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Abstract7

Mechanically ventilated patients generate waveform data that corresponds to patient interaction with8

unnatural forcing. This breath information includes both patient and apparatus sources, imbuing data with9

broad heterogeneity resulting from ventilator settings, patient efforts, patient-ventilator dyssynchronies, in-10

juries, and other clinical therapies. Lung-protective ventilator settings outlined in respiratory care protocols11

lack personalization, and the connections between clinical outcomes and injuries resulting from mechani-12

cal ventilation remain poorly understood. Intra- and inter-patient heterogeneity and the volume of data13

comprising lung-ventilator system (LVS) observations limit broader and longer-time analysis of such sys-14

tems. This work presents a computational pipeline for resolving LVS systems by tracking the evolution of15

data-conditioned model parameters and ventilator information. For individuals, the method presents LVS16

trajectory in a manageable way through low-dimensional representation of phenotypic breath waveforms.17

More general phenotypes across patients are also developed by aggregating patient-personalized estimates18

with additional normalization. The effectiveness of this process is demonstrated through application to19

multi-day observational series of 35 patients, which reveals the complexity of changes in the LVS over time.20

Considerable variations in breath behavior independent of the ventilator are revealed, suggesting the need to21

incorporate care factors such as patient sedation and posture in future analysis. The pipeline also identifies22

structural similarity in pressure-volume (pV) loop characterizations at the cohort level. The design invites23

active learning to incorporate clinical practitioner expertise into various methodological stages and algorithm24

choices.25

keywords: pulmonary ventilation; patient-ventilator asynchrony; patient-ventilator dyssynchrony; ventilator-26

induced lung injury; respiratory distress syndrome, patient-specific modeling; knowledge representation27

1. Introduction28

Modern critical care often involves mechanical ventilation (MV) to manage patients with disorders such29

as acute respiratory distress syndrome (ARDS), which is characterized by inflammation and pulmonary30

edema. MV is also used to sustain highly sedate or comatose patients including those with traumatic brain31

injury (TBI) and impaired autonomic breath control. Modern respiratory care protocols and technologies32

[1] emphasize lung-protective strategies [2], as MV may cause ventilator-induced lung injury (VILI,[3]).33

MV lung-protection relies on such factors as increased positive end-expiratory pressure (PEEP), decreased34

tidal volume, or reduced driving pressure [4, 5, 6] based on understanding of lung physiology. Technological35

advances in MV have not eliminated ventilator dyssynchrony (VD), a mismatch in patient-ventilator delivery36

and respiratory effort timing. VD may play a role in the development and propagation of VILI, a known37

contributor to mortality in ARDS patients [7]. Reduction in ARDS-related mortality has plateaued in38

recent decades [8] compared with significant curtailment in the two decades prior [9]. The desire to further39
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mortality reduction motivates the continued study of MV effects as VILI and VD contribute to residual40

ARDS mortality.41

Clinical observables, including airway pressure (p), volume (V ), and flow, are generated by the human42

lung-ventilator system (LVS), which encompasses the dynamic interaction between patient lungs and an43

engineered apparatus. This biomechanical LVS combines the components relevant for studying the effects of44

mechanical ventilation (MV) on longer timescales, particularly regarding physiological derangement under45

technological management. Non-ventilator aspects of patient care can also affect lung-ventilator dynamics46

and associated observables. Despite the temporal richness of waveform data, analyzing them within the LVS47

context proves challenging due to factors such as data volume (high sample rates yield millions of data points48

per patient per day), data heterogeneity influenced by patient-specific factors and care-originating ventilator49

setting changes, and the multi-scale nature of the problem that require consideration of intra-breath scale50

events over extended periods to detect signatures of injuries like VILI.51

Notable previous works [10, 11] used supervised machine learning directly on ventilator data to identify52

the frequency and occurrence of different ventilator dyssynchronies. In addition to internal ventilator metrics,53

the analyses also used breath properties such as peak inspiratory pressure, inspiratory-to-expiratory time54

ratio (I:E), etc. to coarsely characterize waveform features via features familiar to practitioners [12, 13]55

Although such descriptors facilitate operational management of respiratory care, they may be insufficient56

to distinguish breath characteristics related to pathological lung mechanics or the timing of dyssynchronous57

patient efforts. Identification alone does not address the evolution of breath types and effects of VD.58

Recent approaches to LVS data analysis have focused on hybrid methods of empirical parameter fit-59

ting [14, 15, 16] with attention to patient-ventilator dyssynchrony resolution at the waveform level. Purely60

rule-based mechanistic models targeting specific breath features require many parameters to overcome con-61

founding influences [16] or define models of specific VD types [14]. These research strategies have converged62

on data-informed modeling methods as a robust tool to express waveform data through automated paramet-63

ric representations. The present study uses a flexible model-based approach together with unsupervised ML64

to empirically discriminate Mv breaths and begins to account for heterogeneous LVS factors. It is targeted65

to reveal the structure and complexity of LVS evolution, and the focus on temporal factors contrasts related66

works in ARDS research that seek to identify cohort-scale VD [10] or infer respiratory mechanics through67

physiologic modeling [17, 14].68

Development of relevant waveform representation models and analysis methods provide pathways for69

informatics research to pursue minimizing VILI. Continuing toward that goal, this work presents a framework70

for analyzing the evolution of MV breath types over extended time periods. It extends the analysis of71

LVS behavior from the breath level to the scale of hours-to-days while considering the context of ventilator72

settings. The method combines a model-based waveform digitization [16] with an unsupervised segmentation73

pipeline [18], although other sufficiently flexible parametrization frameworks and variations on the theme74

may be employed. This study’s hypothesis is that respiratory behavior or other patient properties may75

be identified from joint LVS data by separating the influence of changes in MV. Investigation proceeds by76

examining changes in observable data that occur independently of ventilator management within the context77

of the joint patient-ventilator system. Analysis of ARDS patient data through this perspective demonstrates78

compact descriptions of LVS evolution, broadly categorizes MV breaths, and identifies LVS heterogeneity79

sources that must be incorporated for further development.80
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2. Method81

The root approach involves analyzing LVS data, including waveforms and ventilator settings, through82

a computational pipeline that begins with model-based inference. The method projects individual LVS83

waveform data onto personalized parametric representations and identifies patient-specific breath phenotypes84

without consideration of sequential ordering. The evolution of LVSs may be examined through phenotypes85

when co-labeled according to time.86

2.1. Data87

Mechanically-ventilated patient data were collected under the University of Colorado Multiple Institu-88

tional Review Board (COMIRB, protocol #18-1433). These data include airway pressure, volume, and flow89

and ventilator settings for 36 patients, all of whom had ARDS diagnoses and substantial risk of VILI as90

featured in [19]. Children, pregnant women, and age-censored elders, and the imprisoned were excluded.91

Esophageal pressures were recorded but used in this work; collection imposed additional exclusion criterion92

(viz. esophageal fistula, variceal bleeding or banding, facial fracture, and recent gastric/esophageal surgery).93

Source patients include 14 women and 22 men with median[IQR] age 59[25] years; 72% are white, 35% of94

which identify as Hispanic or Latino. Table 1 summarizes clinical and demographic characteristics of patients.95

Data total 1.74 million breaths over 71.14 recording-days (median 1.97[1.56] days per patient) recorded at96

32 millisecond sampling (31.25 Hz) from Hamilton G5 ventilators (https://www.hamilton-medical.com).97

Adaptive pressure and pressure-controlled ventilation modes (APVcmv and P-CVM, respectively) account98

for 85–98% of breaths in most patients and over 94% in total. Ventilator management throughout employs99

the ARDSnet protocols [7].100

Dyssynchrony labels. An existing supervised ML technique [10, 19] identifies breath-wise VD to enrich LVS101

evolution context and provide comparison for newly calculated labels. Type-specific VD models each label102

breaths according to features characterizing dyssynchronous breaths (see ibid. SI). VD labels include normal103

(NL), reverse triggered (RT) with early (RTe) and middle (RTm) subtypes, early flow limited (eFL) with104

intermediate (eFLi) and severe (eFLs) subtypes, double trigger (DT) with reverse- (DTr) and patient- (DTp)105

subtypes, and early vent termination (EVT); breath mechanics of these VDs are described in [11]. Breath106

label vectors flag likely VD occurrence and can be summarized statistically over time intervals.107

2.2. Windowed Model-based Inference on Individuals108

The analysis begins with a continuous-time dynamical model that transforms observed waveform data109

into discrete parameters via inferential methods [16]. The differential equation governing the model state y110

is:111

dy

dt
+ g · (y(t)− y0) = ϕ(t, ω) (1)

where t is time, g is a smoothing parameter, y0 is a reference state (such as PEEP when y represents112

pressure), and ϕ is a time-dependent function of parameters ω. Optimizing the state y to fit observed113

LVS waveform data over short windows yields parameters ω that encode waveform data. The relationship114

between parameters ω and simulated state y is defined by the function ϕ. This work chooses a locally115

periodic piecewise constant function using parameters ω := (a1, · · · , aM , θ) where θ is the breath cycle length116

determined from the data, independent of the model and M is independent hyperparameter representing117
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Table 1: Tabular summmary of the patient cohort and associated data. ‘Monitored’ and ‘Recorded’ durations denote the
number of hours spanned by data and length continuous data contents, respectively. P:F ratio is the PaO2/FiO2 ratio at
admission, AA = African-American, AI = American-Indian, AK = Alaska, NMB = Neuromuscular Blockade

Detail Count % Median IQR
Monitored (hrs) 47.0 37.2
Recorded (hrs) 43.1 40
Age (years) 36 58.5 24.5
Gender
Female 14 38.9 54.5 25.0
Male 22 61.1 58.5 26.0

Race/Ethicity
White 26 72.2
Unknown/NA 5 13.9
Black/AA 3 8.3
AI or AK Native 1 2.8
More than one race 1 2.8

ARDS risk
Pneumonia 12 33.3
COVID 11 30.6
Sepsis 6 16.7
Other 3 8.3
Pancreatitis 2 5.6
Aspiration 2 5.6

P:F ratio 135.9 81.0
Mortality 9 25.0
NMB use 9 25.0

the number of parameters in a. Time within the breath, defined by t̂ := t − t0 (mod θ), is divided into M118

local time epochs whose lengths {∆t} depend on the model resolution M , breath length θ, and partition119

function Υ. Each epoch is associated with an amplitude ai, so that M determines model resolution. The120

piecewise-constant function ϕ can be written as121

ϕ(t; a, θ) =
M∑
i=1

ai
1− e−g∆ti

g

[[
Υ(i− 1)∆ti ≤ t̂ < Υ(i)∆ti

]]
. (2)

The fixed function Υ apportions epoch lengths using the I:E ratio to resolve the shorter, more valuable122

inspiratory phase at higher resolution. Optimal parameters a are inferred from the data yobs using a windowed123

ensemble Kalman-like smoother over short, disjoint 10-second windows of data (see [16]), although other124

methods suffice. The framework uses the model to infer parameters from waveform data segments and map125

parameters to representative waveform characterizations.126

2.3. Pipeline127

The computational pipeline extracts low-dimensional representations of LVS data that effectively encode128

relevant features of both breath waveform data and the ventilator settings associated with them. The method129

(Figure 1) follows [18] using model-inferred parameter distributions to uncover latent system similarities from130

data. The four stages of application to LVS data focus on changing system representation.131
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Figure 1: Broad pipeline organization. Raw data (1.) are digitally parametrized (2.) over short windows. Summaries of
these vectors are computed and appended with the contextual data of ventilator settings (3.) which include information such as
ventilator operation mode, PEEP, flow and pressure triggers, and minimum mandatory breath rate. Augmented LVS descriptors
are projected into three dimensions using tSNE (4.) where they can be analyzed based on time ordering (top) and structural
similarity via segmentation (bottom). Finally, in (5.), temporal evolution of the system is compactly encoded in the time-
ordered LVS descriptor labels and their associated waveform characterizations. The process transforms raw data (1.) into a
more easily comprehensible form such as (5.).

1.) Waveform parametrization:. Individual clinical records of continuous pressure (p) and volume (V) wave-132

forms are inferred using a model (§2.2) with moderate resolution (M = 24). Non-overlapping ten second133

windows are each encoded into M parameters by fitting the data over 1.6 second (50 points) moving sub-134

windows with 0.8 second overlaps (25 points, for 32 millisecond sampling). The resulting estimates are135

distributional samples of the 10-second windows totaling 4% fewer points than the source data.136

2.) Parameter Distribution Summarization:. The parameter distributions for each interval of data aim to137

retain enough information to allow differentiation based on measures of relative similarity. The 2M param-138

eters are independently transformed into vectorized descriptors that collectively summarize the waveform139

behavior within each data window. Descriptor components include mean, quartiles, variance, and mode as140

well as non-gaussian measures (skewness, kurtosis, and Kolmogorov-Smirnov distance) to capture bimodal141

or asymmetric parameters distributions characterizing non-stationary LVS behavior. For M = 24, these142

descriptors summarize content during each 10-second interval using 38.24% less volume than the original143

data. The strategy reduces the temporal sampling rate (from 31.25Hz to 0.1Hz) by depicting each window of144

2D states as a larger vector that summarizes parameter distributions. Reduction in the overall data volume145

(see SIAppendix B) is governed by summary window length (under weaker stationarity assumptions) and146

model resolution (M).147

3.) Augmentation:. Appending ventilator setting data to the parametric descriptor vectors of each window148

contextualizes them in the health-care process. Ventilator settings detail the mode of operation (volume149

control, pressure control, spontaneous, etc.), supplied targets (tidal volume) as well as various machine set-150

tings (trigger thresholds, ramp time, PEEP). Some ventilator settings are already represented in parametric151

waveform descriptors, and therefore, need not be explicitly included. For example, ARDSnet protocols bind152
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FiO2 and PEEP ranges while realized I:E is a waveform property. Other available factors such as ventilator153

delivery power are not considered here but may be included as needed in specific applications. Ventilator154

mode is a nominal variable represented as set of binary variables using one-hot encoding. Interval sum-155

maries reflect the most frequent ventilator data found for breaths in each window. Ventilator settings change156

infrequently, and summary errors are therefore rare among estimated intervals.157

4.) Cluster Labeling:. Segmentation labels groups of LVS descriptors based on content similarity and can be158

applied at individual patient or aggregated cohort levels. Several methodological approaches can accomplish159

this goal (e.g., see [20]). However, direct segmentation is computationally expensive when descriptors are160

large (∼ 400-dimensional for M = 24). Dimensional reduction is further motivated by the desire to visually161

inspect the quality and structure of label assignment. The t-distributed Stochastic Neighborhood Embedding162

(tSNE,[21]) reduces high-dimensional vectors into a low-dimensional space (here, 3D) by optimizing the KL-163

divergence between an assumed-normal distribution of the data and a t-distribution of the points in R3. The164

organization of embedded points approximates the local and global similarity structure [22], the targets of165

label assignment under a given metric.166

LVS descriptors comprise mixed variable types so the the Gower distance is a natural choice of metrics.167

It averages over range-normalized absolute differences of continuous variables and binary dissimilarity of168

ventilator modes (categorical variables). Uniform Manifold Approximation and Projection (UMAP,[23, 24])169

and tSNE produce similar dimensional reductions [25] in this application (SIAppendix A.3) All individu-170

alized results use the Matlab-native tSNE algorithm with parameters near default values (exaggeration=4,171

perplexity=50).172

Unsupervised learning algorithms then assigns segmentation labels to the LVS descriptors. In both173

tSNE and UMAP LVS applications, Density-Based Spatial Clustering of Applications with Noise (DBSCAN,174

[26, 27]) identifies groups of similar LVS descriptors from point densities in the reduced coordinate space. A175

brief grid-search over DBSCAN parameters (min. core point neighbors 4–12; neighborhood radius 1.5–5 by176

0.5) samples different label assignment possibilities, adopting the one that minimizes total distance between177

cluster centroids. Experimentally, such flexible assignment sought to capture the unknown degree of variation178

that tends to increases with the LVS record length. Use of k-means and k-medioids [28] was considered for179

efficiency but, unlike DBSCAN, could not capture non-convex groupings that typically emerged from LVS180

descriptors in reduced dimensions. Support vector clustering [29, 30] required too much computation time181

to be practical for day-scale analysis.182

5.) Defining phenotypes. Descriptor labels are directly associated with LVS data elements including the183

parameter estimation windows and the waveforms contained within them. Direct interpretation of labeled184

points is prevented by the dimensional reduction step, which embeds joint LVS descriptors into abstract,185

similarity-determined coordinates. However, points tacitly associated with the pipeline elements used to186

construct them, including the window times that link observations, parameters samples, summaries, and187

tSNE coordinates The LVS data can then be analyzed based on common or central properties characterizing188

features of each labeled group. Specifically, waveform data in a particular cluster are characterized and189

visualized by applying the model (Eq.(2.2)) to e.g., median parameters associated with a label. These k190

characterizations, along with their associated ventilator settings, define phenotypes of the LVS observables.191

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.23299978doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.14.23299978
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.4. Phenotypes and Characterizations of LVS data192

The phenotyping pipeline identifies elements of LVS states with similar structure, organizing short in-193

tervals of data into discrete categories for analysis over longer timescales. Cluster labels identify LVS state194

phenotypes of the observable data, and co-evolution of the patient-ventilator system is captured in the tem-195

poral progression through these categories. A stated objective is to identify changes originating from the196

patient-side of the system with no corresponding ventilator changes. These indicate the presence of con-197

founding factors not recorded in the data such as changes in patient expectation and breathing pattern (e.g.,198

patient effort, respiratory drive), lung mechanical function (e.g., VILI progression or recovery from ARDS),199

or another aspect of physiology.200

Phenotype evolution is presented in the context of ventilator settings and in relation to VD identified201

via [10]. Additionally, pressure-volume (pV) characterizations defined by the model image of descriptors202

nearest to the phenotype center (viz. median) provide a familiar synopsis of associated waveform data for203

each window represented in the data. Such visualizations intend to summarize key features and notable204

changes defining the LVS trajectory.205

Subsequent analysis and discussions employ principal component analysis (PCA), an empirical signal206

factorization based on variance minimization [31, 32]. This tool is used to show the LVS variance occurring207

under ventilator stationarity for qualitative analysis, as the empirically-determined basis may not represent208

physical or relevant LVS features. Here, their intended use is to reveal the temporal structure of LVS variation209

as these may relate to patient-side changes.210

3. Results211

The clinical LVS data of patients with ARDS (Table 1) is an important and practical target to test,212

demonstrate, and document the computational phenotyping pipeline in cases which may be prone to venti-213

lator dyssynchronies and VILI. The pipeline ties labeled breath types to specific points in time during the214

patient record, which permits analyzing data and syntheses throughout the process. Results in this section215

consider LVS data together with time-ordered waveform characterizations to examine LVS evolution during216

the recorded hours of individual patients. Sequences of dyssynchrony labels generated as in [10] provide217

additional context for exploring breath behavior.218

Briefly, most LVS patient data are identified with 20[14] (median[IRQ]) clusters using the fixed hyper-219

parameters across the cohort. About half of these groups are infrequent and represent less than 1% of220

the data. A median of 8[6.5] core clusters each representing more than 3% of the data account for the221

remainder of the data of each patient. Modifying ML hyper-parameters to eliminate the low-occurrence222

groups may consequently reduce label resolution. However, the number of labels needed to capture the main223

LVS behaviors of each patient depend on heterogeneous factors including patient health status, the number224

of changes in vent settings, and the total duration of the data. As recording durations span 0.7–92 hrs225

(medain[IQR] 46.8[35] hrs), the over-segmenting some LVS records to prevent loss of resolution in longer226

ones was a preferred alternative to fully optimized individual segmentation.227

3.1. Simple, Individual Examples228

Figure 2 panels a–d illustrate the analysis of Patient #103 whose data consists of 7 record hours with229

one simple ventilator setting change. Only ventilator PEEP (a) is changed while there are three primary230
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behaviors identified (b,d). The reduction of PEEP occurs about 2 hours following a rise in early flow231

limited breaths (eFL, panel c). This PEEP change (from 8 to 5 cmH2O) shifts peak pressure from 16 to 12232

cmH2O for about an hour, at which time higher esophageal pressures returns. These breaths are identified as233

normal (NL) [10]. Increased specificity may be pursued by local segmentation or other dimensional reduction234

methods.235

A closer look at label 1 of patient #103:. The first principal component loadings (panel e, black) for LVS236

descriptors over the first 5-hour period track the sequence of normal and eFL VD labels (f, shown as 5237

minute statistics for clarity). Within the same breath phenotype (label 1), the sign of the component238

loading statistically the eFL VD labels (AUROC=0.8718); high positive values are associated with eFL239

breaths (f,g; green) where pressure maxima proceed volume maxima. These LVS variations result from240

changes in the patient component, as there is no change of ventilator settings. Note that direct correlation241

between continuous loading values on 10 second windows and statistical breath-wise binary VD label is not242

well-defined while binary-to-binary comparison is.243

Figure 2: Analysis of patient #103 LVS data (a–d) and the initial a 5-hour interval (e–g). Panels a–c correspond to changes
in ventilator settings, segmentation labels, and identified VD type, respectively. The horizontal axis for these panels is the
patient record time in hours. The panel (d) shows the model image of segmented data median parameters, which characterize
the pV loops of breaths with that label (shown with the same color). Evolution of the LVS can be parsed pictorially from these
figures. Large positive variations in the first principal component loading (e, black) for the initial 5-hour period align with VD
labels indicating eFL type breaths (f) for this period. Specifically, this suggests discrimination of breaths shapes (g) can be
differentiated using qualitatively criterion on local loadings or other segmentation.

The patient #113 (Figure 3) dataset is nearly twice as long with again only one PEEP change occurring244

after 10.5 hours of the 15.6 hour record. Breaths are stably identified as normal-type until about 8 hours,245

occupying two cluster-identified similar breath shapes. This is followed briefly by eFL breaths and a transition246

to a new characterization (label 8, light green) for about 30 minutes. In the following period (9–14 hours),247

breaths are characterized by lower pressure maxima (label 10, gold); these are associated/identified with248
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reverse-trigger breaths (primarily RTm) and waveforms featuring pronounced inspiratory pressure drop.249

The reduction in PEEP slightly increases the incidence of normal breaths during 11–14 hours although this250

results in the more frequent appearance of shallow breaths (label 13, red).251

Figure 3: The patient #113 evolution also includes only PEEP changed. The layout is the same as panels a–d of the previous
figure. Under constant ventilator settings, breaths undergo transition several times including intervals of VD prior to PEEP
change around 10.5 hours. A 1-hour long shift from label 2 to 8 occurs around 8 hours during which breaths decrease peak
pressure and includes an increase in eFL and RT VD occurrence. After the PEEP change, breaths remain highly dyssynchronous
and primarily centered around the characterization with label 10.

3.2. More complex LVS evolution examples252

Cases presented in the previous subsection are atypical in that patient records in the data set are typi-253

cally longer (>24 hours), include many ventilator settings changes, and segment into a larger collection of254

phenotypic breaths. Figure 4 illustrates the analysis of patient #114 whose LVS undergoes multiple changes255

over a 24-hour data period. The portion during 7–14.5 hours is dominated by normal breaths that spans256

two labels with similar characterizations as pV loops but differ in mean respiratory rate. The difference is257

minor (the mean difference is less than 20 milliseconds), although this affects model parameter and could258

combined via posterior analysis, with small DBSCAN hyper-parameter changes, or coarser period binning.259

Changes in flow trigger settings occur around 3 hours and reduce the occurrence of eFL near the star of the260

record, associated with caving in pV loops (label 1, dark blue). Dyssynchronies return when the flow trigger261

is returned to its initial value, near 15 hours. PEEP and tidal volume targets are also adjusted several times.262

Brief ventilator changes in ventilator mode around 20 and 23 hours allow spontaneous breathing which have263

a profoundly different pV characterizations (label 12,tan). The interim period (20.5–22.5 hours) consists of264

primarily normal breaths (label 13, brown) under the default pressure-control mode.265

A closer look at Label 10 of patient #114. Breath phenotype analysis of patient #114 indicates no ventilator266

setting changes during the record interval 15–21 hours. Although one phenotypic breath dominates this pe-267

riod, ML-labeled dyssynchronies intimates much more variability. Principal components during this interval268

(Fig.4b) suggest that the evolution is irregular. While pressure characterizations suggest the differences are269

largely attributed to pressure and inspiration duration, full characterizations indicate that breaths in this270

period are very heterogeneous in pV relationships. The continuous evolution through these subtypes – and271

their comparative differences to the other types – leads to their identification as a consistent group. SI Figure272

A.7 provides another case using principal components to further differentiate breath types with implications.273
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Figure 4: A representative example: patient #114. The upper plot layout is the same as the previous figure. The lower plot
examines the variability, and a shortcoming of low resolution segmentation to capture changes that may be highly diverse at a
local level. The mean– the dashed black line – coincides with the golden pV loop (cluster #10) in the upper plot. The many
distinct breath subtypes identified are more similar than to other main types in the upper plot; as a result, they are grouped
together at this choice of hyperparameters.

Figure 5 features data of the patient #149 LVS has little identified dyssynchrony. While most breaths as274

identified as normal, the system evolution diagram indicates irregularities in breath properties. In particular,275

label 1 (dark blue) regularly present under multiple PEEP settings in the pressure-controlled volume targeting276

mode, and are intermixed with other labels (e.g., 3,5, and 7) whose waveform characterizations are dissimilar.277

System heterogeneity within the patient makes parsing the evolution more complicated, as spontaneous278

breathing is possible during 12–16 hours and 23–24 hours under different PEEP values. Nevertheless, the279

space of breaths is considerably reduced in labels.280

3.3. Cohort scale phenotypes of breath shapes281

A cohort level breath characterization is achieved by further segmenting the population of individuals282

characterizations in non-dimensinoal form. The phenotyping pipeline yields a total of 721 patient-specific LVS283

characterizations across the cohort. Attempts to directly cluster these full characterizations was unsuccessful.284

Secondary tSNE-DBSCAN grouping could not identify cross-patient commonalities of these characterizations285

due to LVS-specific heterogeneities such as tidal volume (a target set by patient sex, height), PEEP (e.g.,286

whether even or odd values are used), and respiratory rate (patient and sedation dependent). However, these287

factors may be accounted for by segmentation of pV loop shape rather than full LVS behavior. Pressure288

and volume characterizations are sampled in pV-space and then translated and scaled into the range [0,1].289

The pV normalization accounts for differences in PEEP, tidal volume, and respiratory rate while preserving290

the differences in the pressure-volume relationship to extract the phenotypic shapes of breaths occurring291
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Figure 5: The LVS evolution of patient 149 label#1 is discontinuous in time and occurs under different PEEP values. There
is a lot of waveform variation present within the largely VD-less evolution, and significant changes in non-ventilator aspects of
the LVS.

throughout the estimated entire dataset. Using this method, a cohort-scale tSNE-DBSCAN analysis identifies292

20 breath shape phenotypes along with a collection of 27 outliers. Figure 6 illustrates this normalized re-293

organization along with the median pV representatives and pressure traces for each identified group.294

Meta-characterization depends on several hyper-parameters associated with tSNE and DBSCAN which295

influence label granularity as well as thresholds defining outlier groups (SI Fig. A.8). Selected parameters296

aimed to maximize the number of phenotypes while minimizing the number of outliers with number of labels297

easily presented in an array; the results are qualitatively similar for nearby parameters. Table 2 summarizes298

the occurrence and contents of this grouping.299

Figure 6: Cohort scale breath types via segmentation of batched individual data. In panel a, each dots corresponds to one of
N = 721 normalized pV loop characterizations extracted at an individual level. Labels (colors) identify 20 fundamental breath
shapes comprising the dataset of 1.74M breaths. Un-grouped individual characterizations correspond to 27 outliers (black).
The 20 pV trace shapes nearest to groupwise medians are shown at right (b) (see SI Fig. A.8 for outliers). Note that the
xy-axes are the normalized pressure and volume in non-dimensional form.
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Table 2: Tabulated occurrence of labels within the cohort. Columns indicate the cohort label (with 0 indicating the group of
unrelated outliers), occurrence percentage, the number of patients represented in the label, and the number of individual LVS
phenotypes comprising each label. Eleven non-outlier groups with occurrences greater than >2.5% constitute 87% of the data
with outliers (Label 0) occupying an additional ∼3.5%. Two breath types (italics) contain only phenotypes of patient #141,
whose average inspiration compliance is consistently ∼ 7.5 ml/cmH2O) and distinct from the 1.5–3 ml/cmH2O range typical
across other patients.

Label Percent Npat Npheno Label Percent Npat Npheno

0 3.48 14 27 - - - -
1 29.68 28 200 11 2.51 6 20
2 11.10 12 85 12 2.19 1 16
3 9.74 13 58 13 1.69 2 14
4 6.52 4 38 14 1.69 5 18
5 5.51 4 39 15 1.43 1 6
6 5.31 7 39 16 1.29 2 7
7 5.30 10 48 17 0.88 4 5
8 4.74 3 43 18 0.19 4 4
9 3.66 4 32 19 0.10 3 7
10 2.93 4 6 20 0.07 4 9

3.4. Synthesis300

Variations in pressure and volume observations of MV patients result from ventilator setting changes and301

patient dynamics. To understand the evolution of this system, one must jointly consider both patient and care302

processes. Analyzing patient state through breath data, especially for VILI detection and to track ARDS303

progression, requires considering ventilator settings. LVS evolution is primarily influenced by ventilator304

setting changes (e.g., PEEP, mode, tidal volume), with secondary changes indicative of patient progression305

or non-ventilator care. Analyzing periods of ventilator stationarity showed local breath evolution unrelated306

to MV changes, and empirically-identified breath variations agreed with ML-derived statistical labels of VD307

(patient 103 in Fig 2; patient 111 in Fig SI A.7). Local analysis or sub-phenotyping may resolve cases with308

more complicated evolution (e.g., patient 114 in Fig. 4b, although additional factors such as sedation and309

patient restfulness may be required to characterize and differentiate them.310

Cohort-level segmentation of LVS behavior phenotypes was confounded by heterogeneities in patients as311

well as ventilator settings that depend on patient-specific properties. Specifically, tidal volume and breath312

rate differences among and within patients could not be accounted for, leading to partitioning of both patients313

and LVS behavior. However, secondary clustering of normalized 721 individual pV characterizations yielded314

20 pV shapes and a collection of 27 outliers. As ventilator settings and breath rate factor into individual315

LVS segmentation, resulting pV characterization phenotypes inherit some aspect of those data indirectly.316

Results and following conclusions naturally depend on algorithm hyperparameters that should be chosen317

in relation to targeted applications. The proposed methodology supports clinical expert guidance in selecting318

guidance of application, identifying specific features to be resolved in models, and phenotype interpretation;319

each stage of Fig. 1 supports expert-in-the loop refinement. Use of the phenotyping pipeline and subsequent320

analysis leads to methodological conclusions regarding application to real, clinical LVS data:321

1. In application to a cohort of ARDS patient clinical data, system evolution is much easier to visualize,322

track, assess, and understand when the LVS is represented in a discrete, low-dimensional form as an323

evolution of phenotypes and waveform characterizations.324
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2. LVS-individual phenotypes depend on hyper-parameters of the dimensional reduction and labeling325

stages. Parameters affect the granularity of resolved phenotypes, and should be chosen flexibly to326

account for the desired quality of LVS temporal resolution as well as the length and complexity of the327

target dataset.328

3. Sub-segmentation of phenotypes is possible, and may be used to align phenotype definitions with329

additional information streams such as VD identification. Cohort scale analysis is also possible from330

batched individual phenotyping to provide a coarser but unified basis for analyzing common trends331

and evolution of LVSs.332

4. Discussion333

Research into ARDS and VILI involves studying patient-ventilator interactions and may benefit from334

representation of the lung-ventilator system (LVS) over time. Typically, the available data include airway335

pressure, volume (or flow), and ventilator settings. This study introduces a framework to transform these336

LVS data into meaningful, low-dimensional characterizations of LVS state that facilitate analysis of LVS337

behavior and its evolution during patient care. The process involves aggregating segmented analyses of338

individual patient over short (10-second) intervals. Consequently, the observable LVS data is condensed into339

a small set of patient-level phenotypes, making it discrete and more manageable compared to continuous340

high-resolution waveforms and breath-wise ventilator settings.341

Experiments conducted on clinical data of 35 patients with strong ARDS risks, including 8 2020 pa-342

tients with COVID-19, found the automated phenotyping process sufficient to discern between changes in343

the ventilator and the patient components of the LVS system. Individual LVS phenotypes were primarily344

determined by ventilator setting changes, given that changes in mode, PEEP, and tidal volume profoundly345

affect waveform shapes. However, temporal changes in phenotype uncoordinated with ventilator changes346

were also present in nearly all patients with more than 12 hours of data, revealing changes in the patient347

side of the LVS system. Unlike the rapid and instantaneous transitions related to MV changes, patient-348

side changes were often a more continuous but non-monotonic progression together with transient behavior.349

These behaviors could be detected through principal component analysis of data over intervals of static MV,350

but additional EHR data required to adequately explain them are presently unavailable.351

In cases with limited complexity, LVS phenotypes corresponded well with ML-labeled VD, as appear re-352

lated to ventilator setting and behavior in response to changes. For more complex cases, breath phenotypes353

did not consistently differentiate normal and dyssynchronous breaths (Figs. 3,4). Signatures of VD can be354

subtle but remain discernible through empirical analysis (such as PCA) or sub-segmentation of individual355

phenotypes, and in the original data associated with each phenotype. Nevertheless, an important consid-356

eration for future work is the optimization of phenotype resolution, which is defined by of easily tunable357

hyper-parameters (viz. those of tSNE, UMAP, and DBSCAN) as well as deeper factors discussed below.358

While granular refinement is accessible through targeted sub-segmentation of LVS phenotypes, batch359

analysis makes convenient a cohort analysis to assess the frequency of different breath shapes. For specific360

choice of hyper-parameters, the ∼1.5M breaths reduce to a small set of 20 pV loop shapes and a set of361

27 outliers. Signs of dyssynchrony are apparent in these core shapes such as ineffective triggering (10,18),362

and mild and severe flow limitation or patient effort (14,16, and 17 respectively). (Also, types 19 and 20363

qualitatively suggest RT with late insufflation pressure drops indicative of patient effort.) This qualitative364
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VD classification remains formally unvalidated in this work, as cohort scale breath shapes mask important365

considerations such as PEEP, tidal volume, and respiratory rate. Additionally, esophageal pressures were not366

encoded into phenotypes but are required to identify certain VD types [11]. Although individual phenotypes367

were often too coarse to differentiate normal and dyssynchronous breaths, this coarser segmentation could368

be refined by scaling to larger cohorts and longer patient data series.369

4.1. Method Choices, Variations, and phenotype consolidation370

The pipeline presented makes several choices regarding application-specific details. Algorithm choices371

such as model resolution, estimation/summary window length, the intra-breath partition (viz. Υ of Eqn.(2)),372

and omission of certain data are needed to balance efficiency with the quality of results. These choices373

were influenced by practical consideration such as stationarity over 3–4 breaths and model consistency [16].374

Many modifications and changes to latter stages of the labeling process are possible including: hierarchical375

analysis of specific times at individual or cohort scales, characterizing breath types occurring under particular376

ventilator settings or modes, or incorporating other factors such as patient sedation level.377

It remains essential for certain applications to examine breath shape independently of ventilator settings.378

For example, investigating signatures of ventilator dyssynchrony [11] may require normalizing breath features379

to account for ventilator settings that affect pressure and volume waveform maxima. To account for PEEP380

and tidal volume in this process, normalization during data segmentation requires a similarity measure to381

be invariant under translation and scaling, respectively. Use of parametrized waveform descriptors does not382

eliminate this problem. Circumventing these obstacles is possible by comparing waveform characterizations383

and merging labels based on characterization similarity, gauged by the difference between normalized char-384

acterized pV loops. This approach, explored in §3.3, applies to experiments that differ significantly in scale,385

and is motivated by the desire to link uncontrolled human LVS data with in vivo animal experiments (e.g.386

[33]).387

4.2. Limitations and Improvements388

Combining data assimilation-based parametrization with unsupervised learning ([18]) overcomes primary389

shortcomings of existing approaches. In particular, the mechanism-free encoding of waveform data into390

parameters with a priori definition circumvents patient- and care-dependent heterogeneity which strongly391

limit physiological model use in this domain ([16]). This greatly alters the representation LVS system: the392

rapid temporal sampling in two dimensions (p,V) is transformed into a low-frequency sampling of model393

parameter distributions (SIAppendix B) under stationarity assumptions. Accounting for irregularity in394

sample dimensions (viz. the number of points representing each breath) caused by variable respiratory rate395

in these breath-wise analyses is unnecessary in the continuous-time windowed approach.396

An important limitation of this work and its clinical application regards the dependence on hyper-397

parameters and a distance function used in dimensional reduction and group labeling. Fixed tSNE param-398

eters and a very narrow DBSCAN parameter range not adequately account for individual record length,399

internal waveform heterogeneity, or the number of unique ventilator settings. Examples showed that chosen400

parameters of the segmentation processes were insufficient to produce phenotypes that corresponded with401

VD types using a known method, while also generating many smaller, low occurrence phenotypes. Selecting402

algorithm parameters to align identified phenotypes with VD labels is likely achievable as an application-403

specific optimization. This topic is important for clinical use but lies beyond the present scope focused on404
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low-dimensional representation of LVS evolution. Additionally, the uniform weighting of components in the405

similarity metric used for dimensional reduction may not be optimal. Strategic weighting would require406

objective criteria compatible with mixed variables to apportion LVS descriptors correctly. However, a well-407

specified metric may improve low-dimensional tSNE or UMAP representation so that estimating VD severity408

is feasible within the LVS phenotyping results.409

Algorithmically-defined LVS phenotypes did not include several important factors that limit the strength410

of conclusions about them. The pipeline process ignored esophageal pressure data because their rarity411

limits generalizability, their highly-localized features require high resolution to capture parametrically, and412

record inconsistencies (gaps, calibration) prevent continuous time characterization. Exclusion of this variable,413

essential to defining certain types of VD [11], limits phenotype ability to distinguish certain types of VD414

from airway observations. In addition, the model parameter definitions relies on ventilator-identified breath415

rate, and the pipeline therefore lacks the flexibility needed to identify double-triggered VD events that occur416

over multiple ventilator cycles.417

Most importantly, the analysis did not consider extra-LVS influences on observable data, such as patient418

sedation, neuromuscular blockade use, posture, and airway moisture and secretions. These patient-state419

variations undoubtedly impact observed data and must be included to properly vet phenotypes identified420

under ventilator stationarity (cf. Figs. 2e–g and 4e–g).421

Appropriate Normalization. Cohort-scale segmentation of Sec3.3 normalized pressure and volume to a stan-422

dard interval for inter-comparison. This waveform rescaling depends on local tidal volume, peep, and driv-423

ing pressure which could be included as feature components to improve discrimination. Scaling volumes424

by predicted body weight accounts for patient invariants (sex and height) while pressure scaling remains425

co-dependent patient+care processes (viz. plateau pressure and assigned PEEP, assigned tidal volume per426

kg in adaptive pressure modes). Waveform data and their parametric summaries dominate the dimension427

of feature vectors. Unreported experiments using naive normalization yielded cohort breath labels that seg-428

mented patients rather than refining breath types groupings. The topic warrants investigation to identify429

appropriate cohort scale normalizations in addition to metrics and weights needed to balance the roles of430

normalized waveforms and associated scaling factors in label identification.431

4.3. Concluding Remarks432

This work demonstrates an effective operationalization of lung-ventilator systems for analyzing patient-433

ventilator interactions and breath types over extended timescales to facilitate the study of VILI and its434

connection VD. Computationally defined phenotypes consolidate LVS states into classes, reducing patient-435

ventilator dynamics to evolution of discrete phenotypic states. The development permits investigation of436

time-dependent changes in MV patients within the context of applied care from observable data. The437

approach encourages hypothesis formulation regarding the role of VD and MV duration on VILI by preserving438

time-ordered links between LVS data and low-dimensional representations that are easier to analyze and439

study. The pipeline organization is structured around active learning to incorporate domain expert knowledge440

info waveform feature targets, ventilator setting inclusion, and group similarity definitions.441

The hybrid method incorporates model-based data assimilation and unsupervised machine learning to442

simplify LVS data into empirically-grouped rule-based descriptors. A suitable next step for understanding443

LVS evolution is the use of symbolic dynamics [34, 35, 36] to examine and identify common temporal patterns444
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arising within patient cohorts. An initial step toward this goal is systematizing individual LVS evolutions445

within cohort-scale phenotypes (cf. §3.3) and tuning hyper-parameters for the resolution needed target this446

specific research goal.447
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Appendix A.1. Intracluster normal and eFL in p111, label2547
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Figure A.7: The sign of PC1 loading roughly divides the VD classes in p111, label2. A threshold for the PC1 loading at zero
roughly separates NL and eFL labels by 34%/65% and 85%/14%, respectively, with NL labels strongly associated with negative
loadings. The optimal threshold (∼0.05) offers only subtle improvement. The right panel illustrates low fidelity changes in the
cluster median pV loop (blue) when modified by these negative (black, more associated with NL) and positive (green, eFL)
loadings. Note that this involves comprising 10-second properties (representing typically ∼3 breaths) to breathwise labels,
and some representation errors thus arise from summarizing binary VD labels distributionally over all breaths intersecting a
10-second analysis window.

Appendix A.2. Outlier individual cluster characterizations in the cohort segmentation548

Figure A.8: Outlier pV (left) and pressure waveform (right) characterizations from two-stage cohort LVS phenotyping, shown
in normalized form. Group categorizations associated with the largest 25 (of 27) outliers in Figure 6 which are distinct from
the main identified groups. PEEP is approximated in noramlized pressure waveforms and indicated by dashed lines. Some
outliers appear to be artifactual (from the data or estimation under stationarity). Others may be unique characterizations
corresponding to extreme cases of VD, effects of patient posture, or heterogeneous breaths occurring under uncommonly used
ventilator modes (e.g., spontaneous breathing present in 3.4% of breaths)
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Appendix A.3. Qualitiative equivalence of labels via tSNE & UMAP549

Methodological choices may bias the segmentation process of LVS descriptors. The feature dimensional550

reduction method used prior to DBSCAN labeling is strongly influential on the labeling process. Cluster551

labels are qualitatively the same in nearly all cases for under application of tSNE and UMAP (Figs. A.9552

and A.10). However, extracted characterizations for populous groupings may differ due to the geometries553

of embedded points. Characterization of tSNE-oriented labels appear to be more representative of realized554

breaths: tSNE projection of features tend to be more convex, which results in mean and median points lying555

closer to realized data. [[What i’m trying to say here: UMAP coordinates can be more asymmetric and less556

ball-like with tentacles, and loss of convexity means the ’center’ can lie farther from the actual features.]]

Figure A.9: Patient 101 clustering using tSNE (left) and UMAP (right) feature reduction stages. Identified phenotypes show
qualitatively similar evolution although the tSNE-based characterization are more representative due poor representation of
non-convex UMAP groupings by the component-wise median.

557
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Figure A.10: Patient 124 clustering, as above

Appendix B. Sample size vs. Sample description558

Broadly, waveform digitization transforms high-frequency temporal sampling of state processes into a559

lower-frequency, distributionally-descriptive form. This reduces the effective size of the problem while making560

it more dense. For a classification problem involving T samples of M -dimensional observations stored in561

an array D ∈ RT×M , methods involving kernel or covariance processes require then calculating a matrix of562

dimension M × (T ×T )×M in observation space or T × (M ×M)×T in sample space. Decreasing the order563

of T and increasing that of M by a factor α benefits computational efficiency by replacing D ∈ RT×M with564

D̃ ∈ R(T/α)×(αM). Specifically, calculating the observation covariance from D̃ requires α2 more storage but565

involves α−2 fewer calculations over the samples:[ wording bad:] (αM)×(αM) is calculated via α−1T×α−1T566

rather than T × T . Similarly, the summary sample space covariance of size (T/α) × (T/α) may be more567

dense than one built from un-summarized samples in T × T , but it may be machine representable for larger568

values of T . Computational effects are important as T >> M in most practical applications, and additional569

statistical benefits arise from increasing the size of M .570
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