detection 

and calling of the CDRs which would have been missed otherwise because it falls within a region 
which would have been hidden when mapping against the other assemblies. Also, the absence of the 

underlying sequence and structural expansion in other haplotypes would have made it impossible to 

identify this enrichment without matched-reference. Importantly, the alignment between the high-

confidence CENP-A peak and the CDR would be shifted using a reference genome in all cases 

observed (Fig. 4a-c). The precision of mapping also enabled us to call enrichment spot for CENP-A 

identifying the site of the kinetochore to be occasionally localized toward the left or right boundary of 

the CDR (Fig. 4c), implying a structural organization that may favor chromosome segregation (see 

“Discussion”). Interestingly, our reference showed that location of the CENP-A high-confidence peaks 

did not have a preferred positioning within the CDR – i.e. either toward the left or right side of the dip 
(Fig. 4b-c, Supplementary Fig. 14), suggesting a minimal requirement of CENP-A nucleosomes to be 

productive for kinetochore assembly and chromosome segregation. Altogether, we have highlighted a 

significant variation between cell lines that affects downstream analysis and interpretation, showing 

the power and need of matched reference genome for multi-omics analyses. 
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DISCUSSION 

 

Here we present the first, to our knowledge, human reference genome of a diploid experimentally-

relevant laboratory cell line, including fully-phased haplotypes spanning the centromeres, RPE-1v1.0. 
We found four differences at human centromeres: (1) in sequence, (2) in size, (3) in structure, and (4) 

in position. In line with rapid emergence of new alpha-satellite HOR structure that underlies divergence 

in centromeres between genomes 31, we found differences in one or more of these 4 parameters between 

haplotypes for all chromosomes. With this extent of divergence in mind, we demonstrate how the use 

of this isogenomic reference genome better supports accurate multi-omics analyses of reads derived 

from RPE-1 cell line, especially for regions with the highest diversity, compared to the common 

practice of using the available human reference genomes. We show that RPE-1 reads from centromeric 

chromatin map differently depending on the reference genome used without necessarily reflecting a 

bona fide biological change. This is noteworthy considering the abundant literature showing epigenetic 

datasets calling CENP-A localization 42,60–62,65–67, and other centromeric proteins 43,68,69, previously 
mapped on reference genomes. Isogenomic mapping using RPE-1 improves all alignments parameters 

tested, using whole-genome or HDR and either long or short reads compared to the latest references, 

CHM13 and HG002 maternal and paternal haplotypes 1,2,37 and HG38. Not only isogenomic mapping 

substantially improves peaks positioning, size and enrichment confidence compared to all other 

genomes but also enables to identify high-precision phased epigenomic landscape that adds valuable 

information to interpret the findings in a diploid state. Thus, our work addresses the reference bias 18 

empirically demonstrating how sequence changes negatively impact the ability to define, size and 

position of the active centromeric chromatin. To this end, we show for the first time the precise 

kinetochore site within the CDR only using the isogenomic reference RPE-1v1.0 to align RPE-1 reads 
from CENP-A chromatin immunoprecipitation experiments but not using any other reference genome 

– however complete. Reanalyzing isogenomically previously published datasets 62, we found variation 

in kinetochore position between haplotypes in all chromosomes. These remarkable inter-haplotype 

differences are in line with recent observations of high kinetochore plasticity between genomes 31. We 

determined the enrichment ratio for chromosomes 2, 7 and X which shows higher, equal or lower 

CENP-A levels between haplotypes, underscoring this heterogeneity. Interestingly, the CDR ratio 

showed lower levels of variation between haplotypes, suggesting that isogenomic mapping identifies 

the minimal functional size required, often positioned proximal to the beginning or end of the CDR. 

CENP-A has been previously shown to be peppered along the active HORs, and its density increases 

from an estimate of 1 every 20 to every 4 canonical nucleosomes. Our data imply that the such CENP-
A enrichment positioned at the CDR boundary – left or right, marks the exact sites of kinetochore 

attachment for that haplotype of each specific chromosome. Having this level of haplotypes-resolved 

sequence-specific precision will transform technologies like genome editing and chromosome-specific 

aneuploidy 70. 

 

Only recently, the enduring quality of HG38 assembly patchwork was celebrated as a valuable 

reference 71; today, we demonstrate a conceptual shift to address the reference biases and sequence 

variation 72 using matched reads-reference. Thus, while the human Pangenome draft 3 represents an 

important step toward a more equitable and fair representation of human genomic diversity 3, our work 

expands from the idea of representing as many human variants as possible toward the concept of 
aligning to a “personalized” reference sequence that already incorporates the relevant individual’s 

variants 57. We selected RPE-1, because, besides being widely used across fields with over 2000 

publications 35, their stable karyotype offers a reference genome that can in principle support 

experimental data generated in any laboratory. 

Altogether, our study opens important opportunities pertaining to advancing our understanding of the 

extent of the reference bias, its influence on downstream analysis and the biological relevance of 
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improved alignment for genomic and epigenomic studies of genomes, especially at HDR such as 

centromeres. Our proof-of-concept calls for a comprehensive catalog of complete genome assemblies 

for commonly used cell lines for a widespread application of isogenomic reference genomes for faithful 

multi-omics analysis changing downstream analyses, interpretations and discoveries. Our aim is to 
build a comprehensive catalog of complete genome assemblies for commonly used cell lines, including 

diploid embryonic and induced pluripotent stem cells (ESC and iPSC), primary and cancer cell lines. 

Finally, integrating the human pangenome graph that represents human diversity with genome 

assemblies derived from historic experimentally-amenable cell will provide important information 

about the differences between reference genomes freshly derived from individuals and those generated 

from experimentally-amenable laboratory cell lines. The RPE-1 genome represents a new telomere-to-

telomere human diploid reference for the scientific community that will advance genetic and epigenetic 

research across fields using this cell line and a first step toward “personalized” genomes – for the 

benefit of individuals and multi-omics studies alike. 
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METHODS 

 

Cell lines 

The hTERT-immortalized retinal pigment epithelial (hTERT RPE-1) cells used to generate the RPE-
1v1.0 assembly were validated by MSKCC; a second batch of cells was purchased from ATCC (CRL-

4000); a third batch of cells was obtained from a laboratory in a different continent 70. RPE-1 cells are 

near-diploid human cells of female origin with 46 chromosomes. Cells were cultured in DMEM/F12 

medium supplemented with 10% fetal bovine serum (Gibco 10270-106), 100 µg/ml streptomycin, 100 

U/ml penicillin (Euroclone ECB3001D) and 2 mM glutamine (Euroclone ECB3000D). Cells were 

grown at 37°C in a humidified atmosphere of 5% CO2, and tested negative for mycoplasma 

contamination. 

 

Metaphase spread preparation 

hTERT RPE-1 cells at 70% confluence were harvested by trypsinization after 2-hour treatment with 
colcemid (100 ng/ml, Roche 10295892001) to arrest cells in mitosis, washed with PBS and incubated 

with a pre-warmed hypotonic solution (0.07 M KCl) for 30 minutes at 37°C. After centrifugation, 

swollen cells were fixed with a solution of methanol-acetic acid (3:1) and washed twice with the same 

fixative solution. Fixed cells were dropped onto clean, wet slides and air dried overnight. All 

centrifugation steps were performed at 1,200 rpm for 5 minutes at room temperature (RT). 

 

Karyotype analysis by R-banding with Chromomycin A3 

To confirm the chromosomal structure of the assembly, a karyotype for hTERT RPE-1 cells was 

generated. Metaphase spreads from hTERT RPE-1 cells were washed with a phosphate buffer (0.07 M 
NaH2PO4, 0.07 M Na2HPO4, 1 mM NaCl, pH 6.8) followed by 2-hour incubation with Chromomycin 

A3 (0.6 mg/ml, Sigma-Aldrich C2659) at RT in a dark, moist chamber. Slides were then washed with 

NaCl-HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (0.15 M NaCl, 5 mM HEPES), 

stained for 15 minutes in a methyl green solution (0.1 mM, Sigma-Aldrich) and washed twice with 

NaCl-HEPES. The antifading (Vectashield H-1000; Vector Laboratories) isopropilgallate 1:300 was 

added to the slides before storing them at 4°C for 3 days in a dark, moist chamber. Images were 

acquired using a Thunder fluorescent widefield microscope (Leica) at a 100X magnification. 

 

DNA extraction 

hTERT RPE-1 cells at 70-80% confluence were harvested by trypsinization, washed with PBS and 
centrifuged at 1,000 rpm for 5 minutes at RT. Cell pellets were prepared in individual aliquots of 1.5 

x 106 cells, frozen in dry ice and stored at -80°C until further use. High Molecular Weight (HMW) 

DNA and ultra-high molecular weight DNA (UHMW) was extracted from hTERT RPE-1 dry cell 

pellets using the Monarch HMW DNA extraction kit for cells & blood (New England Biolabs, NEB 

T3050L) and for tissue (NEB T3060L), following manufacturer’s instructions and introducing few 

technical improvements. HMW DNA was quantified by Nanodrop and Qubit with a broad range kit 

(Thermo Scientific Q32850). Native DNA size distribution assessed using Femto Pulse with Genomic 

DNA 165 kb kit (Agilent FP-1002-0275). 

 

Library preparation and sequencing 

Sequencing data were obtained using two complementary long-read sequencing technologies for the 

assembly of hTERT RPE-1 cells: Pacific Biosciences (PacBio) High-Fidelity (HiFi) long reads and 

Oxford Nanopore Technologies (ONT) long (>70 kb) and Ultra-Long (UL; >100 kb) reads. 

Additionally, Illumina and Hi-C (Arima Genomics) sequencing technologies were used. 

HMW DNA from 1.5 x 106 cells was used to generate PacBio HiFi libraries with the SMRTbell express 

template prep kit 2.0 (PacBio 100-938-900). Size selection was performed with Megaruptor 2 
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(Diagenode) with default settings, and fraction sized 15-20 kb as determined by Femto Pulse were 

sequenced on the Sequel IIe platform with SMRT Cells 8M (PacBio 101-389-001) using the chemistry 

2.0 with 2-hour pre-extension, 2-hour adaptive loading and 30-hour movie collection time, to reach a 

coverage of 46x in PacBio HiFi reads. Circular Consensus Sequencing (CCS) reads were obtained 
using SMRT-Link (https://github.com/WenchaoLin/SMRT-Link) with default parameters. 

UHMW DNA from 6 x 106 cells was used to generate UL-ONT libraries with the UL DNA sequencing 

kit (ONT SQK-ULK114) following manufacturer’s instructions. Ninety µl of library was loaded in a 

R10.4.1 (FLO-PRO114M) flow cell and sequenced on the PromethION 24, with two nucleases washes 

and reloads after 24 and 48 hours of sequencing to reach a total coverage of 80x in ONT reads (average 

70 kb) and of ~30x in 100 kb + ONT reads with a Q score >20. These ONT data were base-called with 

Guppy (v5.0.11). In parallel, HMW DNA from 6 x 106 cells was used to generate additional UL-ONT 

libraries with the same UL DNA sequencing kit and protocol. Ninety µl of library was loaded in a 

R10.4.1 (FLO-PRO114M) flow cell and sequenced on the PromethION 2 Solo, with two nucleases 

washes and reloads after 24 and 48 hours of sequencing to reach a total coverage of 10x in ONT reads 
(average 19 kb) with a Q score >35. These ONT data were base called with Guppy (v6.5.7). 

HMW DNA from 1.5 x 106 cells was used to generate Illumina libraries with the Nextera XT DNA 

Library Preparation kit (Illumina FC-131-1024) and Illumina DNA PCR-Free Library Prep, 

Tagmentation Library Preparation kit (Illumina 20041795) following manufacturer’s instructions. 

These libraries were sequenced on the Illumina Nova-seq 6000 to reach a coverage of 120x and 60x in 

Illumina reads. Raw data were processed with Fastp (https://github.com/OpenGene/fastp) 73 to trim the 

adapters and FastQC (https://github.com/s-andrews/FastQC) 74 to evaluate the quality of the reads. 

HMW DNA from 2 x 106 cells was used to generate Hi-C libraries with the Arima High Coverage 

HiC+ kit (Arima Genomics A101030), and the Arima Library Prep Module kit v2 (Arima Genomics 
A303011) according to the manufacturer’s protocols. Hi-C libraries were sequenced on the Illumina 

Nova-Seq 6000 to reach a coverage of ~30x in Hi-C reads. Raw data were processed with Cutadapt 

(https://github.com/marcelm/cutadapt) 75 to trim the adapters. 

 

Whole genome assembly, manual curation and phasing pipelines 

Before assembling the genome of hTERT RPE-1 cells, global genomic features such as heterozygosity, 

repeat content and size were evaluated with GenomeScope 2.0 

(https://github.com/tbenavi1/genomescope2.0) 76 from unassembled HiFi raw sequencing reads. 

Two different assembly algorithms were then employed, Hifiasm 

(https://github.com/chhylp123/hifiasm) 12,36 and Verkko (https://github.com/marbl/verkko) 37. The 
assembly was first generated with Hifiasm using HiFi data with base-calling accuracy of 99.99%. This 

first assembly was compared to the assembly generated with Verkko both using HiFi together with 

ONT UL reads only, and using HiFi and all ONT reads regardless of size, with integration of Hi-C 

linkage data for manual curation and complete haplotypes phasing of the human diploid genome. The 

VGP mapping pipeline 77 was run to map the Hi-C reads against Hap 1 and 2 independently and against 

the diploid assembly. The final diploid assembly.fasta was merged with the unassigned.reads.fasta 

generated by Verkko. On PretextView (https://github.com/wtsi-hpag/PretextView), the contact map 

derived from the conversion of the last alignment file using PretextMap (https://github.com/wtsi-

hpag/PretextMap) was used, and the correct position was assigned for each contig. The subsequently 

dual manual curation was done as described in Rapid-curation-2.0 
(https://github.com/Nadolina/Rapid-curation-2.0) achieving 23 chromosome-level scaffolds for each 

haplotype. The algorithm MashMap (https://github.com/marbl/MashMap) 78 was then used to perform 

a genome-to-genome alignment, with the CHM13 assembly as a reference, in order to identify each 

chromosome. MUMmer (v4.x) (https://github.com/mummer4/mummer) 79 and GSAlign 

(https://github.com/hsinnan75/GSAlign) 80 were used to make dot plots of each chromosome and 

determine whether the orientation of the chromosomes in the assembly was correct. 
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Evaluation of de novo genome assembly 

To assess the quality of the final RPE-1v1.0 assembly, reference-based assemblers such as Cross-stitch 

and MaSuRCA were purposely avoided, to obtain an unbiased genome evaluation completeness and 
quality without using a genome comparison. The quality and gene completeness were evaluated using 

the reference-free Merqury k-mer analysis tool (https://github.com/marbl/merqury) 38, BUSCO 

(https://github.com/WenchaoLin/BUSCO-Mod) 39 and Asmgene 40 with default parameters. The 

Bandage (https://github.com/rrwick/Bandage) 81 visualization on the string graph 82 is used to represent 

continuous whole-chromosome contigs and unassigned reads. The quality of the assembled genome 

was evaluated with Gfastats (https://github.com/vgl-hub/gfastats) 83 and QUAST 

(https://github.com/ablab/quast) 84. We assessed the assemblies for uniform read depth across 

chromosomes via IGV 85 and NucFreq (https://github.com/mrvollger/NucFreq) as well as read 

mapping bias. Assembly errors were evaluated using Craq algorithm, which uses clipping information 

mapping the original sequencing reads back to the de novo genome assembly, and defining a reference 
level Assembly Quality Indicators (AQI over 99%) 41 (Fig. 1b, Table 2). 

The read-based pipeline Flagger 3 was used to detect different types of misassemblies within a phased 

diploid assembly. 

 

Identification of Structural Variants 

Minimap2 (https://github.com/lh3/minimap2) 40,86 performed a genome-to-genome alignment 

choosing the parameter -x asm5 for genomes with low sequence divergence. SyRI 

(https://github.com/schneebergerlab/SyRI) 49 was used to search variants between: Hap 1 vs. Hap 2 of 

the RPE1v.1.0 assembly; CHM13 vs. Hap 1; and CHM13 vs. Hap 2 with default parameters. SyRI 
outputs the complete information about Structural Variants and genomic rearrangements, such as 

syntenic regions, copy number variation and highly diverged regions between two or more genomes. 

Final visualization was obtained with Plotsr (https://github.com/schneebergerlab/plotsr) 87. 

 

Multi-step identification and curation of breakpoint in phased haplotypes 

To map the precise t(Xq;10q) breaking point characteristic of hTERT RPE-1 cells 35, we performed a 

stepwise process (1) detecting changes in read coverage for both haplotypes; (2) read alignment on the 

diploid genome to identify haplotypes with translocated X; (3) isolation of reads spanning the 

breakpoint on chromosome X, (4) manual curation of breakpoint at base pair resolution, and (5) 

validation of the new fasta file through reads re-alignment. HiFi and ONT read alignments were first 
evaluated against Hap 1 and 2 of our de novo RPE-1 genome (RPE-1v1.0) using Minimap2. The reads 

were then aligned against the diploid genome to understand the haplotype with the translocated 

chromosome X. After isolation of the reads to confirm the breakpoint sequence, the final marker 

chromosome X with the t(Xq;10q) was manually curated. The resulting fasta file was then validated 

by re-alignment of the reads that span the breakpoint for >99% identity (Supplementary Note 4). 

 

Annotation and analysis of centromere repetitive regions 

Centromere estimation was done intersecting the outputs derived from RepeatMasker 

(https://github.com/rmhubley/RepeatMasker) 51 and HumAS-HMMER For AnVIL 

(https://github.com/fedorrik/HumAS-HMMER_for_AnVIL) to identify the position of the 
centromeres in the de novo RPE-1v1.0 assembly, and the HOR-monomer annotation was used to 

predict HOR Structural Variants (SVs) using StV script (https://github.com/fedorrik/stv). 

RepeatMasker was used with default parameters, and HumAS-HMMER as For AnVIL described in 22. 

To generate heatmaps showing the variation between centromeres, StainedGlass (v6.7.0) 

(https://github.com/mrvollger/StainedGlass) 88 was run with the following parameters: window=1000 
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and mm_f=10000. StVs specific for each haplotype were obtained using bedtools. HORs and StVs 

were visualized on IGV. 

 

OMICS data analysis 

CUT&RUN reads from the publicly available dataset of hTERT RPE-1 cells (GSE132193) 63 were 

assessed for quality using FastQC (v0.11.9) (https://github.com/s-andrews/FastQC). CENP-A (SRA: 

SRR9201843) CUT&RUN reads and WGS Input (SRA: SRR9201844) of RPE-1 cells were aligned 

against multiple genomes: our de novo RPE-1 phased haplotypes (diploid mapping), the T2T-CHM13 

whole-genome assembly v2.0 (haploid mapping), the HG38 (GRCh38.p14, haploid mapping) and the 

HG002v1.0 paternal and maternal haplotypes (diploid mapping). Bowtie2 (v2.4.4) 

(https://github.com/BenLangmead/bowtie2) 89 was used with the following parameters: bowtie2 --end-

to-end -x [index_reference] [read1.fastq] [read2.fastq] for paired-end data. The parameter end-to-end 

allows to search for alignments involving all the read characters instead of performing a local 

alignment. The resulting alignment files were filtered using SAMtools (v1.12) 
(https://github.com/samtools/samtools) 90 with FLAG score 2308 to avoid secondary and 

supplementary mapping of the reads, hence, preventing mapping biases in highly identical regions. 

Significantly enriched (removing FLAG 2308 and retaining peaks with q-value ≤0.00001) and high-

confidence (removing FLAG 2308, considering MAPQ >20 and retaining peaks with q-value 

≤0.00001) CENP-A peaks were determined using MACS3 (v3.0.0b1) (https://github.com/macs3-

project/MACS), calculating the ratio between immunoprecipitated samples and background (WGS 

Input) with these parameters: -f BAMPE -B -g 3.03e9 -q 0.00001. High-confidence CENP-A positions 

were also identified using the mapping scores (MAPQ: 20, corresponding to the probability that the 

correct mapping to another location is 0.01) to identify reads that aligned uniquely to low-frequency 
repeat variants. The package karyoploteR (https://github.com/bernatgel/karyoploteR) 91 was used to 

generate the CENP-A density visualization across all chromosomes. Highly significant CENP-A peaks 

were computed using the internal function kpPlotDensity using a 500 bp window size and peaks called 

with a q-value ≤0.00001. For CENP-A high-confidence peaks, the window size was 50 bp and the q-

value ≤0.00001. 

 

Methylation processing with Dorado 

Using Dorado (v0.3.0) (https://github.com/nanoporetech/dorado), we downloaded the simplex 

basecalling model (dna_r10.4.1_e8.2_400bps_sup@v4.2.0) and we called the methylation profile with 

the default parameter --modified-bases 5mC and with --modified-bases-threshold 0.08. Dorado outputs 
directly the modified 5mC in the SAM/BAM files produced with mapping in parallel all the ONT reads 

against the diploid RPE-1v1.0 reference genome. It adds the MM (base modification methylation) and 

ML (base modification probability) tags that represent the relative position and probability that 

particular canonical bases have the requested modified bases. The output obtained with Dorado was 

then processed using Modkit (v0.2.0) (https://github.com/nanoporetech/modkit) with --filter-threshold 

0.80 parameters to get a bedMethyl file with the annotation and the position of each single modification 

and its relative coverage. The DNA methylation profile was plotted using the internal function 

kpPlotDensity with a 5000 kb window size. 
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DATA AVAILABILITY 

 

Release of the RPE-1v1.0 reference genome has been approved for public access by Geron Corp. All 

scripts and resources generated and/or used in this project are publicly available at 
(https://github.com/GiuntaLab/RPE1). 
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Figure Legends 

 

Figure 1. The diploid reference genome of RPE-1 enables faithful multi-omics data analysis. (a) 

Schematic of the workflow from in vitro experiments to multi-omics data analyzed using the 
isogenomic reference genome (top). The advantages of this model are 1) the ability to assess the 

variation between haplotypes, 2) improved whole-genome alignment, and 3) faithful phased 

epigenomic peaks calling (bottom). (b) Regional and structural assembly errors identification using 

alignment Clipping information. Circos plot shows Assembly Quality Indicators (AQI), Clip-based 

Regional Errors (CREs) at precise location, for each chromosome of both haplotypes (from outside to 

inside). (c) Synteny between all chromosomes of RPE-1 haplotypes (Haplotype 1, Hap 1 and 

Haplotype 2, Hap 2) and CHM13 (haploid). RPE-1 shows comparable chromosome length to CHM13, 

with the majority of the variation in centromeric and pericentromeric regions. (d) Reliability of the 

RPE-1 chromosomes using read mapping. Regions flagged as ‘haploid’ are error-free (green). 

 
Figure 2. Genome variation between RPE-1 haplotypes. (a) RPE-1 haplotypes harbor repeat 

structure variations at centromeres, as shown by the pairwise similarity heatmaps of the HORs 

(Methods). (b) Base-level resolution of t(X;10) (q28;q21.2), a RPE-1-specific structural variant 

(Methods) involving a 73.18 Mb segment, duplicated from the q-arm of Hap 2’s chromosome 10 fused 

to the microdeleted telomeric region of Hap 1’s chromosome X. (c) Synteny between RPE-1 

haplotypes highlight intra-haplotype structural variations, peaking at centromeric and pericentromeric 

regions. (d) Pairwise similarity heatmaps of chromosomes with major intra-haplotype differences in 

term of centromere sequence, size, structure and position. HORs structural variants (SVs) are shown 

for each chromosome. (e) Ratio (top) of centromere length (bottom) between the two RPE-1 
haplotypes. Chromosomes with a length ratio greater than 1.5 or less than 0.7 are highlighted. 

 

Figure 3. The isogenomic reference genome improves reads alignment. (a) Read-depth profiles 

over RPE-1 Hap 1, RPE-1 Hap 2, and CHM13. The black and red dots represent, respectively, the 

coverage of the first and second most frequent alleles. (b) HiFi read-depth profile for all 

chromosomes. Using the RPE-1 haplotypes as reference improves the primary alignments compared 

to CHM13. The differences in coverage for long arm of chromosome 10 in RPE-1 genome are due to 

regional duplication (Methods). (c) Sequencing reads from a different batch of RPE-1 show lower 

edit distance (NM value) when aligned against the matched reference compared to CHM13, consistent 

across all chromosomes (d). HiFi and Illumina reads from High Diverged Regions (HDRs) show 
statistically significant increase in mapping quality (e-f), and lower NM value (g-h), when aligned 

against the RPE-1 haplotypes compared to other reference. p-values are from the student t-test (non-

significant (ns) = p > 0.05, * p ≤ 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001). 

 

Figure 4. The isogenomic reference genome identifies high-confidence epigenomic landscapes. 

(a) Phased peak calling improves when using the isogenomic genome as reference. (b) Pipeline 

describing the mapping of CENP-A CUT&RUN enrichment to reveals the precise kinetochore (KT) 

position with high confidence. High confidence CENP-A peak map to a single genomic location that 

differs between haplotypes defining the kinetochore site only when the isogenomic reference is used 

but not with any other reference tested, giving scattered or low significance peaks. This is confirmed 
by methylation analysis to overlap with the CDR. Kinetochore sequence and structure can be defined 

at base pairs resolution. (c) Example of methylation track (defining the CDR) and CENP-A high-

confidence peaks (defining the kinetochore) for chromosomes 9 and 19 only using RPE-1 as reference 

but not with CHM13, HG38, HG002 mat or pat genomes. (d) The spread of CENP-A occupancy 

changes between haplotypes for all chromosomes, and when using different genomes raising 

questions on the validity of non-matched references for mapping reads to such polymorphic loci. 
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Supplemental information 

 

Supplemental Figure Legends 

 

Supplementary Figure 1. DNA extraction and libraries preparation. (a) Workflow applied to 

obtain de novo genome assembly, High and ultra-High Molecular Weight DNA extraction step 

(HMW and uHMW, respectively). (b) DNA was extracted from RPE-1 cell pellets according to a 

specific centrifugation speed, and beads were used to collect genomic DNA. (c) uHMW DNA 

enrichment was performed for ONT libraries. (d) Optimal length of extracted DNA was evaluated 

using FEMTO pulse. (e) HMW DNA extraction was performed for PacBio libraries. (f) The final 

library length for PacBio was evaluated using FEMTO pulse.  

 

Supplementary Figure 2. Long and ultra-long read sequencing. (a) Workflow applied to obtain 
de novo diploid genome assembly, DNA sequencing step. (b) ONT sequencing was performed using 

PromethION and R10.4 flow cells. (c) PacBio sequencing was performed using Sequel IIe and 8 

million Zero Mode Waves flow cells (ZMWs), producing Circular Consensus High Fidelity reads 

(CCS, HiFi reads). (d) Assembly and quality evaluation step. (e) R10.4 chemistry increased ONT 

base calling accuracy from 98 to 99% compared to R9. (f) K-mer spectra analysis performed with 

Merqury highlights the quality of the final assembly by showing two separate peaks for both 

haplotypes and one shared peak due to homozygous regions. 

 

Supplementary Figure 3. De novo diploid assembly. (a) Workflow applied to obtain de novo 
diploid genome assembly, assembly and evaluation steps. (b) The first assembly was generated using 

PacBio HiFi and ultra-long (UL) ONT reads (> 100 kb). The string graph obtained using Verkko tool 

was visualized with Bandage. Graph nodes are colored by read depth, with the yellow that represents 

the highest value. The extra copy of the duplicated q-arm of chromosome 10 is completely colored in 

yellow confirming the duplicated state of this region. (c) Hifiasm was used with only HiFi reads, 

resulting in a string graph with partially-phased haplotypes visualized with Bandage. 

 

Supplementary Figure 4. Phasing of the de novo diploid assembly. (a) Workflow applied to obtain 

de novo diploid genome assembly with Hi-C data integration and curation. (b) Hi-C 3D contact maps, 

visualized using Pretext, show the two haplotypes at chromosome-level resolution. Hi-C data confirm 
chromatin interaction between chromosome 10 and chromosome X (right). (c) The string graph of 

the final phased assembly was visualized using Bandage. The haplotypes are colored in red and blue. 

Short arms of chr13, chr14, chr15, chr21, chr22 are tangled in correspondence of the rDNA arrays. 

 

Supplementary Figure 5. Assembly quality evaluation for final diploid phased genome. (a) 

Workflow applied to obtain de novo diploid genome assembly, genome analysis steps. (b) 

Chromosome lengths of RPE-1 are comparable with the previously assembled genomes, excluding 

chromosome X of Hap 1 which harbors the structural variant characteristic of the RPE-1 cell line, 

that is a translocation of part of chromosome 10. (c) The presence of the duplicated long arm region 

of chromosome 10 on chromosome X led to an increased number of gaps compared to the other 
chromosomes. (d) The extra copy of chromosome 10 is also shown in the string graph as an increase 

in coverage in homozygous and heterozygous regions. (e) Verkko assembly using all ONT reads 

resulted in the final graph with fused chromosomes 10 and X. The graph is visualized with Bandage. 

 

Supplementary Figure 6. Karyotype of the RPE-1 cell line. a) Chromomycin A3 staining was used 

to obtain an R-banding of the chromosomes of the RPE-1 cell line. The scale bar is 10 μm. b) The 
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banding pattern allowed the identification of the chromosomes, that were then ordered to obtain a 

karyogram. c) Metaphase analysis revealed that RPE-1 cells are in a diploid state. This result was 

confirmed in two different batches of cells obtained from ATCC or another laboratory. d) The 

presence of the marker chromosome of the RPE-1 cell line, t(X;10) (Xq28;10q21.2), was confirmed 
in all metaphases analyzed. 

 

Supplementary Figure 7. Marker chromosome breakpoint resolution and manual curation. (a) 

IGV visualization of the HiFi and ONT read alignments against the RPE-1 diploid genome. The 

alignment of chromosome 10 for Hap 2 highlighted an interruption in read coverage in position 

61640000 bp, showing reads with 10-60 mapping quality and supplementary alignment at 

chrX:154027075. Notably, these supplementary alignments belong only to chromosome X of Hap 1. 

(b) HiFi and ONT reads were aligned against chromosome X harboring the additional sequence 

coming from the long arm of chromosome 10. The alignment shows a telomere region with a 3603 

bp deletion at the telomeric region. (c) HiFi and ONT reads alignment against the sequence of 
chromosome X deleted of these 3603 bp in the telomeric region showed a complete alignment through 

the break point. 

 

Supplementary Figure 8. Centromere variation. Pairwise similarity heatmaps, created using 

StainedGlass, of centromeres and LHORs (Live High Order Repeats) for all chromosomes. 

Chromosomes 7 and 21 show differences in centromere size, while centromeres of chromosomes 9 

and 19 show different HORs organization. HOR structural variants (SVs), which belong specifically 

to Hap 1 or 2, are also shown. 

 
Supplementary Figure 9. Zooming in on centromere regions of HiFi RPE-1 reads alignment 

against RPE-1 Hap 1, 2, and CHM13. (a) RPE-1 reads aligned against CHM13 show a complete 

absence of matched reads for chromosome 4 and chromosome 6, suggesting completely different 

LHORs structures and organizations. (b) Sequence identity, computed with MashMap, was evaluated 

between each haplotype and CHM13 genome. The lowest values were observed in the comparison 

between chromosome 1 CHM13 versus RPE-1 Hap 1, and chromosome 6 and chromosome 11 

CHM13 against RPE-1 Hap 2. 

 

Supplementary Figure 10. The mapping quality and NM values for HiFi and Illumina reads 

across the whole genome. (a-b) HiFi and Illumina read alignment exhibit a statistically significant 
decrease in NM values (edit distance) when RPE-1 Hap 1 and 2 are used as a reference. (c-d) Mapping 

quality showed a significant increase for Hap 2 compared to CHM13, and a decrease comparing Hap 

1 and CHM13. (e) The analysis of the mapping quality for each chromosome explains its decrease 

when Hap 1 is compared to CHM13. The duplication in RPE-1 Hap 1 leads to a decrease in mapping 

quality due to the presence of two copies of the same sequence for chromosome 10. 

 

Supplementary Figure 11. The isogenomic reference genome improves reads alignment. RPE-1 

Hap 1 and Hap 2 were compared with CHM13. Analyzing the SVs obtained with SyRI, a total of 

37% and 57% of HDRs belong to centromeric regions when Hap 1 and Hap 2 were compared to 

CHM13. Chromosomes with 50% or more of HDRs belonging to centromeric regions were analyzed 
to exclude that the high divergence were due to assembly errors. HDRs of chromosomes 3, 8, and 12 

for Hap 1, and chromosomes 10, 12, and 18 for Hap 2 are located almost exclusively in centromere 

regions for a total of 90% of their length. Craq tool was used to evaluate the total number of errors 

and heterozygous bases in the assembly. The output shows complete absence of regional assembly 

errors, but only the presence of structural heterozygous variants. The final IGV visualization indicates 

HDRs, HORs, Hsat, errors, and heterozygous positions for the RPE1v1.0 reference genome assembly. 
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Isogenomic Reference Genome
New approach using the matched genome reference to analyze multi-omics sequencing data
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Figure 2
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Supplementary Figure 2
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Supplementary Figure 6
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