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ABSTRACT
In the field of immunology, a systems biology approach is crucial to understanding the immune response 
to infection and vaccination considering the complex interplay between genetic, epigenetic, and envir-
onmental factors. Significant progress has been made in understanding the innate immune response, 
including cell players and critical signaling pathways, but many questions remain unanswered, including 
how the innate immune response dictates host/pathogen responses and responses to vaccines. To 
complicate things further, it is becoming increasingly clear that the innate immune response is not 
a linear pathway but is formed from complex networks and interactions. To further our understanding of 
the crosstalk and complexities, systems-level analyses and expanded experimental technologies are now 
needed. In this review, we discuss the most recent immunoprofiling techniques and discuss systems 
approaches to studying the global innate immune landscape which will inform on the development of 
personalized medicine and innovative vaccine strategies.
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Background

Systems immunology utilizes multiple technical strategies to 
generate large amounts of data that, when integrated, can 
predict immunological responses and allow researchers to 
understand the complex interactions between the immune 
system’s cellular network and infectious organisms.1 

Although there have been many advances in diagnostic testing 
for managing infectious diseases such as HIV, dengue and 
tuberculosis to facilitate early detection and more immediate 
care,2 personalized treatment options and treatment options 
for vulnerable populations such as the elderly are still needed. 
To this end, identification of novel biomarkers of immunity 
and of perturbations in immune responses remains critical.

With the immune system being made up of hundreds of 
cluster of differentiation (CD) antigens, cytokines, chemo-
kines, specialized cell populations and thousands of genes, 
systems tools are required not only to study each component 
separately but also to combine these data. Combining these 
data allows researchers to understand the connections and 
associations that define the homeostatic activities of a healthy 
immune system and predict the response to changes in the 
environment, including exposure to harmful antigen and dur-
ing vaccination against a large number of diseases.3 Systems 
immunology studies have been used to facilitate new 

hypotheses generation and inform mechanistic studies during 
the development of novel therapeutics and vaccines since the 
high-throughput methods used provide accurate and unbiased 
information in a timely fashion from large data sets.4

These large data sets are generated from multi-omics tech-
nologies including genomics, proteomics, metabolomics, 
microbiome profiling, and computational approaches.5 

Together, these results form an integrated analysis of immune 
function at the molecular and cellular levels to establish pre-
dictive models of the networks and dynamic interactions 
between components of the immune system in health and 
disease. This will allow researchers to fully comprehend the 
value of new discoveries, particularly in the quest to manage 
infections and develop new vaccination strategies, and to 
define the worth of resulting data, its benefits, and risks, as 
well as its clinical usefulness, which is the key advantage of 
using the systems immunology approach.

Here we describe how systems immunology can be utilized 
for immune profiling with a particular focus on the innate 
immune system. To that end, we describe critical cells of the 
innate immune system, multiplexed technologies that can be 
used to generate large data sets, and how systems immunology 
studies have contributed to the advancements in the fields of 
vaccinology and infectious disease.
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Cells of the innate immune system

Innate immune cells serve as a functional immune response to 
immediate pathogen threats, induced by an array of cytokine, 
receptor, and pattern recognition pathways (Figure 1). Such an 
activation allows for the stalling of infection as an immediate 
response, while a more specific and mounted immune response 
via adaptive immunity is generated. A key player in these roles is 
neutrophils, which are constantly circulating and are often the 
first to the source of invasion or inflammation.6 Neutrophils 
(PMN) function via cytokine production, phagocytosis, degra-
nulation, and neutrophil extracellular traps formation 
(NETosis).6 Activation occurs shortly after engagement of spe-
cific pattern recognition receptors (PRRs) or with complement 
complexes that can induce phagocytosis. PMNs come in several 
types which have specific toll-like receptor (TLR) expression. 
There are two subsets of PMN: PMN-I and PMN-II. PMN-I 
expresses TLR-2, −4, −5, and −8, expresses IL-12 and CCL3, and 
activates M1 macrophages. PMN-II expresses TLR-2, −4, −7, 
and −9, allowing for release of IL-10 and CCL2, and activate 
alternative macrophages. PMNs will undergo apoptosis shortly 
after completing their response, a process that leads to the 
release of more granules and consequently more inflammation.

Macrophages or developing monocytes form an additional 
component to the activation of innate immunity functioning via 
phagocytosis and additional cytokine and chemokine signaling 
during later stages after the onset of infection. Monocytes serve 
as the free roaming cell, which can differentiate into either pro- 
inflammatory (M1), anti-inflammatory (M2), or alternatively 
activated macrophages.7 Monocytes may not differentiate at all 
and remain active as phagocytic forms utilizing TLR4 and CD14 
for gram negative bacterial identification and subsequent 
phagocytosis.8 Once activated, M1 macrophages will recruit 
more monocytes while inducing more MHC-II expression and 
maximizing their reactive oxygen species (ROS) and nitric oxide 
content to allow them to kill invasive pathogens more 
efficiently.7 Alternatively activated macrophages and M2 macro-
phages function in the recovery of inflammatory responses, 

modulating inflammation and inducing growth of cells and 
connective tissue to speed recovery after infection.7

Other cells are more capable of widespread damage via the 
expulsion of granules that can induce toxic effects against inva-
sive forms and host cells alike. Such cells as eosinophils, baso-
phils, and mast cells fill this role of granulocytes. Basophils have 
an expression of IgE that allows for specific targeting of patho-
gens as they are encountered.9 Eosinophils are more directed 
against parasitic infections, such as helminths, and their gran-
ules are cationic or histamine in nature. They also express IgE, 
which if an antigen interacts with the receptor or IL-5 is present, 
will induce degranulation.9 Mast cells predominately have gran-
ules of histamine, heparin, and serotonin, and will degranulate 
against a wide array of antigens, making them a culprit in 
allergic responses.10 Mast cells express TLR-1, −2, −4, and −6, 
and patrol many mucous membranes, allowing them to activate 
early if encountering a pathogen within these environments.

The main antigen presenting cells are dendritic cells (DCs), 
a cell that bridges innate and adaptive immunity. While other 
cells also serve as a function of antigen presentation, the DC has 
a dominant function in this role. Furthermore, their differentia-
tion from hematopoiesis has arms in both the lymphoid and 
myeloid branches. DC has two subtypes, cDC1 and cDC2 that 
play the main role in antigen presentation to T-cells. Both classes 
up-regulate the expression of MHC-II, to improve antigen 
presentation.11 cDC1 has high functionality for cross presenta-
tion to both CD8+ and CD4+ T-cells, whereas cDC2 ismore 
attuned to CD4+ T cells. An additional subset of pDCs is more 
functional to the role of perpetuating the activation of cDC1, 
cDC2, and T cell activation via the secretion of Interferon alpha 
(IFN-α). IFN-α activates both cytotoxic and regulatory T cells 
(Tregs), which allows for a more substantial and coordinated 
immune response.

Innate Lymphoid Cells (ILCs) are a family of effector cells 
usually found on mucosal surfaces that rapidly secrete effector 
cytokines to help regulate the immune response to pathogens. 
ILCs do not possess rearranged antigen-specific cell receptors, 
but they mirror T helper cell function by the induction of 

Figure 1. The immune system encompasses a unique population of cells and proteins that work together to protect the body from non-self-entities. The immune 
system in simple terms has two lines of defense: innate and adaptive immunity. The immune system has two basic lines of defense: innate and adaptive immunity. 
Innate immunity is antigen dependent, involving recognition of a non-self-antigen determined via unique structural or functional features of infectious agents. After 
recognition, the innate cells will initiate cytokine production to recruit more specific innate cells or initiate the antigen dependent adaptive immune system. Second 
order cytokines are produced from this interaction like IFN-γ leading to effector function like phagocytosis of the pathogen. Innate and adaptive immunity do not 
operate as separate mechanisms of host defense but rather complement each other.
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signature cytokines and transcription factors. ILCs are divided 
into three groups: group 1 ILC, similar to Type 1 helper T cells 
(Th1) and includes natural killer cells (NK cells); group 2 ILCs, 
similar to Type 2 helper T cells (Th2); and group 3 ILC, similar 
to Type 17 and 22 helper T cells (Th17/22). These subtypes 
play an integral role in regulating adaptive Th1, Th2, and 
Th17/22 responses.12 Our group has also published on another 
important subtype of ILC, the ILCFR. ILCFR has been shown to 
inhibit the ability of T follicular helper (Tfh) cells to provide 
B cell help.13

Heterogeneity in the human innate immune system

The distribution of innate cells is dictated by their type, che-
mokines, and dynamics within the host, such as in infection or 
aging, which would manifest different localizations. 
Monocytes and granulocytes are often localized to the blood, 
or in the vicinity of highly vascularized tissue, where they 
remain throughout the lifetime of the host with minimal 
change with age.14 DCs follow a similar pattern, with localiza-
tion to specific tissues that are notable to the different subsets 
of DCs. cDC1s are located in several systems, specifically the 
thymus and the T cell zone of the spleen, with functional 
variation depending on the difference between primary and 
secondary lymphoid tissue.10 In the thymus, cDC1s induce 
T-cell central tolerance and in the spleen, they induce T-cell 
cross tolerance.10 cDC2 is a mostly lymphoid-proximal locali-
zation, making it more functional to the surveillance of muco-
sal draining from the intestines and respiratory tract.15,16 

However, while such patterns are present universally, some 
cDC2s are also found to be localized in the skin, but their 
frequencies are not consistent across individuals.15 pDCs are 
more consistent from person to person, following a cycle of 
peripheral development, and a subsequent migration to the 
thymus to develop immune tolerance.10 This suggests that the 
development of these innate cells may be variable across the 
population, and the mediated immune responses may be 
determined by these variations.16 Furthermore, ILCs, another 
regulator of inflammation and immunity, appear to show 
a similar heterogeneity as they also have both preserved muco-
sal tissues prevalence in certain ILC populations, whereas 
other subsets are more variable.17

Innate immune profiling using systems-based 
analyses

A key challenge in systems immunology is utilizing the correct 
bioinformatic tools to produce and integrate ‘omics datasets 
with each providing different insights into cellular processes. 
These processes are complemented by each other and can help 
give context to the magnitude of innate expression. The 
amount of raw data that can be produced by these analyses 
can be better complimented as a unit using systems immunol-
ogy data integration using bioinformatics, which allows for 
patterning and subsequent predictions of the response of 
immune cells and has seen increasing use as more data are 
available to make stronger predictions. A system as complex as 
innate immunology requires these powerful and comprehen-
sive approaches to investigate the systems as not merely a sum 

of its parts. Here we summarize how systems immunology 
characterization via genomics, transcriptomics, metabolomics, 
and multiplexed immunological assays can be used to create 
a large-scale comprehensive picture of vaccine immunology, 
infectious disease outcomes, and aging prediction (Figure 2).

RNA sequencing

RNA-sequencing (RNA-seq) is a next-generation sequencing 
(NGS) approach that allows sequencing of RNA molecules. 
Bulk RNAseq is a valuable tool used to capture the expression 
profile of a large and diverse population of cells.18 RNAseq is 
commonly partnered with RT-qPCR to look at host mRNA 
targets involved with viral entry into host cells, the innate 
immune response including cytokine production, fundamen-
tal cellular processes, and interactions between miRNAs and 
mRNAs to alter host pathways.19 However, bulk RNAseq can 
mask which specific cell types are driving disease progressions 
or resistance. By contrast, single-cell RNAseq (sc-RNAseq) 
evaluates the individual expression of cells, and thousands at 
a time. When combined, bulk RNAseq and single-cell RNA seq 
are beneficial in establishing immune and inflammatory 
mechanisms of infection-induced organ damage.19,20 These 
tools have been incredibly useful during the SARS-CoV-2 
pandemic. Both bulk and single cells are used to understand 
multivariant SARS-CoV-2 including viral immune evasion.19 

Groups use this technology to understand the expression of 
mRNAs, proteins, posttranscriptional regulatory agents such 
as micro-RNAs (miRNA) and long noncoding RNA 
(lncRNA).19–21 Combining the expression of miRNAs with 
the upregulation of different genetic pathways which can be 
identified via the Kyoto Encyclopedia of Genes and Genomes 
database (KEGG) sheds light on which secretion and signaling 
pathways are altered during the course of SARS-CoV-2 infec-
tion in the lungs.19 In addition to peripheral samples, organ 
tissues can be directly sampled from patients to assess the 
severity of infection, upregulation of innate immune responses 
(including inflammatory genes IL-2, IL-6, IL-8, IL-17A, and 
NF-kB).19–22 Upregulation of these cytokines has downstream 
effects that can lead to organ injury and have therefore been 
valuable to understand the mechanisms during the pandemic.

OLINK

OLINK’s proteomic Proximity Extension Assay is a high 
throughput platform that measures thousands of proteins 
in blood with genomic data integration.23,24 OLINK is 
based on oligonucleotide linked antibody pairs that have 
slight affinity for different epitopes of the same protein. 
When these oligonucleotide linked antibodies are brought 
into proximity to each other on the same protein, the two 
unique oligonucleotides are extended by a DNA polymer-
ase and amplified exponentially; quantitative real-time PCR 
(qPCR) is then used to amplify and quantify the oligonu-
cleotides in the samples.23–25 Because of this technique’s 
specificity, small samples are needed per test (1uL) and 
previously frozen plasma samples that are decades old 
can be run with surprising accuracy, resulting in a high 
throughput and robust assay.23–25 OLINK has multiplex 
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detection methods for inflammation and immunology, and 
targets 96 antigens in each test. Combining multiple panels 
allows users to look at thousands of proteins at once, 
painting an accurate depiction of the immune response.25 

OLINK has been used in multiple fields of immunology, 
from cancer immunotherapy to infectious diseases. 
Recently during the COVID-19 pandemic, OLINK has 
been a value system biology approach for looking at pro-
teins in infected persons.26,27 Differences in cytokine and 
chemokine profiles during different disease stages and dis-
ease severity are being evaluated, helping determine 
mechanisms underlying infection. When paired with 

other proteomic techniques such as RNAseq, OLINK data 
provide important insights into immune cell interaction, 
cell responses, and tissue/cell specific protein production 
during COVID-19 infection.26,27

GWAS

Individuals differ in their susceptibility to infectious dis-
eases and in their ability to respond to vaccines. In fact, 
infectious variability and vaccine response heterogeneity 
among individuals are closely related to gene 
polymorphisms.28 Genome-wide association studies 

Figure 2. Systems innate immunology can be studied utilizing a variety of techniques combined with bioinformatic analyses. These analyses can not only be applied to 
different samples (ie peripheral blood, endotracheal aspirates, lymph node biopsies) but also to samples taken at different time points during infection, disease, or 
vaccination. (a) Innate cell subsets and their function have been characterized at early time points by flow cytometry, cytometry by time-of-flight (CyTOF), flow 
cytometry of phosphorylated proteins (phospho-flow), bead-based multiplex kit (Luminex) or other immunoassay like mesoscale discovery (MSD), and transcriptomics 
like RNA-seq to reveal inflammatory mediators and subsequent pathways in early infection or vaccination timepoints. (b) Innate initiation and activation of 1st order 
cytokines can be classified by phenotype and functional capability using flow cytometry for both surface and intracellular receptor expression along with effector 
proteins like cytokines and cytotoxic granules. Many of these effector proteins can also be detected by Luminex or MSD technology which can detect up to 80 analytes 
in a single sample. (c) Activated cells of the adaptive immune system can then be probed for antigen specificity by TCR or BCR repertoire sequencing, flow cytometry 
utilizing tetramer technology for peptide presentation, and multiparameter imaging. (d) These techniques are currently being expanded to cover tissue biopsies that 
will inform on the local microenvironment and infiltrating cell populations. APC, antigen-presenting cell; DC, dendritic cell; B, B cell; CD4, CD4+ T cell; NK, natural killer 
cell; T, T cell; ICS, intracellular cytokine staining; CD8, CD8+ T cell; Tfh, T follicular helper cell.
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(GWAS) aim to identify associations of genotypes with 
phenotypes by testing for differences in the allele frequency 
of genetic variants between individuals who are ancestrally 
similar but differ phenotypically.29 GWAS reports blocks of 
correlated SNPs that all show a statistically significant 
association with the trait of interest, known as a genomic 
risk locus, which correlate with specific disease outcomes 
and play a regulatory function in gene expression.29,30 

GWAS can be a beneficial tool in helping identify new 
targets for drugs as well as creating links between the 
immune system and other diseases.31 Most recently, 
GWAS has been instrumental in identifying host genetic 
factors that modulate the risk of infection and death from 
severe COVID-19 disease. A study by Neimi et al. looked 
at 49,562 individuals infected with SARS CoV-2 and iden-
tified 13 independent common risk variants, with many 
being in or near immune genes such as IFNAR2 and 
CXCR6.32 Several of these loci correspond to other lung 
or autoimmune inflammatory diseases as well.32 Additional 
studies also suggest a role in COVID for genes in the type 
I IFN pathway including TRL7.33 GWAS can help shed 
lights on biological insights of COVID-19 infection and 
help identify innovative treatment options with the hope 
of preventing severe disease and death.

Metabolomics

Metabolomics is a growing field of study, and it involves 
measuring small metabolic molecules including sugars, 
amino acids, bile acids, fatty acids, or lipids. Most com-
monly, metabolites are isolated via gas or liquid chromato-
graphy (GC or LC) and profiled using nuclear magnetic 
resonance (NMR) or mass spectrometry (MS).34 

Metabolomics is frequently paired with other ‘omics such 
as genomics, transcriptomics, and proteomics with the intent 
of finding prognostic markers, predicting the evolution of 
disease, and understanding metabolic signatures of cells.34,35 

Recently, metabolomics has been instrumental in mapping 
metabolic changes in innate immune cells during COVID-19 
infection.35–37 Li et al. showed clear impairment of amino 
acid metabolism and energy metabolism in severe COVID- 
19 patients that correlates with inflammation.36 Specifically, 
the majority of these changes occurred with metabolites 
involved in the urea cycle, purine metabolism, arginine and 
proline metabolism, glutamate metabolism, and NAD+ 
synthesis.35–37 Metabolomic studies are also being used to 
link inflammation in COVID-19 with mitochondria- 
dependent energy metabolism, viral replication, coagulation, 
and fibrogenesis.36,37 This field can also help identify global 
molecular signatures during varying disease states and new 
targets for drug development.

Multiplex cytokine profiling

During an immune response to infection or vaccination 
where global tissue-level immune responses are needed, 
cell-to-cell communication is essential for immune cells to 
coordinate an efficient immune response. Cytokines and 
chemokines, which serve as mediators of intercellular 

communication during an immune response, play a crucial 
role in determining the path of an immune response to 
both infection and vaccination. As such, gaining an under-
standing of the dynamic changes to cytokine and chemo-
kine levels throughout the immune response to infection 
and vaccination can provide major insights into under-
standing both the pathogenesis of a disease as well as the 
type of immune response that provides protection from 
infection. However, with over 100 cytokines known to 
exist and their levels being variable in different tissues and 
during an immune response, this is no small task.38 To help 
achieve an understanding of the role of cytokines and che-
mokines in shaping immune responses in a systemic man-
ner, multiplexed cytokine and chemokine analysis through 
multiplexed bead-based immunoassays, such as Luminex® 
and Meso Scale Discovery (MSD) immunoassays, which 
can measure 60 or more proteins at once have now been 
developed.

Multiplexed cytokine and chemokine analysis has been 
utilized in several studies to help understand the immune 
response to both infection and vaccination. Examples of such 
a use include using multiplexed cytokine analysis to investigate 
the role of cytokines in the pathogenesis of Zika virus,39 gain-
ing an understanding of differences in plasma inflammatory 
markers between severe and non-severe COVID-19 
infections,27 identifying mycobacterium-specific cytokine bio-
markers that distinguish latent and active tuberculosis (TB) 
infections,40 and measuring differences in cytokine levels in 
sera and semen to differentiate the different stages of HIV 
infection.41 In addition to being used to gain an understanding 
of immune responses to infection, multiplexed assays have also 
been used to gain an understanding of the immune response to 
vaccination. The use of multiplexed cytokine and chemokine 
assays has led to a greater understanding of the essential role of 
type-I and type-III IFN production by DCs for vaccine efficacy 
following influenza immunization,42 an understanding of how 
aging negatively impacts type-I IFN production in the elderly 
following stimulation by empty lipid nanoparticles (a compo-
nent of current mRNA-based vaccines),43 suboptimal T cell 
responses in elderly individuals to COVID-19 vaccination,44 

and to identify cytokines responsible for driving lymphoid 
tissue fibrosis-associated impaired vaccination responses.45 

Importantly, while multiplexed protein assays can be utilized 
to gain an understanding of the immune response on a global 
scale, such as through serum and plasma analysis, multiplexed 
assays can also be run on samples taken directly from stimu-
lated cells. Therefore, multiplexed protein assays provide 
a dynamic understanding of the cytokine and chemokine net-
works between immune cells that continually change during 
an immune response and offer the ability to gain deeper 
insights into immunological responses to infection and vacci-
nation and novel therapeutic strategies.

Multicolor flow cytometry

Advances in flow cytometry have enabled high throughput 
multiparametric analyses of cellular phenotypes, biomarkers, 
and vaccine candidates46 based on fluorescent labeling. To 
date, multi-color panels of over 40 colors have been developed 
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and executed.47 With the increasing complexity of flow cyto-
metry panels, 2D manual gating is becoming the way of the 
past as automated analyses pave the way for improved repro-
ducibility and data exploration. Validation of flow cytometry 
workflows for innate immunoprofiling of peripheral blood 
samples has enabled more efficient monitoring of innate 
responses within translational research and clinical settings.48 

More recently, efforts to optimize workflows for high- 
dimensional analyses and multi-batch integration have 
expanded, improving visualization and clustering of flow cyto-
metry data with algorithms including SPADE,49 FlowSOM,50 

and UMAP.51 Furthermore, flow panels have evolved to 
include phospho-specific flow cytometry, or Phosphoflow, to 
examine single-cell phosphorylation events within signaling 
networks. Application of fluorescent cell barcoding (FCB), 
a mechanism to label cells with unique barcodes of fluores-
cence intensity and emission, with Phosphoflow has been 
previously utilized to screen a small-molecule library for 
T cell receptor and cytokine signaling inhibitors.52 Such ana-
lyses exemplify the high-dimensionality potential for flow 
cytometry analyses.

Cytometry by time of flight (CyTOF)

Traditional flow cytometry techniques remain limited in the 
number of potential parameters analyzed in a single sample. 
Recent developments have led to the generation of CyTOF, 
a mass cytometry technique enabling multiplexed analyses of 
limited samples with little signal overlap using a mass spectro-
meter. Unlike flow cytometry, which uses fluorescently labeled 
antibodies to label cellular markers, CyTOF offers unbiased 
high-dimensional characterization with the application of 
antibodies conjugated to rare heavy metal isotopes. An atomic 
mass cytometer can then detect the unique time-of-flight of 
each metal with detection overlaps limited to <2% compared to 
the 5–100% potential spectral overlap that occurs in flow 
cytometry.53 Additionally, CyTOF methods exhibit signifi-
cantly lower background from autofluorescence, enabling bet-
ter detection of low-expression markers even on myeloid cell 
populations with higher baseline autofluorescence.54 These 
capabilities have improved the output of large quantities of 
immunological data from small sample sizes to facilitate the 
understanding of complex biological systems, disease biomar-
kers, and therapeutic responses at a cellular level. For example, 
one study evaluated myeloid cell phenotypes in patients with 
progressive multiple sclerosis (MS), revealing an increased 
abundance of highly phagocytic and activated microglia and 
decreased tumor necrosis factor (TNF)Hi myeloid cells asso-
ciated with chronic neuroinflammation and demyelination.55 

A similar study further identified a novel CD56Hi NK cell 
signature in periventricular brain regions of MS patients.56 

These investigations highlight the power of CyTOF to identify 
signatures of low and high-abundance immune cells in disease 
to set the stage for advanced targeted immunotherapies.

Multiplexed ion beam imaging (MIBI)

Like CyTOF, multiplexed ion beam imaging (MIBI) uses mass 
spectrometry to detect metal-tagged antibodies to analyze 

cellular protein markers. However, MIBI further enables ana-
lyses of 100 targets simultaneously while also providing details 
regarding cell morphology and localization through its appli-
cation to whole tissue samples.57 This method overcomes the 
limitation of spectral and spatial overlap exhibited by immu-
nohistochemistry, warranting its application in clinical diag-
nostics. Information produced using MIBI can be understood 
in a traditional imaging context, as well as through the appli-
cation of high-dimensional analytics, to uncover discrete phe-
notypic and morphological characteristics of tissue samples 
including cancer biopsies. For example, a retrospective study 
used MIBI with Time-Of-Flight (MIBI-TOF) mass spectro-
metry to analyze 41 samples from triple-negative breast cancer 
(TNBC) patients. Data interpretation showed unique spatial 
immune composition and protein expression, including 
monocyte PD-L1 upregulation, in tumor microenvironments 
between patients, revealing hallmarks of tumor compartmen-
talization that correlated with overall survival.58 A similar 
study further demonstrated immune composition and protein 
co-expression patterns associated with TNBC survival and 
recurrence.59 These experiments illustrate the potential for 
MIBI to address complex immune state characterization in 
a variety of diseases to improve guidelines guiding therapeutic 
development.

Systems immunology data integration using 
bioinformatic platforms

Bioinformatics is the application of computational methods to 
gain additional insights from large datasets generated from 
high-throughput experiments.60 Reliable analysis pipelines 
have already been established for genomic and proteomic 
expression and networking, but with the increasing accessibil-
ity of high-performance computing, advanced techniques that 
rely on machine learning (ML) classification algorithms, such 
as random forest (RF), support vector machine (SVM), and 
K-nearest neighbor (KNN), can be used to identify patterns 
observed in specific groups of individuals exposed to certain 
conditions.60 Neural networks are another computational 
approach commonly used in the analysis of biological data. 
Unlike other approaches used for classifications such as RF, 
SVM, and KNN, neural networks can be used to provide 
predictions based on biological data. An example is training 
a model on protein data and providing accurate protein struc-
ture predictions.61 This application can aid in target identifica-
tion by providing insight into exposed sites that can drive 
treatment development.

In the context of immunology, these analyses can highlight 
the intricacies of interactions occurring within immune system 
pathways. Recently, these techniques have seen a drastic 
increase in utilization due to the prevalence of multiparametric 
assays and genomic sequencing in research projects that char-
acterize protein expression, cytokine production, proliferation, 
and transcription markers, expanding our understanding of 
immune networks and their applications in the development 
of treatments for infectious diseases. A notable example is the 
recent SARS-CoV-2 pandemic, where bioinformatic pipelines 
were employed to characterize immune responses in indivi-
duals displaying different levels of severity.62,63 This type of 
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analysis can be particularly effective in highlighting what 
immune interactions drive an observed response. Another 
application of these techniques is observing how innate signa-
tures are affected in studies involving an aging population.64 

Data availability for these techniques is made more accessible 
by data sharing platforms including NCBI Gene Expression 
Omnibus (GEO) for genomic data or Protein Data Bank 
(PDB) for data on protein structures.65,66 Databases like these 
allow for the efficient sharing and reuse of data that other labs 
can utilize to generate hypotheses and additional applications 
for these datasets.

Systems immunology utilization in vaccinology

Systems immunology has proven to be a powerful exploration 
tool which uses large, multiplexed data sets to gain a deep 
understanding of cellular and molecular partners orchestrating 
immune responses. Particularly in the context of vaccine- 
induced immune responses, systems immunology has aided 
in understanding how baseline, pre-vaccination immune land-
scapes shape post-vaccination responses, therefore gaining the 
ability to predict vaccine responses. To this end, characteriza-
tion of immune signatures of vaccine responders has allowed 
for the rationale design of vaccine antigens and adjuvants to 
drive protective immune responses.67–70

Characterizing baseline immune landscapes to 
predict vaccine responses

Heterogeneity in vaccine responsiveness can be influenced by 
a variety of factors including age,71 sex,72 and ethnicity.73 

Several studies using a systems approach have demonstrated 
that the innate immune landscape prior to vaccination has 
a profound effect on immune responses postvaccination. 
This has been demonstrated for several clinically approved 
vaccines such as the hepatitis B virus (HBV),74 and 
influenza75 vaccines.

Using transcriptional and cytometric profiling, the presence 
of inflammatory response transcripts and increased frequen-
cies of pro-inflammatory innate cells, particularly CD40 
expressing plasmacytoid DCs, pre-vaccination was found to 
correlate with weaker immune responses to the HBV 
vaccine.74 Similarly, increased frequencies of monocytes, 
increased transcription of innate sensing genes such as TLR4 
and TLR8 and nucleotide-binding oligomerization domain 
containing protein 2 (NOD2) and increased transcription of 
inflammatory genes such as IFN-γ receptor, IL-13 receptor, 
and spleen tyrosine kinase (SYK) at baseline were found to 
negatively correlate with antibody responses post influenza 
vaccination.75 These findings suggest that inflammatory 
responses pre-vaccination may be detrimental to the induction 
of antibody responses.74,75

A more recent study has built on this work to identify 
a universal, baseline, pre-vaccination immune signature that 
is predictive of antibody responses across an array of 
vaccines.69 To do this, publicly available transcriptional data 
was integrated from different platforms of over 3,000 periph-
eral blood samples from 820 adults across 28 studies of 13 
vaccines. Of the 13 vaccines, these spanned several vaccine 

platforms including live attenuated virus, inactivated virus, 
recombinant viral vector, recombinant protein, and bacterial 
glycoconjugate vaccines.69,70

Unsupervised clustering analysis of blood transcriptional 
modules was coupled to immunological function data to char-
acterize pre-vaccination transcriptional profiles into three 
endotypes: high, mid, and low inflammatory. These endotypes 
were differentially defined by the expression of TLR genes, 
interferon stimulated genes (ISGs), and genes associated with 
cell metabolism downstream of the transcription factor NF-κB. 
These metabolic genes regulated by NF-κB are critical for 
innate and adaptive immune responses such as antiviral 
responses, antigen presentation, and B cell activation.69,70 

Individuals in the high inflammatory endotype upregulated 
expression of transcriptomic markers of classical monocytes 
and DCs, which are associated with greater serum antibody 
responses. Contrary to the aforementioned studies,74,75 this 
suggests that baseline heightened innate immune activation 
mediated by monocytes and DCs favors vaccine-specific anti-
body production likely by aiding in germinal center reactions 
necessary for high-affinity antibodies.69,70 It is possible that 
pre-vaccination inflammation is a delicate balance where some 
can be beneficial to driving vaccine responses and excess can 
be detrimental. Nonetheless, these studies demonstrate that 
the innate immune landscape prior to vaccination affects vac-
cine induced immune responses. Using systems immunology 
to characterize these pre-vaccination immune landscapes aids 
in the ability to predict vaccine responders vs. non-responders 
as well as characterize and subsequently target non-responders 
through the precision design of vaccine antigens and 
adjuvants.

Characterizing immune signature following 
vaccination

In addition to aiding in the characterization of pre-vaccination 
immune signatures, systems immunology has also been used 
to characterize responses post-vaccination. This has enabled 
the identification of correlates of immune-mediated protection 
which can then be utilized to develop novel vaccines to cur-
rently incurable diseases.

Postvaccination immune signatures have been defined for 
several vaccines such as the yellow fever,76 influenza,75 and 
more recently, the SARS-CoV-2 mRNA vaccine.77 Similar to 
the findings in baseline immune signatures,69,70,74,75 postvac-
cination adaptive immune signatures were heavily dictated by 
early, innate immune responses.

Using functional genomics and multicolor flow cytome-
try, it was shown that the yellow fever vaccine 17D 
(YF17D) upregulated MyD88, a key adaptor protein 
needed for signaling, and TLR7. Genes downstream of 
MyD88 signaling such as the proinflammatory cytokines 
IL-6, IL-12, TNFα, and type I IFNs were also found to be 
upregulated postvaccination. Master transcription factors, 
such as NFκB and ETS2 (ETS proto-oncogene 2), were also 
found to be upregulated. Genes under the control of these 
master transcription factors are known to regulate the 
induction of several innate immune pathways such as 
type I IFNs, inflammasome activation, and complement. 
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In line with this, YF17D vaccination led to increased cas-
pase-1 and −5 which are known to be processed and 
activated by inflammasomes. Upregulation of components 
of the complement cascade, specifically C1qA and C1qB, 
were also found to be upregulated upon YF17D vaccina-
tion. Effector cells such as macrophages, NK cells, and DCs 
were also found to be critical in the early response to 
YF17D vaccination.76

Using microarray experiments, hemagglutinin inhibition 
(HAI) assays, and multicolor flow cytometry, vaccine 
responses to influenza vaccination across multiple seasons 
in both young and aged populations were evaluated.75 

Compared to previous studies which evaluated a single 
influenza vaccine for one season in young individuals,78–83 

evaluating responses in young and aged individuals to 
several influenza vaccines across multiple seasons addressed 
the issue of virus strains changing from year to year, what 
impact these variations may have on immune signatures, 
and how immune signatures in young individuals differ 
from those in aged individuals. Shared and consistent 
molecular signatures of influenza vaccine immunogenicity 
were seen across the five influenza vaccine seasons that 
were evaluated. Early after vaccination, strong innate 
responses were observed and characterized by the expres-
sion of IFNs and DC activation that positively correlated to 
later antibody response. TLR signaling and antigen presen-
tation early postvaccination were also found to be 
enhanced. When comparing young and aged vaccination 
responses, aged responses were characterized by having 
enhanced frequencies of activated, cytotoxic NK cells and 
CD14+ CD16+ inflammatory monocytes with diminished 
expression of CD86. Prior to vaccination, monocytes were 
also increased in aged individuals who had a negative cor-
relation to antibody response. These data suggest changes 
to the innate response in aged individuals result in dimin-
ished antibody responses to influenza vaccination.75 This 
study exemplifies how systems immunology can be used to 
understand what specific components of the immune sys-
tem are responsible for the known suboptimal responses 
aged population have to many vaccines.75,84 Understanding 
the immune signature of aged vaccination responses allows 
for precision design of vaccine antigens and adjuvants that 
specifically modulate aged immune responses to increase 
overall vaccine efficacy.

Systems immunology was recently used to characterize 
immune responses to the novel mRNA vaccine platform 
used for the SARS-CoV-2 vaccine BNT162b2. Using Cytof, 
OLINK, and single-cell transcriptomics, it was found that 
BNT162b2 vaccination, specifically after the second immuni-
zation, enhanced innate immune responses. These enhanced 
innate immune responses were characterized by increased 
frequencies of CD14+ CD16+ inflammatory monocytes, 
higher concentrations of INF-γ in the plasma, and 
a transcriptional signature of innate antiviral immunity. 
This transcriptional signature in addition to monocyte- 
related signatures observed were associated with CD8+ 

T cells and neutralizing antibody responses. Although this 
study77 is important in understanding initial BNT162b2 vac-
cination responses, additional systems studies evaluating 

longitudinal mRNA vaccine responses are needed to under-
stand the quickly waning immune responses against sympto-
matic COVID-19.85–88

Innate systems immunology in infection and 
immunity

Diseases are highly complex and exhibit great patient- to- 
patient variability. For medicine to evolve from an approach 
to one that considers therapies that are ‘suitable for all,’ high- 
throughput analysis technologies, mechanistic modeling, and 
big data generation are essential and will lead to more precise 
patient stratification and personalized treatment options. 
Dysregulation of the immune response during infection 
involves dynamic gene networks, immune signaling pathways, 
cellular networks, and host–pathogen interactions. Systems 
immunology approaches consider these complex immune 
pathways and apply a methodical analysis to each study to 
identify new predictors of disease and to accelerate the transla-
tion of this knowledge into therapies. Significant achievements 
in understanding immunological diseases using ‘omics and 
associated computational analysis methods have been made. 
However, gaps remain in data and connecting genetic varia-
tion, the impact of aging, and environmental factors to indi-
vidual phenotypes and disease outcomes continue to elude 
researchers. Here, we present perspectives and discuss how 
recent advances in ‘omics technologies have aided in over-
coming challenges toward complex disease.

Biological pathways

Arguably, the most important developments of system immu-
nology have been the development and cataloging of data-
bases. InnateDB and other International Molecular Exchange 
(IMEx) consortium databases provide systems-level analyses 
that give better insight into the complex networks of pathway 
interactions of the innate immune system.89,90 InnateDB is 
a systems biology database of mammalian and murine mole-
cules and pathways involved in innate immunity. InnateDB is 
also a complete analysis platform that allows for annotation 
and database cross-referencing for each gene and protein in 
addition to a user-friendly bioinformatics interface.91,92 

InnateDB provides a way to identify statistically significant 
pathways from over 3000 pathways that are stored and onto-
logical terms from a list of user-selected genes. These terms 
describe the molecular function, biological process, and cellu-
lar compartment of the genes. Gene expression data can be 
included for up to 10 conditions at once and overlaid on 
pathways and networks of interest. Users can then construct 
interaction networks and visualize their data. Advances in 
mapping the interactomes are key to understanding systems 
innate immunology. Examples of comprehensive interaction 
databases included Pathguide,93 IntAct,94 MINT,95 and 
BioGRID.90,96 These databases store over 100,000 interactions 
across a range of species and include experimental types and 
publications. Network analysis has enabled a more complete 
picture of the relationships among genes, proteins, and other 
molecules and can include visualization of these interacting 
networks which might reveal unknown relationships in 
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signaling cascades or pathways. This is evident when mapping 
mammalian TLR signaling pathways, which identified MyD88 
as a gateway protein of which many pathways converge with 
positive and negative feedback and feedforward loops.97 These 
tools provide techniques for systems-level studies to provide 
novel insights into innate immunity, especially its context in 
infection.

Host–pathogen interactions and immune profiling

Most systems immunology approaches for studying correlates 
of protective immunity heavily focus on the adaptive system. 
Few studies focus on identifying the pre-infection environ-
ment and possible correlates of protection. However, there 
have been many studies using systems immunology to under-
stand correlates of protection against Hepatitis C Virus 
(HCV).98,99 In these studies, published in the early 2000s, the 
researchers focused on identifying interferon signatures from 
peripheral blood mononuclear cells (PBMCs) and liver biop-
sies using microarray studies that correlated with HCV viral 
clearance. These studies provided snapshots of the overall 
immune response using acute HCV infection but fell far 
short of elucidating the entire immune microenvironment 
during infection.

However, with new advent of technologies, this is changing. 
Systems immunology has also been employed recently to study 
immune profiling. Early in the COVID-19 pandemic, one 
study used systems immunology to assess immunity to mild 
versus severed COVID-19 infection in humans.27 This study 
analyzed the immune responses in PBMCs of 76 COVID-19 
patients and 69 healthy individuals from Hong Kong and 
Atlanta, GA, USA, to identify the underlying causes of 
immune response differences, especially between healthy 
young adults and adults with medical comorbidities including 
age, cardiovascular disease, cancer, or obesity. Understanding 
the immunological mechanisms of the diverse clinical presen-
tations of diseases is a crucial step in designing therapeutics. 
Using mass cytometry and CITE-seq analysis, Arunachalam 
et al. analyzed PBMCs from COVID-19 patients. These tech-
niques revealed common features of immune response 
induced in SARS-CoV-2 infection at a cellular level including 
decrease in plasmacytoid DC frequency and IFNα production. 
Additionally, monocytes and mDCs upon TLR stimulation 
have reduced proinflammatory cytokines IL-6, TNFα, IL-1β 
along with impaired rapamycin (mTOR) signaling. Using sin-
gle-cell transcriptomics, the researchers saw an absence of type 
I IFNs and reduced HLA-DR in myeloid cells of patients with 
severe COVID-19. Analysis using systems immunology of the 
innate immune system helped reveal a spatial and temporal 
shift in COVID-19 patients.

Systems immunology has also been employed to under-
stand the mechanisms behind the pathogenicity of the influ-
enza virus including the known dysregulation of the host 
response with hopes that these network-based approaches 
could reveal novel therapeutic targets. Several studies have 
used transcriptional and proteomic analyses to determine the 
host immune response to influenza. A combination of whole 
tissue and single-cell transcriptomics has identified a feed- 
forward cytokine loop involving the recruitment of innate 

cells into infected tissue.100–103 Recent studies have also impli-
cated post-transcriptional regulation in influenza pathogen-
esis. RNA seq analysis has identified miRNAs can modulate 
proinflammatory cytokine secretion thus affecting host 
response.104 Together, these studies provide insights into the 
programs that can modulate host immune response to 
pathogens.

Clinical research applications of systems immunology

Systems immunology and infection – improving patient 
stratification and therapeutic strategies

Significant achievements using ‘omics data have been made in 
personalized medicine, however the complexity of the immune 
system and the difficulties in delineating the networks that 
determine the response to infections/vaccines have now 
required the systems immunology approach to systematically 
characterize immune molecular and cellular networks in indi-
vidual patients. Researchers must consider not only genetic 
factors and the formation of a memory response but also 
environmental factors. These factors will cause the manifesta-
tion of various clinical symptoms that can make it difficult for 
clinicians to identify patients infected with a particular disease. 
Hence, there is a need to identify reliable biomarkers and 
molecular signatures to precisely stratify patients for persona-
lized treatment. Recent advances in immune subset deep phe-
notyping have used genomics, metagenomics, and 
metabolomics techniques to show that cytokine production is 
regulated by multiple genetic and nongenetic host factors and 
that cytokine production is relatively predictable with multiple 
baseline profiles. It has also been shown that there is 
a correlation of the immune response with genetic risk of 
disease.105 These studies have used mass cytometry to evaluate 
multiple cytotoxic molecules with detailed information of 
T and NK cell differentiation states, two key cell subsets 
involved in the elimination of infected cells.106

Monitoring and cure of viral diseases is particularly chal-
lenging as it requires comprehensive understanding of both 
the host and the pathogen’s individual features prior to 
demonstrating the outcomes of the infection in different indi-
viduals. System structural analysis of serotype DENV-specific 
Ig constant Fragment (Fc) has recently highlighted that pro-
gressive DHF/DSS patients develop an IgG1 humoral response 
which showed higher affinity for FcRγIIIA (CD16) due to 
afucosylated Fc glycans and therefore triggered platelet activa-
tion and the risk for thrombopenia and hemorrhagic 
damage.22 Similarly, metabolomics analysis of acute phase 
clinical sera samples from patients with dengue infection 
have identified 65 metabolites differentially expressed that 
predicted DHF/DSS progression, including α-linolenic acid, 
arachidonic acid, and docosahexaenoic acid.107

Schreiber et al. used immune transcriptomics to compare 
gene expression in HIV patients with and without severe non- 
nontyphoid Salmonella infections (iNTS).108 They found 1,200 
genes that were upregulated in HIV patients with a Salmonella 
infection compared to patients without a bacterial infection. 
The genes that were upregulated in patients without bacterial 
infections were enriched in pathways associated with innate 
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immunity/inflammation responses, whereas patients with con-
current bacterial infections had upregulation of genes asso-
ciated with anti-inflammatory mediators. The authors 
speculate that this lack of innate immune signature could 
lead to utilization as a biomarker of poor prognosis in HIV 
patients with iNTS. These analyses can be used to investigate 
the manipulation of the immune system by pathogens. 
Published in 2007, Scott et al. engaged systems immunology 
to identify the local immune response in human monocytes 
and PBMCs to important Gram-positive and Gram-negative 
pathogens including methicillin-resistant Staphylococcus aur-
eus, vancomycin-resistant Enterococcus and Salmonella enter-
ica serovar Typhimurium.109 Transcriptional changes were 
assessed to better understand the cellular cascade that occurs 
when specific peptides from these bacteria enter the cell.109 

The biological connection of those gene expression changes 
was assessed using transcription factor binding site (TFBS) and 
network analysis with NetworkAnalyst revealing 11 pathways 
including the NFκB and Erk1/2 pathways.

Thus, screening patients for afucosylated Fc-IgG or identi-
fication of a metabolomics/transcriptomics signature of infec-
tion could aid in better targeting and triaging of ‘at risk’ 
patients, using acute phase clinical specimens and exemplifies 
the benefit of conducting systems immunology of infection 
disease. Seasonal influenza in young children can be dramati-
cally severe due to a less developed immunological system. 
With the identical concept of improved prognostic criteria, 
a recent pilot study has shown that the nasopharyngeal micro-
bial signature could predict severity of influenza in young 
children.110 The use of microbial signatures as prognostic 
biomarkers will also benefit translational and clinical settings 
in three ways: early recognition of a risky patient, a new 
therapeutic option to treat severe respiratory complication by 
manipulating microbiome; and mandatory vaccination/ 
revised vaccine strategy for severe influenza-prone children.

Infectious disease and immunosenescence – new insights 
gained

Immunosenescence characterizes the decline of human 
immune system with aging. Older adults become more sus-
ceptible to infectious disease, cancer development, and less 
responsive to vaccinations. The progressive increased age of 
the population mandates new strategies to ensure sustained 
health and well-being. Novel approaches to counteract 
immunosenescence and understand the mechanism of age- 
related decline of the immune response to infection are 
required in basic and translational research. Work in the 
aging field has identified links between chronic inflammation 
in the immune system. For example, a longitudinal study of 
aging adults identified elevation of baseline phosphorylated 
STAT proteins that correlate with an elevation of inflamma-
tory cytokines in the blood and the decreased ability of cells 
to respond to stimulus in vitro.111 Another metabolomic 
study linked this low-grade, chronic inflammation with spe-
cific inflammasome gene modules that classify older adults 
into either those with higher IL-1β expression and elevated 
oxidative stress and those without those characteristics. 
Elucidating these mechanisms show that targeting 

inflammasome components may abrogate chronic 
inflammation.112 We have also recently shown using 
a systems approach that the innate immune response is 
impaired in the elderly. In fact, monocytes and dendritic 
cells have reduced ability to respond to TLR ligands, and 
innate immune cells are unable to produce cytokines and 
express co-stimulatory factors that are needed for T and 
B cell help.64,113,114 We attributed this to the basal expression 
of increased pro-inflammatory cytokines that characterize 
immunosenescence. The aging response demands an inter-
disciplinary approach, one that ‘omics technologies create to 
facilitate the development of appropriate therapeutic strate-
gies that will not only reduce infectious disease burden and 
risk but also improve life expectancy and quality. Learning 
from these findings may pave the way to developing novel 
and improved vaccines for older adults and the 
immunocompromised.

Concluding remarks

Systems immunology characterization via genomics, tran-
scriptomics, metabolomics, and multiplexed immunological 
assays is a growing interest for scientists and clinicians and 
allows for a large-scale comprehensive picture of vaccine 
immunology, infectious disease outcomes, and aging predic-
tion (Figure 2). Systems analyses promote the development 
of a personalized concept of medicine, thereby bringing 
personalized and precision medicine to the forefront of the 
clinic and revolutionizing the advancement of patient care 
and therapeutics. As this approach will tailor medical deci-
sions and health care the level of individual, the need for 
better patient stratification and improvement of current 
diagnostic testing is crucial to select appropriate immune 
therapy based on individual biology. Technical improvement 
of biological markers measured in a lower-cost high- 
throughput format is appealing for routine care and will 
certainly contribute to making therapeutics more accessible 
to the majority.
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