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ABSTRACT
Healthcare workers (HCWs) are the target population for vaccination against coronavirus disease 
(COVID-19) as they are at a high risk of exposure and transmission of pathogens to patients. 
Neutralizing antibodies developed after COVID-19 vaccination decline within few months of vaccina
tion. Several factors, including age and sex, can affect the intensity, efficacy, and duration of immune 
response to vaccines. However, sex-specific analyses of humoral responses to COVID-19 vaccines are 
lacking. This study aimed to evaluate sex-based differences in anti-S/RBD (Receptor Binding Domain) 
responses at three different time points after the second dose of mRNA COVID-19 vaccine in HCWs in 
relation to age, and to investigate the role of sex hormones as potential markers of response. Anti-S/ 
RBD levels after two doses of the mRNA vaccine were collected from 521 HCWs naïve to COVID-19, 
working at two Italian Clinical Centers. Multiple regression analysis was applied to evaluate the 
association between anti-S levels and sex, age, and plasma levels of sex hormones. Significantly higher 
anti-S/RBD response to the COVID-19 vaccination was found in female HCWs, and a significant and 
more abrupt decline in response with time was observed in women than that in men. A novel, positive 
association of testosterone plasma levels and higher anti-S levels in male HCWs was found, suggesting 
its potential role as sex specific marker in males. In conclusion, understanding the sex-based differences 
in humoral immune responses to vaccines may potentially improve vaccination strategies and optimize 
surveillance programs for HCWs.
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Introduction

Healthcare workers (HCWs) are among the groups at the 
highest risk of exposure to pathogens since they are in direct 
contact of patients or handle potentially infected material. 
Before the availability of an efficient vaccine, coronavirus dis
ease (COVID-19) fatally affected 80,000–180,000 HCWs from 
January 2020 to May 2021.1

Hence, HCWs should be appropriately vaccinated to reduce 
the chance of contracting or spreading vaccine-preventable 
diseases by protecting themselves, the patients, and their 
family members. Recently, the COVID-19 pandemic has gen
erated significant interest in vaccine development and effec
tiveness, as well as in public health policies related to the use of 
vaccines. The World Health Organization has reported data 
from 119 countries by September 2021, stating that on an 
average two out of five HCWs are fully vaccinated.2 The avail
ability of safe and effective vaccines has been crucial to contain 

the infection and to limit the social and economic conse
quences of the pandemic for public and occupational 
health.3,4 HCWs were the first to be vaccinated in several 
countries, such as Italy, receiving the mRNA vaccine 
BNT162b2 (Pfizer). In this context, knowledge of the intensity 
and duration of antibody responses, which may be correlated 
with protection, both in convalescent and vaccinated indivi
duals, is presumably one of the most important issues to be 
addressed.

Severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) infection of target cells is mediated by the receptor‐ 
binding domain (RBD) in the structure of the S‐protein.5 

Neutralizing antibodies are directed to the RBD of the Spike 
(S) protein, which has been identified as immunogenic.6 Since 
the antibody response to the S‐protein correlates with neutra
lizing antibodies,7 anti-S antibodies are usually associated with 
protection from COVID-19 development.7–12
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The neutralizing antibody levels decline 1–4 months after 
the onset of infection symptoms13 and post-vaccination.14 

Moreover, the vaccine antibody response in HCWs has been 
analyzed using different types of antibodies [total anti-S 
immunoglobulin (Ig)G, anti-S/RBD, AU (antibody units) 
and/or BAU (binding antibody units), and neutralizing anti
bodies]. Consequently, the direct comparison of findings from 
different studies is not always possible, partly due to the use of 
different immunoassay(s).

Women are more immunoreactive than men in 
response to infections and antiviral vaccines, as females 
usually produce higher antibody levels than those by 
males on infection or vaccination.15–17 However, it is still 
unclear if the more robust antibody response translates to 
increased vaccine efficacy in females. Few studies on 
COVID-19-vaccinated HCWs or individuals have shown 
different antibody responses between male and female vac
cine recipients.18–21 However, targeted sex-disaggregated 
analyses of serologic responses to anti-SARS-CoV-2 vac
cines are rarely performed, and controversial results have 
been reported.

Hence, this study aimed to evaluate sex-based differ
ences in anti-S/RBD antibody levels at different time points 
after the second dose of the mRNA COVID-19 vaccine in 
HCWs, considering age at vaccination. In addition, to 
elucidate the mechanisms underlying the different immu
nological responses to COVID-19 vaccination, between 
male and female HCWs, and to identify potential sex- 
specific biomarkers, we analyzed the possible association 
between the levels of anti-S/RBD antibodies and sex hor
mones, such as estrogen, progesterone, and testosterone, 
which are characteristic markers of sex specific immune 
responses.15,16

Materials and methods

Study design and study population

We conducted a follow-up study among vaccinated HCWs, 
working at the Spallanzani Italian hospital for infectious 
diseases and Bambino Gesù Children’s Hospital in Rome. 
HCWs were asked to visit the laboratory for testing after 
the second dose of mRNA COVID-19 vaccination, conco
mitantly with periodic health surveillance. This study 
included 521 HCWs with no history of SARS-CoV-2 infec
tion, as demonstrated using molecular (reverse transcrip
tase-polymerase chain reaction) and antibody assays 
(Elecsys®Anti-N, Roche), and those receiving two primary 
doses of BNT162b2 vaccine (30 μg), 21 days apart, according 
to the immunization schedule.

The study-protocol included the following three time 
points to evaluate anti-S antibody levels: after obtaining writ
ten informed consent, blood samples were collected approxi
mately 15 days after vaccination (T1) and thereafter, 
approximately 2 months (T2) and 5 months after vaccination 
(T3), to follow up the humoral response to BNT162b2.

This study was conducted after obtaining ethical approval 
from ISS (AOO-ISS 09/05/2021–0017778); all participants 
provided written informed consent.

Serologic analysis

Serum samples from vaccinated HCWs were tested using two 
commercial chemiluminescence microparticle antibody 
assays, the SARS-CoV-2-specific anti-N and the anti-S/RBD 
tests (AdviseDx SARS-CoV-2 IgG II and SARS-CoV-2 IgG II 
Quant, respectively, ARCHITECT®, i2000sr Abbott 
Diagnostics), according to the manufacturers’ instructions. 
Arbitrary units (AU)/mL > 50 were considered positive. The 
anti-S serologic assay, AdviseDx SARS-CoV-2 immunoglobu
lin (Ig)G II assay is a chemiluminescent microparticle immu
noassay for the qualitative and semi-quantitative detection of 
IgG antibodies to SARS-CoV-2. The assay was designed to 
detect serum or plasma IgG antibodies against the RBD of 
the S1 subunit of SARS-CoV-2 spike protein among indivi
duals suspected or confirmed to be infected with SARS-CoV-2.

Measurement of plasma testosterone, 17β-estradiol, and 
progesterone levels

Plasma samples were collected from a subgroup of 112 HCWs 
(45 males and 67 females) at T2 post-vaccination. Sex hormones 
levels was quantified using the following competitive enzyme 
linked immunosorbent assay (ELISA) kits: Free Testosterone 
(KGE010 R&D Systems, Intra-Assay: CV 3.1%, inter-assay: co- 
efficient of variation (CV) 6.3%), 17β-estradiol (ab108667 
Abcam, intra-Assay: CV < 9%, inter-assay CV < 10%), proges
terone (ab108670 Abcam, intra-Assay: CV < 4%, inter-assay 
CV ≤ 9.3). All ELISA kits were used according to the manufac
turers’ instructions.

Statistical analyses

Categorical variables were summarized using frequencies and 
percentages, whereas continuous variables were summarized 
using medians and interquartile ranges. Geometric means with 
their confidence intervals (95% CI) were calculated for anti-S/ 
RBD (AU/mL) concentrations according to sex and the follow
ing three age groups: 20–44, 45–55, and 56–85 years, to eval
uate the potential effect of sex hormones. When the variables 
of interest were not normally distributed, analyses were per
formed after a natural logarithmic transformation. The non- 
parametric Mann – Whitney test was used to assess differences 
between two independent groups, and the Kruskal – Wallis test 
was used to compare more than two groups.

A mixed linear regression model with a random intercept 
and beta (slope) per individual was applied to estimate the 
effect of post-vaccination elapsed time on the level of anti-S/ 
RBD antibodies. Briefly, the dependent variable was the anti-S 
antibody level and the independent variable was the time from 
the second vaccine dose. To evaluate sex-based differences in 
the slopes of anti-S antibodies, we considered sex in the model 
and its interaction with time. The regression parameter beta 
and its relative 95% CI were estimated for both men and 
women. We plotted the estimated fixed effects using the mod
els described above.

Furthermore, regression models were applied to investigate 
the potential effect of sex hormones on anti-S/RBD antibody 
levels in a subgroup of the study population. Simple and 
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multiple linear regression models for males and females, with 
hormones and age groups (20–44; 45–55; and 56–85 years) as 
covariates, were applied.

SAS/STAT version 9.4 was used for statistical analyses.

Results

Description of the study population

The study included 521 HCWs, 137 men (26%) and 384 
women (74%), who were not previously infected with SARS- 
CoV-2 and received two doses of the mRNA vaccine 
(BNT162b2), working at the Spallanzani Institute of 
Infectious Diseases and at the Bambino Gesù Children’s 
Hospital in Rome, Italy. The median age was 43 years, which 
was marginally higher in male workers (45 years) than those in 
female workers (41 years) (Table 1).

To evaluate the potential effect of sex hormones, we sub
classified the HCWs into the following three age groups: 20–44, 
45–55, and 56–85 years, including female HCWs in the pre- 
menopausal, menopausal, and post-menopausal age groups, 
respectively, and age-matched male HCWs. As expected, age- 
based classification of the study population revealed that major
ity of the HCWs belonged to the youngest age group, 20–44 age 
(54%) among males (46%) and females (57%).

Humoral response to the COVID-19 vaccine by sex and 
age

In all vaccinated individuals, a high antibody response was 
achieved 16 days after vaccination (geometric mean 2,169 
AU/mL, 95%CI: 2,040–2,306). As shown in Table 2, the geo
metric means of the antibody levels decreased to 539 (95%CI: 
506–574) and 179 (95%CI: 167–191) at 2.5- and 5-months 
post-vaccination, respectively.

Sex-specific analysis revealed that the anti-S/RBD concen
trations in females were higher than those in males; these 
differences were statistically significant (p < .05) at each time 
point considered (16, 77, and 154 days post-vaccination).

Age stratified analysis showed the highest anti-S/RBD levels 
in the youngest workers (20–44 years), among both females 
and males (Table 2, Table S1).

In Figure 1a, the statistically significant (p ≤ .001) sex-based 
differences in anti-S/RBD antibody levels, reported on a log 
scale, revealed a decrease in anti-S/RBD concentrations with 
time, in both males and females, which was evident in all age 
groups (Figure 1b-d). The waning of anti-S/RBD antibody levels 
after vaccination, was further evaluated using a mixed regression 
model (Figure 2), to determine the effect of time on antibody 
concentrations in male and female HCWs. The results in 
Figure 2a show a greater decline in anti-S/RBD levels among 
female HCWs than those in males, with a slope difference of 
0.030 (p < .05) at all post-vaccination intervals considered. This 
indicates that antibody levels declined more abruptly in women 
than those in men. Age-stratified analysis of the antibody 
decrease demonstrated a statistically significant difference 
between male and female workers in the youngest (20–44  
years) age group (Figure 2b; slope difference −0.039, p = .009).

Furthermore, among male HCWs, anti-S/RBD decline was 
greater in adult age groups (>45 years) than that in the young
est (20–44 years), as indicated by the increasing values of the 
slopes in Figure 2b–d.

Table 1. Demographic characteristics of the study population.

Study population Males Females

n = 521 137 (26.3%) 384 (73.7%)
median age 43 45 41
IQR; range (31–52); (22–81) (34–55); (24–66) (30–51); (22–81)
age groups
20–44 years 282 (54.2%) 63 (46.0%) 219 (57.0%)
45–55 years 157 (3.1%) 43 (31.4%) 114 (29.7%)
56–85 years 82 (15.7%) 31 (22.6%) 51 (13.3%)

IQR: interquartile range.

Table 2. Geometric means and 95%CI of anti-S/RBD levels (AU/mL) at the three considered time points after second dose of vaccine; 
p-values refer to the comparison among groups at each measurement.

I measurement II measurement III measurement

days since second vaccination
median 
(IQR); (range)

16 
(15–17); (12–37)

77 
(76–78); (34–101)

154 
(151–156); (122–243)

Geometric mean and (95% CI) of anti-S/RBD levels (AU/mL)
all individuals 2,169 (2,040–2,306) 539 (506–574) 179 (167–191)
males 1,640 (1,447–1,857) 421 (372–476) 149 (132–170)
females 2,397 (2,240–2,565) 588 (548–632) 191 (177–206)

p-values males vs females <.001 <.001 <.001
Age groups

20–44 2,407 (2,234–2,595) 599 (553–649) 205 (189–223)
45–55 2,034 (1,824–2,267) 493 (439–552) 159 (142–179)
56–85 1,714 (1,403–2,094) 444 (370–533) 139 (114–171)

p-values for age groups .002 .002 <.001
males aged

20–44 1,822 (1,528–2,171) 495 (414–593) 183 (152–219)
45–55 1,635 (1,532–1,978) 387 (317–473) 134 (109–168)
56–85 1,329 (944–1,869) 340 (254–456) 114 (85–152)

p-values for age groups .166 .015 .008
females aged

20–44 2,609 (2,409–2,825) 634 (579–691) 212 (193–233)
45–55 2,208 (1,939–2,515) 539 (471–618) 169 (148–194)
56–85 2,001 (1,566–2,558) 522 (415–656) 158 (120–208)

p-values for age groups .037 .121 .010
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Sex hormones and anti-S/RBD antibody concentrations

Multiple regression analysis was performed to examine the 
possible association of estradiol, progesterone, and testosterone 
plasma levels with anti-S/RBD concentrations in a subgroup of 
112 HCWs (45 males, 67 females). A significant positive asso
ciation (beta value= +0.712; p = .014) between testosterone 
plasma levels and anti-S/RBD concentrations was observed 
only in male HCWs (Figure 3d). However, both female and 
male HCWs lacked a linear association between plasma proges
terone and estradiol levels and anti-S/RBD concentrations 
(Figure 3a,b,e,f). These results were also confirmed after adjust
ing for age in the multiple regression models (Figure S1a – f).

Discussion

Vaccination is a crucial strategy to prevent infectious diseases 
and one of the most cost-effective public and occupational 
health measure available. The antibody response stimulated 
by vaccines is affected by several factors, depending on both 
the individual and the vaccine, which can positively or nega
tively affect vaccine efficacy and the duration of the antibody 
response.22 Sex disparity in immune response to microbial 
antigens and vaccines has been reported earlier, with females 

displaying stronger innate and adaptive immune responses 
than those of males.23,24

The aim of the present study was to investigate sex-specific 
humoral responses to COVID-19 vaccination and the waning 
of anti-S/RBD antibodies in HCWs. The results demonstrated 
notable differences in immune responses to the COVID-19 
vaccine between males and females, in all age groups. 
Specifically, female HCWs exhibited significantly higher anti 
S/RBD antibody concentrations than those in males, suggest
ing that females generate a more robust antibody response 
against the spike protein of SARS-CoV-2 than that by males. 
This finding aligns with previous research highlighting the 
generally stronger immune response in females than that in 
males following various vaccinations,15,22,25 including that for 
COVID-19. In particular, Lasting Y. and coworkers reported 
lower anti-S measures in male HCWs than those in female 
HCWs after two doses of COVID-19 vaccine in a large pro
spective cohort study conducted in Israel.26 Anastassopoulou 
et al.18 and Yamamoto S. et al.27 highlighted similar sex dis
parity in anti-S responses among HCWs from Greece and 
Japan.

Age is an important parameter affecting antibody 
responses, since T and B cell functions decrease with aging, 
with consequent insufficient responses to vaccinations.15 
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Figure 1. Measurements of anti-S/receptor binding domain (RBD) (by natural log transformed values and 95%CI) in the groups classified based on sex and age: (a) 
overall; (b) 20–44 years; (c) 45–55 years and (d) 56–85 years; p-values by Wilcoxon – Mann–Whitney test are shown for each post-vaccination time point.
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Several studies have reported an inverse relationship between 
age and antibody responses post-vaccination against Hepatitis 
A and B Viruses, pneumococcus, Tick-Born Encephalitis, teta
nus, and SARS-CoV-2.22,28–30 Consistently, our results have 
indicated that, considering all participants, younger HCWs 
(20–44 years) developed an average of 1.4 times higher anti-S 
levels than those among HCWs in the >56 years age group.

An important aspect of the post-vaccination response is the 
natural tendency of antibody levels to decrease with time. The 
course of the post-vaccine anti-S response is crucial in the 
pandemic period, particularly among HCWs, who are highly 
and repeatedly exposed to the risk of infection. With regard to 
the post-vaccine antibody concentration, Naaber et al.31 

reported that the RBD antibody response decreases six weeks 
after vaccination compared to that observed one week after 
vaccination. However, to our knowledge, sex-based differences 
in waning of the humoral immune responses have not yet been 
addressed. In this study, our results indicated a significant 
decrease in the anti-S/RBD levels in all individuals, consistent 
with previous research.14,31,32 Interestingly, a more abrupt 
decline in anti-S antibody levels was observed in young female 
HCWs than those in males, confirming, in part, the observation 
in Japanese HCWs by Yamamoto S. et al.,27 who, however, did 
not analyze this effect considering age and sex simultaneously. 
We cannot plausibly explain the faster decrease of anti-S levels 
in females than those in males, after the two doses of vaccine.

M slope =  - 0.516  (p<0.001)
F slope = - 0.546  (p<0.001)   
slopes difference = - 0.030  95% CI: (- 0.051; - 0.010); p=0.005

months from II dose

An
ti-

S/
RB

D
 a

nt
ib

od
y

le
ve

ls
(L

og
 s

ca
le

)
a) overall

M slope =  - 0.502  (p<0.001)
F slope = - 0.541  (p<0.001)   
slopes difference = - 0.039  95% CI: (- 0.068; - 0.010); p=0.009

months from II dose

An
ti-

S/
RB

D
 a

nt
ib

od
y

le
ve

ls
(L

og
 s

ca
le

)

b) age 20-44

M slope =  - 0.532  (p<0.001)
F slope = - 0.555  (p<0.001)   
slopes difference = - 0.023  95% CI: (- 0.058; -+0.012); p=0.194

months from II dose

An
ti-

S/
RB

D
 a

nt
ib

od
y

le
ve

ls
(L

og
 s

ca
le

)

c) age 45-55

M slope =  - 0.527  (p<0.001)
F slope = - 0.545  (p<0.001)   
slopes difference = - 0.018  95% CI: (- 0.066; -+0.035); p=0.407

d) age 56-85

months from II dose

An
ti-

S/
RB

D
 a

nt
ib

od
y

le
ve

ls
(L

og
 s

ca
le

)

M F
Figure 2. Analysis of sex differences in anti-S/RBD waning. Scatters for the log values of anti-S/RBD antibody levels with the regression lines estimated using mixed 
regression model for males (M) and females (F), panel (a) all age groups; panel (b) 20–44 years; panel (c) 45–55 years; panel (d) 56–85 years; p-values relative to anti-S/ 
RBD antibody slope differences in M vs F are shown in each panel.
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Despite the waning of antibodies over time, memory B and 
T cell populations may last longer than those after natural 
infections,33,34 therefore it is not known whether the reduction 
in antibody levels corresponds to reduced vaccine protection.

With regard to age, sex disparity in the anti-S antibody 
decline was statistically significant in the youngest age group; 
among males HCWs, a faster decline in anti-S/RBD levels was 
observed in HCWs aged >45 years than those in the youngest  
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Figure 3. The effect of sex hormones on the anti-S/RBD response to vaccination. Simple regression models for anti-S/RBD antibody levels applied in a subgroup of 
healthcare workers (HCWs, n = 112) using the log of sex hormone plasma levels as a covariate; 17-β estradiol: a (females) and B (males); testosterone: C (females) and 
D (males); progesterone: E (females) and F (males); beta estimates (slopes) with relative p-values obtained using regression models are shown in each panel.
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age group (20–44 years). These findings indicate a greater 
decreasing rate in anti-S/RBD levels with age in males than 
those in females, who displayed a more constant decline in 
post-vaccination antibodies with age. These findings deserve 
further investigation to clarify sex- and age-related disparities 
in COVID-19 vaccine responses, which could provide useful 
tools for orienting public health decision makers.

In addition to the genetic and epigenetic factors contribut
ing to sex-specific differences in vaccine responses, hormonal 
variations between males and females may play an important 
role.

As sex hormone receptors are expressed on immune cells, 
sex steroid hormones (i.e., 17-β-estradiol, progesterone, and 
testosterone) modulate humoral and cellular immune 
responses.35–37 In particular, estrogens are associated with 
enhanced immune responses, including higher antibody pro
duction, whereas progesterone has an anti-inflammatory 
role.36,38,39 In addition, high levels of testosterone have an anti- 
inflammatory effect, suppressing the expression of the pro- 
inflammatory cytokines tumor necrosis factor-α, interleukin 
(IL)-1β and IL-6, and potentiating the expression of the anti- 
inflammatory IL-10.40–42 However, the effect of testosterone 
on acquired immunity is rather controversial, since it has been 
reported to have an immunosuppressive as well as immuno
modulating effect. Regarding its immunosuppressive role, tes
tosterone downregulates T and B cells immune activation.39,42 

Potluri T. and coworkers39 (2019) clearly showed that antibody 
responses specific to influenza H1N1 vaccination inversely 
correlate with plasma testosterone levels in adult men. 
Moreover, Furman et al.43 (2018) has reported a subdued anti
body response to trivalent influenza vaccination in males with 
high levels of plasma testosterone. However, different studies 
analyzing young male populations have shown a positive effect 
of high plasma testosterone levels on IgG production in 
response to seasonal trivalent influenza and Hepatitis 
B vaccinations.44,45

The results of our analysis of sex hormones in HCWs 
indicated a significant association between high plasma levels 
of testosterone with high anti-S/RBD plasma concentration in 
male HCWs, suggestive of a positive immunomodulatory 
effect of testosterone. Notably, it is not possible to predict 
how testosterone influences anti-S/RBD antibodies produc
tion, and more generally, why this hormone exerts contrasting 
effects on the immune system. A possible explanation could be 
its local conversion by immune cells to estrogenic metabolites, 
or a different pattern distribution of androgen receptors on 
immune cells.46–48 However, further studies are necessary to 
evaluate whether the observed association between high 
plasma testosterone levels and high anti-S/RBD serum con
centrations in males is a direct effect of this hormone or it is an 
epiphenomenon due to other factors playing a role in humoral 
immune responses. Nevertheless, our data support the role of 
testosterone as a sex-specific marker to predict the response to 
the COVID-19 vaccine in men.

However, we did not find any significant association 
between plasma levels of estradiol and progesterone and anti- 
S concentrations, both, in male and female HCWs.

In summary, the novelty of this study lies in investigating 
the mechanisms underlying sex disparity in humoral response 

to the COVID-19 vaccine based on the hormonal milieu, high
lighting the potential immunomodulatory rather than immu
nosuppressive function of testosterone.

This study had some limitations. In particular, the sample 
size for the hormonal analysis was relatively small, and the 
findings should be validated in larger cohorts. Additionally, 
other clinical variables, such as comorbidities and ongoing 
therapies, have not been thoroughly evaluated, which could 
potentially confound the observed sex-specific differences. 
Finally, the study population mainly consisted of HCWs who 
were relatively younger than the general Italian population, 
potentially reducing the extent of the results on a general scale.

In conclusion, disparities in the humoral immune response 
to COVID-19 vaccination and waning of antibody levels are, at 
least partly, affected by age and sex. The contribution of sex 
hormones to the modulation of the sex-specific response to 
vaccination deserves further investigation. The observed sex- 
specific differences in vaccine responses highlight the impor
tance of considering sex as a biological variable in medical 
research.

Finally, our findings have broad implications for COVID- 
19 vaccination: male-female differences in vaccination 
responses should be taken into account to optimize and cus
tomize health surveillance programs for HCWs.
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