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Abstract7

Refined management of mechanically ventilation is an obvious target for improving patient outcomes,8

but is impeded by the nature of data for study and hypothesis generation. The connections between clinical9

outcomes and temporal development of iatrogenic injuries current lung-protective ventilator settings remain10

poorly understood. Analysis of lung-ventilator system (LVS) evolution at relevant timescales is frustrated11

by data volume and multiple sources of heterogeneity. This work motivates, presents, and validates a com-12

putational pipeline for resolving LVS systems into the joint evolution of data-conditioned model parameters13

and ventilator information. Applied to individuals, the workflow yields a concise low-dimensional represen-14

tation of LVS behavior expressed in phenotypic breath waveforms suitable for analysis. The effectiveness15

of this approach is demonstrated through application to multi-day observational series of 35 patients. In-16

dividual patient analyses reveal multiple types of patient-oriented dynamics and breath behavior to expose17

the complexity of LVS evolution; less than 10% of phenotype changes related to ventilator settings changes.18

Dynamics are shown to including both stable and unstable phenotype transitions as well as both discrete and19

continuous changes unrelated to ventilator settings. At a cohort scale, 721 phenotypes constructed from indi-20

vidual data are condensed into a set of 16 groups that empirically organize around certain settings (positive21

end-expository pressure and ventilator mode) and structurally similar pressure-volume loop characteriza-22

tions. Individual and cohort scale phenotypes, which may be refined by hypothesis-specific constructions,23

provide a common framework for ongoing temporal analysis and investigation of LVS dynamics.24

keywords: pulmonary ventilation; patient-ventilator asynchrony; ventilator-induced lung injury; respira-25

tory distress syndrome, patient-specific modeling; knowledge representation26

1. Introduction27

Critical care often employs mechanical ventilation (MV) to manage patients with disorders such as28

acute respiratory distress syndrome (ARDS), which is characterized by inflammation and pulmonary edema.29

Modern respiratory care protocols and technologies [1] emphasize lung-protective strategies [2] to minimize30

deleterious effects like ventilator-induced lung injury (VILI,[3]). Such strategies rely an understanding of31

lung physiology to inform MV settings such positive end-expiratory pressure (PEEP), tidal volume, and32

driving pressure [4, 5, 6]. Technological advances in MV have not eliminated ventilator dyssynchrony (VD), a33

mismatch in patient-ventilator delivery and respiratory effort timing. VD may play a role in the development34

and propagation of VILI, a known contributor to mortality in ARDS patients [7]. Reduction in ARDS-related35

mortality has plateaued in recent decades [8] following a significant curtailment during the two decades prior36

[9]. Further reduction of mortality motivates the continued study of MV effects as VILI and VD likely37

support residual negative ARDS outcomes.38
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Clinical MV observables include airway pressure (p), volume (V ), and flow timeseries that record the39

dynamic interaction between patient lungs and an engineered control apparatus. The underlying data gen-40

eration process, the human lung-ventilator system (LVS), contains the key components relevant for studying41

the effects of MV over time from ventilator observations [10]. Non-ventilator aspects of patient care can also42

affect lung-ventilator dynamics and associated observables. The format (scalar, but millions of data points43

per patient per day) and multiple sources of patient- and care-specific heterogeneities hinders direct analysis44

of LVS waveforms (ibid.). Additionally, consideration of intra-breath-scale events over the duration of MV45

requires multi-scale analysis to detect signatures of injuries like VILI development from LVS data.46

Notable previous works in machine learning (ML) applications [11, 12] used identify the frequency and47

occurrence of different ventilator dyssynchronies from LVS data. Features included breath properties such as48

peak inspiratory pressure, inspiratory-to-expiratory time ratio (I:E), etc. to coarsely characterize waveforms49

in parameters familiar to practitioners [13, 14]. In another vein of research, analysis of full MV waveform50

data with attention to patient-ventilator dyssynchrony resolution has focused on hybrid-modeling methods51

leveraging empirical parameter fitting [15, 16, 10, 17]. MV waveforms often violate mechanistic model as-52

sumptions; the hybrid schemes evade this limit by reducing the assumptions through universal model [10]53

or using high-fidelity behavior-specific models [15]. These data-informed modeling methods transforma-54

tion waveform data into parametric representations, but differ in assumptions and method. However, LVS55

behavior over time has not yet been thoroughly investigated. This study presents a temporal framework56

for combining the parametric approaches together with unsupervised ML. The workflow is applied to MV57

data (waveform and ventilator documentation) to reveal the structure and complexity of breath evolution58

of individuals patients from heterogeneous LVS factors. A natural extension to cohort-scale analysis is also59

developed with an eye toward statistical or learning-based temporal analysis.60

The framework presented below extends the analysis of LVS behavior from the breath level to the scale61

of hours-to-days while jointly considering the context of ventilator settings. It relies on an interpretable and62

unsupervised segmentation pipeline [18] that supports many methodological choices including how waveform63

data are represented. Implementing a context-free digitization [10] with limited assumptions about the data,64

this work hypothesizes that respiratory behavior or other patient properties may be identified from joint LVS65

data by separating the influence of changes in MV. Investigation proceeds by scrutinizing typological breath66

changes occurring independently of ventilator management within the context of the joint patient-ventilator67

system. Analysis of ARDS patient data within this perspective demonstrates compact descriptors of LVS68

evolution, broadly categorizes MV breaths, and proposes sources of heterogeneity needed to further develop69

the problem domain.70

2. Method71

The root approach involves analyzing LVS data, including waveforms and ventilator settings, through a72

computational pipeline that begins with model-based inference of waveform data. The method parametrizes73

waveform data and identifies patient-specific breath phenotypes similarities between joint waveform and74

ventilator state descriptors. The evolution of LVSs may be examined through phenotypes when co-labeled75

according to time.76
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2.1. Data77

Mechanically-ventilated patient data were collected under the University of Colorado Multiple Institu-78

tional Review Board (COMIRB, protocol #18-1433). These data include airway pressure, volume, and79

ventilator settings for 36 patients, all of whom had ARDS diagnoses and substantial risk of VILI. Children,80

pregnant women, and age-censored elders, and the imprisoned were excluded. Esophageal pressures were81

recorded but are used in this work; collection imposed additional exclusion criterion (viz. esophageal fistula,82

variceal bleeding or banding, facial fracture, and recent gastric/esophageal surgery). Source patients include83

14 women and 22 men with median[IQR] age 59[25] years; 72% are white, 35% of which identify as His-84

panic or Latino. Table 1 summarizes clinical and demographic characteristics of patients. Data total 1.7485

million breaths over 71.14 recording-days (median 1.97[1.56] days per patient) recorded at 32 millisecond86

sampling (31.25 Hz) from Hamilton G5 ventilators (https://www.hamilton-medical.com). Adaptive pres-87

sure ventilation-controlled and pressure-controlled mandatory ventilation modes (APVCMV and P-CMV,88

respectively) account for roughly 84% and 10% of breaths, respectively, with the remainder in standby and89

spontaneous modes. Ventilator management throughout employs the ARDSnet protocols [7].90

Table 1: Tabular summary of the patient cohort and associated data. ‘Monitored’ and ‘Recorded’ durations denote the number
of hours spanned by data and length continuous data contents, respectively. P:F ratio is the PaO2/FiO2 ratio at admission,
AA = African-American, AI = American-Indian, AK = Alaska, NMB = Neuromuscular Blockade (paralytic)

Detail Count % Median IQR
Monitored (hrs) 47.0 37.2
Recorded (hrs) 43.1 40
Age (years) 36 58.5 24.5
Gender
Female 14 38.9 54.5 25.0
Male 22 61.1 58.5 26.0

Race/Ethicity
White 26 72.2
Unknown/NA 5 13.9
Black/AA 3 8.3
AI or AK Native 1 2.8
More than one race 1 2.8

ARDS risk
Pneumonia 12 33.3
COVID 11 30.6
Sepsis 6 16.7
Other 3 8.3
Pancreatitis 2 5.6
Aspiration 2 5.6

P:F ratio 135.9 81.0
Mortality 9 25.0
NMB use 9 25.0

Dyssynchrony labels. An existing supervised ML technique [11] identifies breath-wise VD to enrich LVS91

evolution context and provide comparison for newly calculated labels. Type-specific VD models each label92

breaths according to features characterizing dyssynchronous breaths (see ibid. SI). VD labels include normal93

(NL), reverse triggered (RT) with early (RTe) and middle (RTm) subtypes, early flow limited (eFL) with94
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intermediate (eFLi) and severe (eFLs) subtypes, double trigger (DT) with reverse- (DTr) and patient- (DTp)95

subtypes, and early vent termination (EVT); breath mechanics of these VDs are described in [12]. The96

present work ignores VD subtype labels and uses VD labels to identify likely VD occurrence during model97

time intervals.98

2.2. Model-based waveform parametrization99

A waveform parametrization [10] is adopted in this work for convenience. It may easily be substituted100

for spectrograms [19], data features [11], or other model-based waveform characterization [20]. Briefly, the101

model transforms waveform data yobs on a continuous time window I into a parameter vector a under the102

assumption that PEEP and breath period θ are locally constant. A differential equation models the state103

variable y (pressure, volume, or another waveform variable of interest):104

dy

dt
+ g · (y(t)− y0) = φ(t;a, θ) (1)

where t is time, g is a smoothing parameter, y0 is a reference state (such as PEEP when y is pressure, and105

zero when y is volume), and φ(t) is a time-dependent function of local amplitude parameters a ∈ RM and106

breath period θ. The model, Eq(1), defines a map a 7→ y(t) that simulates a state trajectory y from a107

periodic step function φ modulated by parameters a:108

φ(t;a, θ) =
1− e−g∆t

g

M∑
i=1

ai

[[
(i− 1) ≤ t̂

∆t
< i

]]
. (2)

where t̂ := t(mod θ) is the local breath time, which is divided into M equal epochs of width ∆t = θ/M .109

The corresponding inverse problem [21] is solvable by data assimilation, mapping the observations to a110

distribution of parameters that reconstruct the data: yobs 7→ {a}. Optimal parameter distributions for111

pressure and volume data are generated by applying an ensemble Kalman-like smoother [22]. A moderate112

resolution model (M = 28) is sequentially inferred for each 10-second block of data using 1.6 second windows113

with 0.8 second overlaps. Details, error analysis, and validation of the parametrization is found in [10].114

2.3. Pipeline115

The computational pipeline extracts low-dimensional representations of LVS data that effectively encode116

relevant features of both breath waveform data and the ventilator settings associated with them. The method117

(depicted in Figure 1) follows [18] using model-inferred parameter distributions to uncover latent similarities118

within the data. The four stages of application to LVS data focus on changing system representation, followed119

by a final interpretation.120

1.) Waveform parametrization. On each 10-second interval, parameters distributions for continuous pressure121

(p) and volume (V) waveform data inferred for the model (§2.2) with a moderate resolution (M = 28).122

Specifically, an ensemble of Nens = 25 solutions is optimized within a moving sub-window of length 1.6123

seconds and 0.8 second overlap. The initial ensemble prior comprises parameter values ai = 0.5, i = 1..M124

perturbed by 10% white noise. Afterwards, the posterior parameter estimate ({ai} i = 1..Nens above)125

becomes the prior for next sub-window, with updates using only data not previously assimilated. For126

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 11, 2024. ; https://doi.org/10.1101/2023.12.14.23299978doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.14.23299978
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Broad pipeline organization. Raw data (1.) are digitally parametrized (2.) over short windows by the model
(§2.2). Distributional parameter estimates are summarized and augmented with the contextual data of ventilator settings (3.)
which include information such as ventilator operation mode, PEEP or other baseline pressure, flow and pressure triggers, and
minimum mandatory breath rate. Feature vectors, defined by the augmented LVS descriptors, are dimensionally reduced to three
dimensions using UMAP (4.) where they can be analyzed based on time ordering (top) and structural similarity via segmentation
(bottom). Finally, in (5.), temporal evolution of the system is compactly encoded in the time-ordered LVS descriptor labels
and their associated waveform characterizations in an interpretable and explainable way. The process transforms raw data (1.)
into a more easily comprehensible form such as (5.).

example, the prior for the second sub-window (0.8–2.4 seconds) is conditioned on data from 0–1.6 seconds,127

and assimilates data from 1.6–2.4 seconds to initialize the window starting at 1.6 seconds. Parameters128

associated with late exhalation are not typically informed data until the third sub-window (1.6–3.2 seconds).129

Excluding these first three estimates, roughly 10 ensemble estimates define an empirical parameter density130

that captures the waveform data within the 10-second window.131

2.) Parameter Distribution Summarization. The empirical distributions of the 2M -dimensional parameters132

are reduced to vectors of statistical summaries. This is done to ease comparison of waveform behaviors at133

different points in time by applying similarity measures to distribution summaries. Descriptor components134

include mean, quartiles, variance, and mode as well as non-gaussian measures (skewness, kurtosis, and135

Kolmogorov-Smirnov distance) to capture bimodal or asymmetric parameters distributions characterizing136

non-stationary LVS behavior. Period and baseline pressure, assumed stationary during inference, are included137

in parameter summaries to permit accurate waveform reconstruction. The strategy reduces the temporal138

sampling rate (from 31.25Hz to 0.1Hz) by representing 10-second windows of waveform data statistically139

through data-informed model parameters. Reduction in the overall data volume is governed by summary140

window length (under weaker stationarity assumptions) and model resolution (M).141

3.) Augmentation. Appending ventilator setting data to each statistical waveform parameter summary142

contextualizes them in the health-care process. Ventilator settings detail the mode of operation (volume143

control, pressure control, spontaneous, standby, etc.), targeted quantities (pressure or tidal volume) as144
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well as various machine settings (tidal volume, trigger thresholds, ramp time, mandatory minimum breath145

rate, etc). Some ventilator settings, such as PEEP and I:E ratio, are already represented in implicitly in146

summary descriptors and need not be explicitly included. Other available factors such as ventilator delivery147

power are not considered here but may be included in other applications. Ventilator mode is a nominal148

variable represented as set of binary variables using one-hot encoding. Settings summaries reflecting the149

most frequent breath-level record of each augment waveform descriptors to define LVS feature vectors in150

subsequent pipeline steps. Ventilator settings change infrequently, and summary errors are therefore rare151

among estimated intervals.152

4.) Cluster Labeling. Segmentation labels groups of LVS descriptors based on content similarity and can153

be applied at individual patient or aggregated cohort levels. Descriptors are first dimensionally reduced to154

diminish the computational burden imposed by many large feature vectors and to assist in visual and analyt-155

ical assessment of label assignment. This is followed by unsupervised segmentation ([23]) where appropriate156

groupings are identified for the joint LVS descriptors in reduced coordinates.157

The Uniform Manifold Approximation and Projection (UMAP,[24, 25]) identifies a low-dimensional pro-158

jection that preserves the local and global structure of high-dimensional joint LVS descriptors (∼ 400-159

dimensional for M = 28; fixed parameters: neighborhood size 5, minimum distance 0.01, 3 output dimen-160

sions). Similarity structure is determined by the the Gower distance, which averages over range-normalized161

distances for continuous variables and binary difference in categorical variables (ventilator modes). Density-162

Based Spatial Clustering of Applications with Noise (DBSCAN, [26, 27]) then groups the similarity-organized163

LVS descriptors based on point densities of the UMAP coordinates. A brief grid-search over hyper-parameters164

(min. core point neighbors 4–12; neighborhood radius 1.5–5 by 0.5) identifies a grouping with minimum total165

distance between centroids. Flexible labeling sought to accommodate the feature variations that generally166

increase with the LVS record length.167

Another dimensional reduction option, t-distributed Stochastic Neighborhood Embedding (tSNE,[28],168

produced similar LVS groupings with the same DBSCAN parameters ([29], SI B.2). Support vector clustering169

[30, 31] also yielded similar labels but required significantly longer computation time. The k-means and170

k-medoids [32] methods were considered for efficiency but struggled with the non-convex groupings that171

typically emerged from the UMAP projection of LVS descriptors.172

5.) Phenotype interpretation. Labeled descriptors correspond one-to-one with 10-second data windows and173

associated information, including the observed waveform data, waveform parameters, ventilator settings, and174

relative measure of group-wise similarity. Identification and further analysis of group characteristics may be175

leveraged from these details. For example, applying the model (Eq.(1)) to e.g., median model parameters176

associated with a label yields pressure or volume waveforms characterizing the central behavior of each group.177

From this perspective, group labels distinguish phenotypes of the LVS observables for an individual patient.178

2.4. Phenotypes and Characterizations of LVS data179

The phenotyping pipeline identifies windows with empirically similar LVS states, organizing data into180

discrete categories. The co-evolution of the patient-ventilator system is captured in the temporal progression181

through these categories and may be analyzed over longer timescales. A stated objective is to reveal changes182

originating from the patient-side of the system with no corresponding ventilator changes. Such changes183
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suggest the presence of factors that influence LVS trajectory such as changes in patient expectation and184

breathing pattern (e.g., patient effort, respiratory drive), lung mechanical function (e.g., VILI progression185

or recovery from ARDS), or another aspect of physiology.186

Pipeline experiments are performed individually on 35 ARDS patient data records. Experiments reduc-187

ing LVS evolution to categories posits that LVS behavior includes patient-side changes that are detectable188

from waveform data. The objective of each experiment is to assess whether this is true and whether it is189

potentially representable in low-dimensional categories. Phenotype evolution is presented in the context of190

ventilator settings and in relation to classified VD ([11]). Additionally, pressure-volume (pV) characteriza-191

tions, computed from model parameters nearest to the phenotype center (viz. median), provide a familiar192

synopsis of associated waveform data for each window represented in the data. Such visualizations intend193

to summarize key features and notable changes defining the LVS trajectory. Subsequent analysis and dis-194

cussions employ principal component analysis (PCA), an empirical signal factorization based on variance195

minimization [33, 34]. This tool reveals the degree of LVS variance occurring under during stationarity to196

investigate non-ventilator temporal changes not identified by segmentation.197

2.4.1. Cohort-scale phenotyping198

Direct application of the individual pipeline to cohort data is a computationally expensive problem due to199

the data volume (O(106) 10-second intervals of continuous multivariate variables), A simple alternative is to200

develop cohort-scale meta-labels for the population of individual phenotypes. However, appropriate scaling201

of volume waveforms is necessary to ensure adequate mixing of patients in feature space, as tidal volume202

value depends patient anthropometry. Treating both waveform components equally, pressure waveforms are203

standardized by zeroing on PEEP or baseline pressure and scaling by driving (maximum-minus-baseline)204

pressure within each window. Feature vectors for cohort clustering are individual phenotype statistics of:205

baseline pressure, driving pressure, scaled tidal volume, estimated parameters of normalized waveform data,206

and associated ventilator settings. Segmentation and label assignment proceeds by identically using UMAP-207

DBSCAN as in the individual case, albeit with different hyper-parameter values (UMAP: neighborhood size208

12, minimum distance 1, euclidean metric; DBSCAN: epsilon 2.7, min points 5).209

3. Results210

The clinical data associated with ARDS patients (Table 1) is an important and practical use-case be-211

cause such patients may be prone LVS changes related to ventilator dyssynchronies and VILI. This section212

reports the results of experiments applying the pipeline to individual ARDS patient data records (§3.1) and213

the assembly of cohort-scale phenotypes (§3.2). Within individual experiments, the temporal structure of214

LVS data labels is examined for consistency and resolution. Phenotypes aggregated across the cohort pro-215

duce generalized LVS descriptor characterizations. Sequences of dyssynchrony labels [11] provide additional216

comparative context for exploring MV states of ventilator settings and waveform characteristics.217

3.1. Patient-level Phenotyping218

LVS patient data are identified with 20[14] (median[IRQ]) individual phenotypes, totaling 721 across the219

cohort. Approximately half of these labels correspond to infrequent behaviors each associated with less than220

1% of a given patient record. A median of 8[6.5] core clusters each representing more than 3% of the data221
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account for the remainder of the data of each patient. Reducing label specificity through UMAP-DBSCAN222

hyper-parameters can eliminate low-occurrence groups, but a high degree of specificity is needed to resolve223

feature heterogeneity that increases with the total duration of the patient record. As record durations span224

0.7–92 hrs (median[IQR] 47[37] hrs), the over-segmentation of shorter LVS records supports the resolution225

needed for longer records without a more robust optimization of individual segmentation.226

Individual phenotype labels capture essential changes in ventilator settings and capture unrelated changes.227

There is high correspondence between changes in ventilator settings and persistent changes (lasting longer228

than 30 second) in individual patient phenotype labels (SI Table A.3). Changes in settings are typically229

(mean(s2l) > 60%) reflected in label changes, with ∼92% of changes in PEEP, MV mode. and VT inducing230

label changes. The former assessment is biased by few settings changes in some patients and by counting231

changes with likely no direct effect on discrete breath behavior (e.g., trigger sensitivity or mandatory breath232

rates). Label-to-settings change coherence (l2s) is considerably lower; less than 10% of label changes are as-233

sociated with ventilator settings changes. While obviously impacted by the much larger number of changes in234

labels than settings and the over-specificity discussed above, individual breath phenotypes include important235

changes LVS behavior, which are broader than changes ventilator properties.236

Figures 2 and 3a–d visualize particular aspects of the low-dimensional time-ordered pipeline output for237

two patients (149 and 114 of Table1, respectively). Their cases are typical of experiments in record length238

(∼24 hours), number of ventilator settings changes, and number of identified phenotypic breaths. The239

complexity and heterogeneity of joint patient-care data preclude in this work; SI B provides additional240

examples.241

Example 1:. Figure 2 of patient 149 illustrates the trajectory of their LVS is driven by a progression of242

PEEP reduction and ventilator mode changes from APVCPM to spontaneous breath support for several243

hours. Changes in these settings, along with tidal volume, account for primary drivers of LVS behavior in244

nearly all experiments. Externally labeled VD types show little identified dyssynchrony as most breaths are245

identified as normal. However, there is also heterogeneous behavior indicated by labels (b) during the period246

from 4 to 12 hours under stationary ventilator settings. Here, LVS state vacillate between labels #1 and247

#3 with notably distinct pV characterization (c) during this period. Based on analysis of similar behavior248

in other experiments, irregularity of delivered tidal volume by the APVCMV mode in response to previous249

breath pressure is a likely explanation. Parsing LVS evolution is obviously burdened by system heterogeneity250

even within an individual.251

Example 2:. Figure 3 illustrates an analysis of patient #114 whose LVS undergoes multiple changes over a252

24-hour data period. The portion during 7–14.5 hours is dominated by normal breaths that spans two labels253

with similar characterizations as pV loops but differ in mean respiratory rate. The difference is minor (the254

mean difference is less than 20 milliseconds), although this affects model parameter and could combined via255

posterior analysis, with small DBSCAN hyper-parameter changes, or coarser period binning. Changes in256

flow trigger settings occur around 3 hours and reduce the occurrence of eFL near the star of the record,257

associated with caving in pV loops (label 1, dark blue). Dyssynchronies return when the flow trigger is258

returned to its initial value, near 15 hours. PEEP and tidal volume targets are also adjusted several times.259

Brief ventilator changes in ventilator mode around 20 and 23 hours allow spontaneous breathing which have260

a profoundly different pV characterizations (label 12,tan). The interim period (20.5–22.5 hours) consists of261
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Figure 2: LVS evolution of patient 149. Panels a–c correspond to changes in ventilator settings, segmentation labels, and
externally identified VD type, respectively. The horizontal axis for these panels is the patient record time in hours. The
panel (d) shows the model image of segmented data median parameters, which characterize the pV loops of breaths with that
label (shown with the same color). Evolution of the LVS can be parsed pictorially from these figures. The LVS evolution of
patient 149 label#1 is discontinuous in time and occurs under different PEEP values suggesting waveform shapes vary only in
baseline pressure. There is a lot of waveform variation present within the largely VD-less evolution, and significant changes
in non-ventilator aspects of the LVS. Settings changes (a) are relative values to indicate change occurrences of multiple unlike
values.

primarily normal breaths (label 13, brown) under the default pressure-control mode.262

Figure 3: A representative example: patient #114. The upper plot layout is the same as the previous figure. The lower plot
examines the variability, and a shortcoming of low resolution segmentation to capture changes that may be highly diverse at a
local level. The mean– the dashed black line – coincides with the golden pV loop (cluster #10) in the upper plot. The many
distinct breath subtypes identified are more similar than to other main types in the upper plot; as a result, they are grouped
together at this choice of hyper-parameters.
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Intra-label variability: A closer look at Label 10 of patient #114. Breath phenotype analysis of patient263

#114 (Fig.3) indicates no ventilator setting changes during the record interval 15–21 hours. Although one264

phenotypic breath dominates this period (d, dashed outline), various ML-labeled dyssynchronies (c) intimate265

more variability. Principal components during this interval (e) reveal structural waveform changes (f,g) that266

are not clearly identified as sub-phenotypes. While pressure characterizations (f) suggest the differences267

are largely attributed to pressure plateau pressure, full characterization also indicates ∼35% variability in268

tidal volume (g) as well. The continuous LVS evolution through these subtypes – and their comparative269

differences to the other types – leads to their collective identity. SIB.8 demonstrates a case where intra-label270

variability may be discretely resolved.271

3.2. Cohort-scale phenotyping272

Secondary segmentation (§2.4.1) of 721 individually-identified LVS phenotypes generates 16 groups of273

systemic behaviors. Figure 4 presents the coordination of labels and statistical summaries of data properties274

in dimensionally reduced form. Although there remains inherent variability, label-partitioned data have275

consistent properties and ventilator settings. Importantly, groups mix patients (b) while separating PEEP276

(c), with exceptions for specific, rare ventilation modes (d) that include few patients. Table 2 and Fig277

4 quantitatively validate labeling of original data in the general settings. Specifically, labels consistently278

align with structured properties of the LVS data. Fig 5 shows the associated non-dimensional waveform279

characterizations; PEEP, tidal volume, and peak pressure features are used to normalize these data across280

patients.281

Granularity of cohort meta-characterization depends on UMAP-DBSCAN hyper-parameters. Although282

UMAP representation was robust, cohort labeling was sensitive to the neighborhood size (SI C) due to the283

relatively small population of phenotypes. Selected parameters aimed to maximize the number of phenotypes284

easily communicating waveform characterizations in an array of figures; the results are qualitatively similar285

for nearby parameters. Table 2 summarizes the occurrence and properties the 16 cohort phenotypes.286

3.3. Synthesis287

Empirical segmentation analysis of patient+care data from MV patients indicates that changes in PEEP288

and ventilation mode are define the primary organization of group identities, followed by changes in tidal289

volume and those of non-ventilator origin (patient behavior or unattributed factors). Changes in these290

settings, along with multiple types of observed intra-patient variability, reveal that joint consideration of291

both patient and care processes is needed to understand the evolution of LVS systems. Analyzing patient292

state through breath data, especially for VILI detection and to track ARDS progression, requires considering293

ventilator settings. LVS behavior is often variable during periods of ventilator stationarity. Variability is294

sometimes reflected in label changes (Fig2b, hours 5–12, 17–18, 22–23; Fig3b, hours 3–14). When it is295

not, explanations include insufficient label granularity to resolve identifiable subgroups (e.g., SI Figs B.6e–296

g and B.8) and/or continuous changes in breath behavior (e.g., Fig1, step 4, label #4 in red; Fig 3e–g).297

Nevertheless, the space of joint breaths is greatly reduced through expression in the empirical phenotypes,298

with labeled data reflecting a hierarchical organization based on key vent settings (PEEP and mode) followed299

by waveform properties. Additionally, cohort scale analysis is also possible by segmenting the batch of300

individual phenotypes. Such a categorization provides a coarse -but scalable and unified- basis for analyzing301

the evolution of LVSs in terms of their consistent statistical properties.302
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Figure 4: Membership and data properties associated with 721 phenotypes. Points in panels (a–d) correspond to individual
phenotypes in UMAP coordinates. Labels (a) mix patients (b) while defining empirical partitions of other factors of patient
data (c–h). Groupings separate PEEP (c,g) and ventilator modes (d), which are arguably among the most important ventilator
feature elements. Structured distributional separation occurs for continuous breath variables such as tidal volume (e), driving
pressure (f), and elastance (VT /(pmax − pbase)). PEEP (c) and ventilator mode (d) of UMAP labels identify the median
value of each individual phenotype; probability densities (e–h) are computed from original data and colored according to panel
(a). Modes: spontaneous (SPONT), Pressure controlled (PC), Synchronized controlled (SC), and Adaptive Pressure Volume
Controlled (APVC)

Table 2: Cohort label properties. Columns identify: cohort-level label, the contained percentage of 10-second windows, the
number of contained patients (Npat), the number of contained individual phenotypes (Npheno), the median[IQR] of baseline
pressures (pbase, typically PEEP) and pressure change (∆p := ppeak − pbase) in cm H2O, the median[IQR] of tidal volumes
(VT ) in mL/kg, and the dominant associated ventilator mode. Values are determined from breath-level data aggregated over
individual phenotypes with a given cohort-level label. *=5–10% SPONT, **=10–20% SPONT, ***= 40% SPONT

Label Total% Npat Npheno pbase ∆p VT ∆p/VT MV mode
1 15.5 23 101 10 12.1[3.7] 6.3[1.0] 1.9[0.6] APVCMV
2 13.8 22 101 12 14.2[3.3] 6.0[1.1] 2.3[1.0] APVCMV
3 11.4 11 52 8 12.7[4.1] 7.9[1.3] 1.5[0.4] PCMV*
4 8.4 12 37 14 12.2[6.9] 5.9[0.2] 2.0[1.3] APVCMV*
5 7.3 11 32 12 15.1[13.6] 5.9[0.1] 2.7[2.4] APVCMV
6 6.9 17 58 11 13.1[2.9] 6.2[1.3] 2.1[0.5] APVCMV
7 6.3 8 49 14 12.6[2.9] 6.2[1.3] 1.9[0.7] APVCMV
8 6.2 11 49 16 13.4[2.3] 6.0[0.6] 2.2[0.6] APVCMV
9 6.2 9 51 16 15.9[6.0] 5.9[2.8] 2.6[2.4] APVCMV
10 4.1 11 34 8 9.7[2.7] 6.8[1.5] 1.6[0.4] APVCMV
11 3.7 5 25 5 10.7[0.2] 6.5[0.7] 1.7[0.2] PCMV**
12 3.4 14 22 5 8.9[4.1] 7.0[2.4] 1.2[0.8] APVCMV***
13 2.5 6 10 8 11.1[1.4] 6.6[1.0] 1.7[0.2] APVCMV
14 1.7 11 27 14 13.3[2.9] 6.0[1.3] 2.0[0.8] APVCMV
15 1.5 5 14 10 13.5[1.9] 6.5[0.3] 2.1[0.4] APVCMV
16 1.1 10 16 14 21.3[9.5] 5.6[1.8] 3.7[3.1] APVCMV
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Figure 5: Non-dimensional waveform shapes. Pressure-volume traces correspond to median (bold) and nearby (thin) window
characterizations of each cohort phenotype. Labels and colors correspond to Fig4a. Vertical and horizontal scales axes cor-
respond to V̂ := V/VT and p̂ := (p(t) − pbase)/(ppeak − pbase), respectively, per Fig4e–g The dashed line indicates baseline
pressure. Cohort phenotypes differentiate waveform shape characteristics and pressure-volume coordination in conjunction with
associated dimensional properties. Intra-group variation is naturally high given the low specificity of each type.

4. Discussion303

This study presents a framework for extracting meaningful, low-dimensional characterizations of lung-304

ventilator system (LVS) states from ventilator records and observable data of mechanically ventilated medical305

patients. Research into ARDS and VILI involves studying patient-ventilator interactions from data with a306

high degree of heterogeneity. Temporal analysis of highly heterogeneous LVS data is required to disentangle307

iatrogenic effects and changes in patient dynamics from changes in ventilator settings. This work facilitates308

the analysis of LVS behavior and its changes from continuous MV data, aiming to generate hypotheses about309

care improvement.310

The phenotyping pipeline is built to flexibly handle different representations or analyses of ventilator311

waveform data, commonly including airway pressure and volume (or flow). The process involves aggregating312

segmented analyses of individual patient data over short (10-second) intervals and empirically identifying313

clusters of similar states. Consequently, the observable LVS data is reduced to a small set of patient-level314

phenotypes, making it discrete and more manageable compared to continuous joint high-resolution waveforms315

and breath-wise ventilator settings. LVS description employed a generic model to transform waveform data316

rather than a mechanistic model which would condition segmentation on modeled physiology.317

Experiments conducted on clinical data of 35 patients with strong ARDS risks, including 8 2020 patients318

with COVID-19, found the automated phenotyping process sufficient to discern between changes in the venti-319

lator and the patient components of the LVS system. Individual LVS phenotypes were primarily determined320

by ventilator setting changes, given that changes in mode, PEEP, and tidal volume can profoundly affect321

waveform shapes as well. However, temporal changes in phenotype uncoordinated with ventilator changes322

were also present in all patients with more than 12 hours of data, revealing changes in the patient side of the323

LVS system. Not all such changes were captured by the naive segmentation based on uniformly weighted324
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data-derived features. Unlike the rapid and instantaneous transitions related to MV setting changes, patient-325

side changes exhibit a variety of behaviors including: continuous but non-monotonic progression, transient326

behavior, and alternation between both similar and non-similar breath patterns. The investigation identified327

pervasive and varied non-ventilator changes occurring within the LVS system, which was a primary goal of328

this work. Progressive changes suggest effects on lung physiology related to VILI and ARDS. Others suggest329

multi-breath scale volatility potentially related to dyssynchrony between the patient and adaptive control330

mechanisms. These behaviors could be detected through principal component analysis of data over intervals331

of static MV, but additional EHR data required to adequately explain them are presently unavailable.332

4.1. Validation and Interpretation333

Clinical validation formally requires benchmarking computed phenotypes against documented patient334

conditions [35]. Target biomarkers of breath behavior do not currently exist, and patient outcomes are335

extremely unlikely to relate directly to the respiratory data of initial snippets of longer encounters. When336

such targets are established, labeling only necessary and sufficient LVS variables under hyper-parameters337

objectively optimized for a given purpose. Instead, analytical validation used a naive system representation338

and hyper-parameter choice to investigate the structure of intra-label variability and to demonstrate label339

consistency in relation to changes in PEEP, ventilator mode, and tidal volume. Not all such changes induced340

label changes; waveform shape similarity under different ventilator settings was sufficient to preserve group-341

ing. Coordination between settings and label changes (SI Table A.3) indicates that the phenotypings, which342

did not include physiological information (model or label assumptions), are more granular than ventilator343

setting stratification. Intra-label variability indicated the presence of potential label subtypes, suggesting344

that hierarchical or multi-stage clustering may be important for future applications. Although 10-second345

window scalar phenotypes are directly incomparable to breath-wise vector types of ventilator dyssynchrony346

(VD), changes in label-described behavior strongly coordinate with changes in VD type. Notably, both347

phenotype variability analysis and VD labels identified similar temporal patterns in many cases including348

those presented (in text in SI) without VD knowledge informing LVS descriptors. Additionally, esophageal349

pressures were not encoded into phenotypes but are required to confirm certain VD types [12].350

The need for a framework to develop hypotheses about temporal effects and outcome validation targets351

for MV from retrospective cohort data motivated the methodology presented in this work. For specific choice352

of hyper-parameters applied to individual phenotypes, the ∼1.5M breaths reduce to a small set of 16 pV loop353

shapes Fig5 and distributional statistics that include MV settings (Table2, Fig4). Cohort labels demonstrably354

partition data into consistent groups, with an expected high degree of variability given the heterogeneity of355

LVS behaviors. Signs of dyssynchrony are apparent in these median pV shapes such as ineffective triggering356

(sub-baseline pressures in 5,15, and 16) and flow limitation (inspiratory coving in 3, 11, and 15). This357

indicates that some of the cohort scale phenotypes, while broader and less specific than VD types, center358

on elements of dyssynchronous behavior. Including VD labels or other physiological information in feature359

descriptors may better align phenotypes with VD labels in applications targeting LVS specific behaviors.360

4.2. Limitations and Improvements361

Combining data assimilation-based parametrization with unsupervised learning ([18]) overcomes primary362

shortcomings of existing approaches. In particular, the mechanism-free encoding of waveform data into363
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parameters with a priori definition circumvents patient- and care-dependent heterogeneity which strongly364

limit physiological model use in this domain ([10]). This approach digitizes waveform data into statistical365

distributions under 10-second (3–4 breath) stationarity without imposing other physiological assumptions366

that limit generalizability of mechanistic models. Although physiological information is not incorporated367

here, other analyses of waveform data can easily augment or replace LVS the waveform descriptors used in368

this work.369

An important limitation of this work and its clinical application regards the dependence on hyper-370

parameters and a distance function used in dimensional reduction and group labeling. Fixed UMAP and371

narrow DBSCAN parameter search ranges do not adequately account for individual record length, inter-372

nal waveform heterogeneity, or the number of unique ventilator settings that affect individual phenotype373

resolution. Presented examples clearly showed segmentation was insufficient resolve certain changes while374

also generating smaller, low occurrence phenotypes. To capture LVS behavior optimally with this method,375

phenotype resolution depends on the LVS descriptors used, the length and variability of data records, and376

the application target. This optimization is important for clinical use but lies beyond the present scope377

focused on obtaining low-dimensional representation of LVS evolution.378

Select data sources limit the applicability and strength of conclusions based on empirical LVS pheno-379

types. The pipeline ignored esophageal pressure data, which are essential to confirm certain dyssynchronies.380

Analysis avoided these data because their rarity limits generalizability, they require high model resolution to381

resolve, and their inconsistencies (gaps, calibration) prevent continuous time characterization. The waveform382

parametrization also relies on ventilator-identified breath rate, so the pipeline lacks the flexibility needed383

to identify double-triggered VD events that occur over multiple ventilator cycles. Most importantly, the384

analysis omitted extra-LVS influences on pV waveforms such as patient sedation, neuromuscular blockade385

use, posture, and airway secretions as these data are not available. These patient-state factors undoubtedly386

impact observations and must be included to properly vet phenotypes identified under ventilator stationarity387

(cf. Fig3e–g and SI FigsB.6e–g).388

The similarity metric used in dimensional reduction also requires deeper considerations. Individual389

experiments, as well as cohort phenotype construction, weight LVS descriptor dimensions equally to identify390

an empirical data segmentation uninformed by prior knowledge. Uniform components weights are sub-391

optimal, as e.g., mid-expiratory parameter variance should realistically have less impact than PEEP on LVS392

state category. An optimal weighting strategy requires targeted apportioning, but objective criteria are393

currently unknown and are likely to depend on the downstream use of phenotypes. Identifying appropriate394

relative weightings of waveforms data, settings information, and extra-LVS factors (posture, sedation, etc.)395

for segmentation is ongoing work.396

4.3. Concluding Remarks397

This work continues to develop a flexible operationalization of lung-ventilator systems for analyzing398

patient-ventilator interactions and breath types over extended timescales. It advances the study of VILI399

and its connection VD by distilling patient-ventilator dynamics embedded in data into discrete phenotypic400

classes that can be analyzed over time. The research identified system changes unattributable to care-side401

ventilator in order to being isolating patient-side dynamics. Assessing this type of variability is an essential402

first step in temporal analysis of MV patient data within the context of applied care. Ongoing work toward403
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formulating hypotheses about system trajectories related to intervention and outcome motivated cohort-scale404

phenotypes, providing a shared low-dimensional basis for LVS comparison. This translates LVS evolution,405

and questions related to protocols governing its control, into forms representable by symbolic dynamics406

[36, 37, 38] that can be used to examine patterns arising within patient cohorts.407
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volume, and model changes, which induce significant waveforms changes compared with other settings such517

as mandatory breath rate (set rate). Few (8%) identified changes in label, however, are directly associated518

in time with ventilator settings changes.519
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Table A.3: Ns indicate the number of ventilator settings changes in set PEEP, set ptrigger, set qtrigger, set rate, set fio2, set ie,
set flowpat, set mode, set vt, and vt set. Nl indicates the number of persistent label changes, counting those lasting longer
than 30 seconds, to omit isolated transient changes and variability occurring as mixed-breath types (e.g., FigB.7 during 11–14
hours, characterized by both alternation between labels #10 and #13 labels and changes in ML-identified VD type.) Column
‘s2l‘ indicates the percentage of vent settings changes that occur with a label change within 100 secondsColumn ‘l2s‘ indicate
the number of label changes that occur within 100 seconds of vent changes.

ID Ns s2l (%) Nl l2s (%) ID Ns s2l (%) Nl l2s (%)
101 45 73.33 66 16.67 129 11 45.45 138 3.62
102 1 - 1 - 130 14 85.71 296 6.42
103 2 100.00 35 8.57 131 10 70.00 25 20.00
104 25 36.00 356 1.97 133 37 78.38 154 18.83
105 1 100.00 46 4.35 134 76 5.26 175 0.57
107 99 56.57 288 9.72 135 104 86.54 695 6.47
108 20 75.00 342 2.92 136 222 59.01 590 6.78
110 3 33.33 73 1.37 137 137 54.01 166 14.46
111 23 78.26 328 7.01 138 10 60.00 38 21.05
112 59 45.76 177 6.21 139 24 70.83 451 3.99
113 14 78.57 260 6.15 140 47 100.00 629 1.75
114 48 29.17 50 24.00 141 73 45.21 431 7.42
115 0 - 4 0 143 37 62.16 713 2.66
116 83 80.72 370 12.70 144 83 77.11 421 9.03
117 13 76.92 1000 1.40 145 50 62.00 380 8.42
119 51 98.04 265 8.30 146 220 42.27 650 9.38
120 57 40.35 246 8.94 149 39 25.64 296 4.73
123 18 88.89 460 3.91 150 12 75.00 424 2.12

mean 52 64.57 325 8.00

SI B. Individual Experiments, continued520

This supplement continues illustrated examples of §3.1.521

Figure B.6 panels a–d illustrate the analysis of Patient #103 whose data consists of 7 record hours with522

one simple ventilator setting change. Only ventilator PEEP (a) is changed while there are three primary523

behaviors identified (b,d). The reduction of PEEP occurs about 2 hours following a rise in early flow524

limited breaths (eFL, panel c). This PEEP change (from 8 to 5 cmH2O) shifts peak pressure from 16 to 12525

cmH2O for about an hour, at which time higher esophageal pressures returns. These breaths are identified as526

normal (NL) [11]. Increased specificity may be pursued by local segmentation or other dimensional reduction527

methods.528

A closer look at label 1 of patient #103:. The first principal component loadings (panel e, black) for LVS529

descriptors over the first 5-hour period track the sequence of normal and eFL VD labels (f, shown as 5530

minute statistics for clarity). Within the same breath phenotype (label 1), the sign of the component531

loading statistically the eFL VD labels (AUROC=0.8718); high positive values are associated with eFL532

breaths (f,g; green) where pressure maxima proceed volume maxima. These LVS variations result from533

changes in the patient component, as there is no change of ventilator settings. Note that direct correlation534

between continuous loading values on 10 second windows and statistical breath-wise binary VD label is not535

well-defined while binary-to-binary comparison is.536

The patient #113 (Figure B.7) dataset is nearly twice as long with again only one PEEP change occurring537

after 10.5 hours of the 15.6 hour record. Breaths are stably identified as normal-type until about 8 hours,538
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Figure B.6: Analysis of patient #103 LVS data (a–d) and the initial a 5-hour interval (e–g). Panels a–c correspond to changes
in ventilator settings, segmentation labels, and identified VD type, respectively. The horizontal axis for these panels is the
patient record time in hours. The panel (d) shows the model image of segmented data median parameters, which characterize
the pV loops of breaths with that label (shown with the same color). Evolution of the LVS can be parsed pictorially from these
figures. Large positive variations in the first principal component loading (e, black) for the initial 5-hour period align with VD
labels indicating eFL type breaths (f) for this period. Specifically, this suggests discrimination of breaths shapes (g) can be
differentiated using qualitatively criterion on local loadings or other segmentation.

occupying two cluster-identified similar breath shapes. This is followed briefly by eFL breaths and a transition539

to a new characterization (label 8, light green) for about 30 minutes. In the following period (9–14 hours),540

breaths are characterized by lower pressure maxima (label 10, gold); these are associated/identified with541

reverse-trigger breaths (primarily RTm) and waveforms featuring pronounced inspiratory pressure drop.542

The reduction in PEEP slightly increases the incidence of normal breaths during 11–14 hours although this543

results in the more frequent appearance of shallow breaths (label 13, red).544

SI B.1. Intracluster normal and eFL in p111, label2545
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Figure B.7: The patient #113 evolution also includes only PEEP changed. The layout is the same as panels a–d of the previous
figure. Under constant ventilator settings, breaths undergo transition several times including intervals of VD prior to PEEP
change around 10.5 hours. A 1-hour long shift from label 2 to 8 occurs around 8 hours during which breaths decrease peak
pressure and includes an increase in eFL and RT VD occurrence. After the PEEP change, breaths remain highly dyssynchronous
and primarily centered around the characterization with label 10.

Figure B.8: The sign of PC1 loading roughly divides the VD classes in p111, label2. A threshold for the PC1 loading at zero
roughly separates NL and eFL labels by 34%/65% and 85%/14%, respectively, with NL labels strongly associated with negative
loadings. The optimal threshold (∼0.05) offers only subtle improvement. The right panel illustrates low fidelity changes in the
cluster median pV loop (blue) when modified by these negative (black, more associated with NL) and positive (green, eFL)
loadings. Note that this involves comprising 10-second properties (representing typically ∼3–4 breaths) to breath-wise labels,
and some representation errors thus arise from summarizing binary VD labels over all breaths intersecting a 10-second analysis
window.

SI B.2. Qualitiative equivalence of labels via tSNE & UMAP546
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Figure B.9: Patient 101 clustering using tSNE (left) and UMAP (right) feature reduction stages, as an example. Temporal
evolution of the LVS is qualitatively similar regardless of whether UMAP (neighbor size=5, minimum distance=0.01) or tSNE
(exaggeration=20, perplexity=50, 5000 iterations) projection is used. DBSCAN parameter must also be adjusted as coordinate
scales differ between the projections. For the plot shown, DBSCAN hyper-parameters (Npts, ε) are (10,4) following tSNE and
(4,1.5) following UMAP. Mild variations in pV characterizations result from medians of different point distributions.

SI C. Influence of Hyperparameter choices on cohort phenotypes547

For each of the 721 individual phenotypes, feature vectors defined by the 5-number summaries of period,548

PEEP, maxima of volume and pressure, ventilator settings, and estimated parameters of range-normalized549

waveform were assembled from the population of LVS windows with a given label. Ventilator mode was550

represented as a vector of percentages of each mode rather than a vector of binary categories, which eliminated551

the need for the Gower distance. UMAP applied to these cohort feature vectors with the scaled-euclidean552

metric produced a relatively stable point configuration across various hyper-parameter choices; 12 point553

neighborhoods (2% of data) with a minimum distance of 1 unit were adopted as values. Identified groups554

were more sensitive to DBSCAN labeling hyper-parameters. Figure C.10a shows the possibilities of different555

groupings based on the search neighborhood size (ε). Subsequent results in the main section employ a556

hyper-parameter choice at the ’knee-point’ [39] to balance generalizability and specificity. A more specific557

labeling (ε = 2.5) shown in panel b, is qualitatively similar to that of main text.558
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Figure C.10: DBSCAN search radius (ε) v. the number of identified groups. The black line indicates ε = 2.7 selected for cohort
clustering. Choices of ε ∈ [2.67, 2.82] yield equivalent results following increased granularity of groupings at ε lower values.

Table C.4: The equivalent of Table2 for the alternate choice of hyper-parameter ε = 2.5

Label Total% Npat Npheno pmin pdrive Vmax dp/dV MV mode
1 15.5 11 101 8 12.7[4.1] 7.9[1.3] 1.5[0.4] APVCMV
2 11.4 16 52 12 13.3[3.6] 6.2[2.1] 2.3[1.2] PCMV*
3 8.4 5 37 10 13.5[1.9] 6.5[0.3] 2.1[0.4] APVCMV*
4 7.7 8 45 14 12.6[2.9] 6.2[1.3] 1.9[0.7] APVCMV
5 6.9 11 58 16 13.4[2.3] 6.0[0.6] 2.2[0.6] APVCMV
6 6.3 7 49 11 16.6[12.5] 5.9[0.7] 3.4[2.4] APVCMV
7 6.2 6 49 8 11.1[1.4] 6.6[1.0] 1.7[0.2] APVCMV
8 6.2 23 56 10 12.1[3.7] 6.3[1.0] 1.9[0.6] APVCMV
9 6.2 10 51 14 21.3[9.5] 5.6[1.8] 3.7[3.1] APVCMV
10 4.1 12 34 14 12.2[6.9] 5.9[0.2] 2.0[1.3] APVCMV*
11 4.0 14 20 5 8.9[4.1] 7.0[2.4] 1.2[0.8] APVCMV
12 3.7 16 25 12 14.3[3.2] 6.0[0.4] 2.3[0.9] PCMV**
13 3.4 17 22 11 13.1[2.9] 6.2[1.3] 2.1[0.5] APVCMV***
14 3.3 11 12 8 9.7[2.7] 6.8[1.5] 1.6[0.4] APVCMV
15 2.5 8 10 12 15.1[12.5] 5.9[0.1] 2.4[2.2] APVCMV
16 1.7 11 27 14 13.3[2.9] 6.0[1.3] 2.0[0.8] APVCMV
17 1.5 9 14 16 15.9[6.0] 5.9[2.8] 2.6[2.4] APVCMV
18 1.1 5 16 5 10.7[0.2] 6.5[0.7] 1.7[0.2] APVCMV
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