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Transcription factors (TFs) are trans-acting proteins that bind cis-regulatory elements (CREs) in DNA to control gene expres-

sion. Here, we analyzed the genomic localization profiles of 529 sequence-specific TFs and 151 cofactors and chromatin regu-

lators in the human cancer cell line HepG2, for a total of 680 broadly termed DNA-associated proteins (DAPs). We used this

deep collection to model each TF’s impact on gene expression, and identified a cohort of 26 candidate transcriptional repres-

sors.We examine high occupancy target (HOT) sites in the context of three-dimensional genomeorganization and show biased

motif placement in distal-promoter connections involving HOT sites. We also found a substantial number of closed chromatin

regions with multiple DAPs bound, and explored their properties, finding that a MAFF/MAFK TF pair correlates with tran-

scriptional repression.Altogether, these analyses provide novel insights into the regulatory logic of the human cell line HepG2

genome and show the usefulness of large genomic analyses for elucidation of individual TF functions.

[Supplemental material is available for this article.]

Gene expression is regulated andmodulated by the association, ei-
ther direct or indirect, of various classes of proteins toDNA, includ-
ing RNA polymerase and transcription-associated proteins,
histone modifiers, and a broad suite of transcription factors (TFs)
and associated cofactors. Together, these DNA-associated proteins
(DAPs) are encoded by ∼10%of all protein-coding genes in the hu-
man genome (Vaquerizas et al. 2009; Lambert et al. 2018). DAPs
are known to associate with DNA either through recognition of
discrete small sequencemotifs, by interactions with degenerate se-
quences having little complexity, or by cofactor recruitment. The
most common assay for genome-wide identification of genomic
binding or association sites for DAPs is chromatin immunoprecip-
itation followed by high-throughput sequencing (ChIP-seq),
which provides a statistically identified snapshot of regions re-
ferred to as peaks (Barski et al. 2007; Johnson et al. 2007;
Robertson et al. 2007; Kharchenko et al. 2008; Zhang et al. 2008;
Savic et al. 2015; Meadows et al. 2020). For those TFs with DNA se-
quence specificity, associations occurwith enough frequency to be
detectable as a consistent DNA sequence motif through use of ge-
nome-wide binding data (Bailey et al. 2015) or in vitro molecular
binding assays (Chai et al. 2011).

The Encyclopedia of DNA Elements (ENCODE) Consortium
has completed and released 3194 ChIP-seq data sets for 1139
DAPs using both traditional antibody ChIP-seq and epitope-tagged
ChIP-seq methods (The ENCODE Project Consortium 2012; The
ENCODE Project Consortium et al. 2020; Partridge et al. 2020).

The human liver cancer–derived cell line HepG2 currently has the
largest number (n=814) of ENCODE-released ChIP-seq data sets,
some of which are repetitions of different ChIP-seq experiments
with the same target for a total of 680 unique DAP targets. With
this wealth of occupancy profiles for a single cell type, the HepG2
ChIP-seq data allow for the assessment of biological roles of DAPs
in a broad genomic context, including analyses of similarity and
coassociation frequency, association with regulatory region types,
and impact on gene expression. These data sets provide the oppor-
tunity to explore the functional impact of individual TFs and asso-
ciated proteins on gene expression and genome organization.

Here, we present an analysis of ChIP-seq data in the HepG2
that greatly expands on our previous work with this cell type
(Partridge et al. 2020), including 492 ChIP-seq data sets not ana-
lyzed in that prior work, as well as a lentiviral massively parallel re-
porter assay (lentiMPRA, or MPRA) to functionally test elements.
We provide an overview of this resource and highlight novel find-
ings with TFs and trans-regulatory proteins on cis-regulatory
sequences, including patterns of TF genomic localization in the
context of the three-dimensional (3D) organization of high
occupancy target (HOT) sites and the association of TFs with
closed chromatin regions that influence gene repression.

Results

It is estimated that there are 1639 sequence-specific TFs encoded in
the human genome (Lambert et al. 2018), only a subset of which
are expressed in any given cell type. To gain a deeper
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understanding of gene regulatory mechanisms, we analyzed TF
binding data, much of which we generated, in HepG2 cells and le-
veraged the large number of TFs assayed in that cell line as themost
comprehensive resource available. The expression level of any in-
dividual TF is not necessarily correlated with its biological signifi-
cance; proteins can be expressed at a very low level and still
perform important biological functions in a given context.
Pragmatically, however, we have observed diminishing rates of
success for ChIP-seq and epitope-tagged ChIP-seq data sets as the
expression level of those TFs decreases (Meadows et al. 2020).
Therefore, we identified all TFs in HepG2 cells that are expressed
at levels of at least two transcripts per million (TPM), as measured
by RNA-seq (ENCSR181ZGR). There are 895 TFs expressed at this
level in HepG2 cells. We compiled the existing data sets produced
from our laboratory and others from the ENCODE portal for 479
(53.5%) of these 895 TFs (see Methods) (Supplemental Table 1).
In addition to these 479 TFs, we also analyzed data for 50 TFs ex-
pressed at fewer than two TPM for which we were able to generate
high-quality ChIP-seq data despite their low expression and for
151 non-TFDAPs and nine histonemarks, for a total of 680 unique
ChIP-seq DAP targets in HepG2 and nine histone modifications.
This expanded catalog of DAPs and associated gene regulatory
data sets provides a rich resource to characterize and understand
the functional impact of DAP binding on gene regulation.

DAP associations at cCREs reveal the interaction of DAP function

and regulatory context

TFs impact expression byassociatingwithor binding toDNA, specif-
ically at cis-regulatory elements (CREs). We therefore sought to
determine which cis-regulatory elements are bound by TFs and the
patterns of activity that those bound regions display. We examined
cis-regulatory elements for the presence of at least one DAP peak. To
do this, we used the Registry of Candidate cis-Regulatory Elements
(V4 cCREs) derived from the ENCODE data (The ENCODE Project
Consortium et al. 2020; JE Moore, HE Pratt, K Fan, et al., in prep.).
These candidate cis-regulatory elements (cCREs) represent genomic
regulatory elements across multiple human cell types and are de-
rived from chromatin accessibility assays (DNase-seq and ATAC-
seq), histone modifications, and DAP-binding data. To filter for
cCREs that are relevant in HepG2, we overlapped with HepG2
ATAC-seq data, generating a set of 318,567 HepG2 cCREs. Of these,
84.2% have at least one of the assayed DAPs associated, and those
cCREs with no DAPs associated in HepG2 are largely distal enhanc-
er-like sequences (Fig. 1A; Supplemental Fig. 1; Supplemental Table
2).We compared this patternof bindingwith dinucleotide-matched
control sequences and found that these regions are significantly
more bound than controls (Supplemental Fig. 2; Supplemental
Table 2). As the number of associated DAPs increases at cCREs, the
proportion of cCREs defined as “promoter-like” increases
(Supplemental Figs. 3, 4; Supplemental Table 3). We therefore con-
clude that the coverage of cCREs with at least some subset of their
associated DAPs is approaching completeness.

We also found 50,446 (15.8%) annotated cCREs overlapping
with an ATAC-seq peak in HepG2 cells but with no DAP peaks in
our data set. Given their predicted regulatory activity and their
open chromatin state in this cell type, we would expect that they
should be bound by someDAP. At least three explanations are pos-
sible: (1) These cCREs are unbound by anyDAP, (2) they are bound
by DAPs that have not yet been assayed in HepG2 cells, and/or (3)
DAP binding was potentiallymissed as false negatives in the ChIP-
seq assays. To measure functional activity of these elements (as

well as for other analyses below), we performed a lentiMPRA (or
MPRA) following established methods (Gordon et al. 2020).
MPRAs functionally validate the regulatory activity of thousands
of DNA elements simultaneously by insertion of DNA upstream
of or downstream from a transcribed element (Klein et al. 2020).
Our MPRA experiment contained 69,210 elements of 170 bp
each, selected from various promoter and distal cCREs and from
non-cCREs, as well as a set of synthetic, nongenomic elements
with various numbers of TF motifs. We supplemented this data
set by also analyzing a publicly available HepG2 lentiMPRA data
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Figure 1. Genomic properties and activities of DAP-bound regions in
genomic and reporter contexts. (A) The majority of cCREs of each type
are bound by an assayed DAP. Bars show the number of sites of each
cCRE class (x-axis) with at least one DAP association (“bound”) and those
with none in our data set (“unbound”) when restricted to those overlap-
ping with an ATAC-seq peak in HepG2. (PLS) Promoter-like signature,
(pELS) proximal enhancer-like signature, (dELS) distal enhancer-like signa-
ture, (CA-H3K4me3) chromatin-accessible H3K4me3 region, (CA-CTCF)
chromatin-accessible CTCF-bound region, (CA-TF) chromatin-accessible
TF-bound region, (TF) TF-bound region lacking chromatin accessibility,
and (CA) chromatin accessibility only. (B) Promoter elements from locally
performed lentiMPRA experiments require fewer DAPs binding for high ac-
tivity in lentiMPRA than do distal elements. Boxes show MPRA signal (nat-
ural log of normalized RNA reads over normalized DNA reads) of promoter
elements as a function of binned number of DAPs (x-axis) with a peak in the
genomic region. Promoters are defined as elements whose bounds over-
lapped with a 200-bp region centered on GENCODE TSSs. Distal elements
are defined as elements at least 5 kb from annotated TSSs. Positive and
negative control elements are plotted for comparison. In B and D, boxes
represent 25%–75% quartiles with lines indicating the median, whiskers
extend to ±1.5 × IQR (interquartile range) past the boxes, and when
present, points are observations falling outside of this range. Unpaired
t-tests were used to identify significant differences in the means between
distal and promoter element activity in each category. (∗) P=0.05,
(∗∗) P =0.0001, (∗∗∗) P≤2.2 ×10−16. (C) The fraction of distal loci with
an ABC connection as a function of binned number of DAPs at a distal el-
ement. (D) Expression of genes genome-wide increases as the number of
factors bound and connected distal elements increases. The y-axis indi-
cates the natural log expression distribution of the ABC-supported gene
as a function of binned number of DAPs at a distal element. Unpaired t-
tests were used to identify significant differences in the means between
the expression of a given category compared with expression in the zero
category. (∗) P=0.05.
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set containing 139,877 elements of 200 bp each (Agarwal et al.
2023), representing all cCREs published under the previous
ENCODE cCRE version 3 release. We found that only 32% of the
elements in our lentiMPRA had any overlap with elements in the
Agarwal MPRA, indicating that these assays provided substantially
different information. In both of these lentiMPRA data sets, the
cCREs without DAP peaks had, on average, lower MPRA signal
than did the elements with DAP peaks. However, these elements
had significantly higher activity than negative control elements
in our MPRA (Fig. 1B; Supplemental Table 4), suggesting that
some of these regions have regulatory activity and presumably
have DAP associations that are not present in our data set.We con-
firmed that this finding remained true using the Agarwal
lentiMPRA (Supplemental Fig. 5; Supplemental Table 5). To esti-
mate how much additional cCRE coverage we are missing from
the more than 400 DAPs expressed at a TPM of two or more in
HepG2 cells but that have not yet been assayed, we performed a
subsampling analysis to determine how the fraction of the
cCREs covered changes with varying numbers of analyzed DAPs.
We note that the first 200 DAPs appear to add a large amount of
information, but for new DAPs beyond 200, there is a sharp
decrease in new coverage. We extrapolate that assaying an addi-
tional 400 DAPs would result in total coverage of only 88%–90%
of HepG2 cCREs (Supplemental Fig. 6). This suggests that adding
more DAP data sets generated with ChIP-seq would not result in
complete coverage of all HepG2 cCREs and may potentially be in-
sufficient to detect trans-regulatory factors at some fraction of
these sites. To further explore whether peak-calling in ChIP-seq
misses some meaningful DAP associations, we built a gkm-SVM
model (Ghandi et al. 2016) for each DAP based on its bound se-
quences and applied these models to unbound regions. We found
that 67% of cCRE regions without DAP peak calls had a strong
score for at least one DAP’s gkm-SVM model (Supplemental Fig.
7; Supplemental Table 6), suggesting that there are missed associ-
ations at these genomic regions. Finally, to explore this further,
we used a sample of 45 bigWig signal files from the ENCODE
Project to determine whether the signal over these regions is
meaningfully different. We found that in 51.1% of these bigWig
files, unbound cCREs with gkm-SVM scores at or above the 90th
percentile had a higher signal than unbound regions with gkm-
SVM scores at or below the 10th percentile (Supplemental Fig.
8). This suggests that many of these regions may represent false-
negative peak calls for at least one TF. As an alternative to ChIP-
seq, predictive computational methods for DAP bindingmay offer
further insights (Ghandi et al. 2016; Schreiber et al. 2020).

We asked how DAPs work together and impact gene expres-
sion at different cCREs, specifically promoters and distal elements.
As a measure of the functional impact of DAP associations, we as-
sessed how varying numbers of DAP associations at cCREs impact
potential gene expression by examining the correlation between
numbers of DAPs and transcriptional activity in our lentiviral
MPRA experiment (Fig. 1B; Supplemental Table 4) and the MPRA
from Agarwal et al. (2023) (Supplemental Fig. 5; Supplemental
Table 5). We observed a trend in both promoters and distal ele-
ments in which expression increased as the number of bound
DAPs increased. This supports earlier findings that MPRA activity
correlates with the number of DAPs bound at the endogenous ele-
ment (Ramaker et al. 2020). Elements from distal regions have a
muchwider distribution of expression but, on average, lower levels
of reporter expression compared with promoters for each bin of
DAP numbers. This is expected in the lentiMPRA assay system,
in which test elements are directly upstream of the reporter open

reading frame and thus ideal for promoter activity tests.
However, distal elements with very large numbers of associated
DAPs (more than 400) showed a sharp decrease in activity,whereas
promoter elements with these numbers did not. As this is a novel
finding, we confirmed the results by using a secondMPRA data set
(Supplemental Fig. 5; Supplemental Table 5). Thus, distal elements
with a high number of TFs and associated cofactors show signifi-
cantly lower activity in MPRA assays versus elements with fewer
DAPs bound.

To further explore the distal elements with high numbers of
DAPs yet low expression in theMPRA and to uncover potential ex-
planations for this finding, we examined these regions more
broadly. We speculated that placing these regions in an artificial
context close to the promoter of a reporter genemaynot accurately
recapitulate their endogenous looping to distal promoters to en-
hance gene expression. Therefore, we examined activity-by-con-
tact (ABC) loop models (Fulco et al. 2019) in HepG2, an analysis
that assigns a confidence score to an active loop, or a connection
between a promoter and a distal element using 3D interactionmet-
rics in the form of Hi-C data, as well as RNA-seq, ATAC-seq, and
histone marks. Crucially, the ABC method does not consider
DAP binding as a contribution to the score. We found that distal
elements are increasingly likely to have an ABC connection to at
least one promoter as the number of DAPs increases until reaching
about 200 DAPs, with a substantial drop in connections for ele-
ments with more than 400 associated DAPs (Fig. 1C). We com-
pared this with dinucleotide-matched control sequences and
found that, compared with controls, these regions are enriched
for ABC associations (Supplemental Fig. 9; Supplemental Table
7). Nonetheless, we found that very highly bound distal elements
that do contain an ABC loop tended to be connected to highly ex-
pressed genes (Fig. 1D; Supplemental Table 8). This suggests that
these elements functionally enhance gene expression but not in
a proximal MPRA context, and highlights the importance of regu-
latory context on DAP function. To explore these regions further,
we identified all bound regions in the genomewith 201–400 DAPs
bound and compared them with regions with 401+ DAPs bound.
We found that regions with 401+ DAPs bound were, on average,
larger (mean, 1703 bp vs. 1237 for 201–400); have higher GC con-
tent (59.1% vs. 57.9%, P=8.65×10−4, Mann–WhitneyU test); and
have higher ATAC-seq signal (mean bigWig signal 538.4 vs.
443.75, P≤2.2 ×10−16, Mann–Whitney U test) (Supplemental
Fig. 10).

Modeling of TF effects on gene expression identifies putative

trans-activators and repressors

We next asked whether these numerous ChIP-seq data sets would
allow us to predict and quantify each TF’s activating or repressing
behavior. TFs are a specific subset of DAPs that bind to DNA in a
sequence-specific manner to regulate transcription (Lambert
et al. 2018). Parsing out specific contributions of TFs to expression
patterns is an ongoing effort in the genomics community. To ex-
plore functional effects of TF localization on gene expression, we
createdmodels based on the association of 529 TFs to the promoter
region of genes. Linear modeling of gene expression based on pro-
moter TF association offers a clear and interpretable effect of each
TF as activating or repressing. Our reasoning for limiting this anal-
ysis to the promoter regions of annotated genes, as opposed to in-
cluding all distal candidate enhancers, was to cleanly assign the TF
binding event to a gene expression outcome.We built linear mod-
els based on 70% of promoters and used these to predict gene
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expression on the remaining 30%of promoters.We achieved accu-
rate correlation between predictions and observation (Fig. 2A),
comparable with neural network models based on large amounts
of sequence data (Agarwal and Shendure 2020). Prediction accura-
cy was robust to promoter subtypes (CpG island [CGI] promoters
and non-CGI promoters) and was applicable across cell types
(Supplemental Fig. 11–13). Prediction accuracy was alsomoderate-
ly better than estimating expression levels on the number of asso-
ciated TFs alone (Supplemental Fig. 14). Although we note that
there are some cases in which observed expression is high and pre-
dicted expression is low, as well as the converse, these are a minor-
ity of cases (∼10%) and likely represent either the effects of factors
that were not included in our ChIP-seq data sets, the role of distal

enhancers, or the context-dependent effects of TF function (see
Discussion).

These findings show thatmodeling gene expression as a func-
tion of TF association at gene promoters can elucidate the func-
tions of specific TFs. To determine a level of confidence in each
TF’s activating and repressing activity, we performed repeated sub-
sampling of TFs and promoters for training and testing of models.
For each TF, we built 500 models based on a random 70%/30%
split of promoters and repeated subsampling of 79 other TFs to an-
alyze with the factor of interest. This ensured that a range of esti-
mates for gene expression impact was gathered for each TF. We
then identified those TFs with the largest positive and negative im-
pact on gene expression and assigned a significance based on the

A
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Figure 2. Effects of specific TFs on gene expression and in MPRA assays. (A) Observed (x-axis) versus predicted (y-axis) natural log of gene expression as
measured by transcripts per million (TPM). A linear model was constructed based on binding of TFs at a gene’s TSS ±500 bp. Training and testing were
performed on a 70%/30% split of all genes. Pearson’s correlation = 0.77, P≤2.2 × 10−16. Blue line was generated from geom_smooth in the ggplot2 pack-
age (Wickham 2009). (B) Box plot shows distribution of linear model estimates (x-axis) for select TFs (y-axis) from submodels. Five hundred submodels with
unique subsets of randomized TFs (n=79) were constructed for each TF, and estimates for the focal TF were recorded. Colors closer to blue indicate that the
focal TF was significant in a higher proportion of submodels, and colors closer to pink indicate that the focal TF was significant in a lower proportion of
submodels. For B–D, boxes represent 25%–75% quartiles with line indicating median, whiskers extend to ±1.5 × IQR (interquartile range) past the boxes,
and points are observations falling outside of this range. (C) Boxes showMPRA signal (natural log of normalized RNA reads over normalized DNA reads; y-
axis) as a function of binned number of DAPs (x-axis) for promoter regions either bound by one of the top factors identified in the linear model as an ac-
tivator (blue), repressor (red) or randomly selected TF (purple), compared with regions that were not bound by one of those TFs for each group (gray),
showing activating, repressing, and uncertain activity for each respective group of TFs, respectively. Unpaired t-tests were used to identify significant dif-
ferences in the means between bound and unbound sequences in each group. (∗) P=0.05, (∗∗) P=0.0001, (∗∗∗) P≤2.2 × 10−16. (D) Boxes show MPRA
signal as in C (y-axis) for motifs inserted into enhancer sequences at various intervals (x-axis). A group of candidate activators (x-axis; green line) and can-
didate repressors (x-axis; red line) was selected, and one (green), two (red), or five (brown) motifs were inserted. Control ratio was based on the sequence
without any motif insertions. P-values for this figure are available in Supplemental Table 16.
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fraction of submodels in which the TF showed significant impact
on gene expression (Fig. 2B). The majority (n=359) of the TFs
we examined showed a positive impact on gene expression, reflect-
ing the more common role of TFs as positive regulators of expres-
sion. These also included factors associated with active chromatin
such as ASH2L, KMT2A, and KMT2B (Supplemental Table 9). We
also identified 26 TFs with a negative impact on gene expression
in themodels that were significant in at least 50% of all submodels
(Supplemental Table 9), indicating their consistent association
with a lower level of expression when localized to promoters.
These included the confident prediction of a known repressor,
REST (also known as NRSF), and several members of the repressive
KRAB-ZNF family, including ZNF334, ZFP14, and ZNF140. This is
consistent with amodel in which these factors localize to regulato-
ry elements to directly or indirectly decrease transcription of near-
by genes. Many of the other factors have not been described as
transcriptional repressors, including RREB1, ZNF660, and AHR,
indicatingwehave identified novel putative transcriptional repres-
sors. We explored the distribution of peaks for these 26 candidate
repressors and compared them with the top 26 candidate activa-
tors. We found that, in general, candidate repressors had fewer
peaks than candidate activators (Supplemental Fig. 15), consistent
with a “hit and run” model of transcriptional repression (Shah
et al. 2019). Comparing the distribution of peaks across cCRE
types, we found that the majority of peaks for each type were
found in promoter-like signature (PLS), proximal enhancer-like
signature (pELS), and distal enhancer-like signature (dELS) regions
and that distribution of the fraction of peaks in these three region
types did not differ significantly between the top candidate activa-
tors and candidate repressors (P>0.05, Mann–Whitney U test).

We next set out to confirm these predictions with functional
data using our lentiMPRA data set. We identified promoter ele-
ments in our lentiMPRA data set whose genomic coordinates
were bound by at least one of our 26 candidate repressors, the
top 26 candidate activators, or a control set of 26 random TFs
not found in either set. We compared the promoter regions bound
with at least one of these TFs with promoter regions bound by a
similar number of TFs but lacking the TF of interest. As the model
predicted, regions with one of the 26 top predicted activators had
higher activity in the MPRA compared with regions lacking one of
these activators (Fig. 2C; Supplemental Table 10). Corresponding-
ly, the activity of regions with a candidate repressive DAP was low-
er than the activity of regions bound by similar numbers of TFs
(Fig. 2C; Supplemental Table 10), except in the case of one to
five DAPs bound, which had only 10 observations in this data
set, so it is likely a result of noise. These candidate repressor pat-
terns held for most categories of the number of DAPs bound
when looking at nonpromoter elements (Supplemental Fig. 16;
Supplemental Table 11). We noted that REST was consistently
the strongest candidate repressor, with other candidate repressors
having a lower fraction of significance across submodels, a smaller
repressive effect size, or both (Fig. 2B), consistent with its well-
characterized role in repression (Huang et al. 1999; Ballas and
Mandel 2005; Ooi and Wood 2007). To confirm that other candi-
date repressors still showed a repressive effect, we performed addi-
tional analysis and found that the general repressive trend of these
factors held when removing the effect of REST binding (Supple-
mental Fig. 17; Supplemental Table 12). Last, the random set
showed a pattern inconsistent with either case, with lower expres-
sion levels for low numbers of TFs bound and higher expression
levels for high numbers of TFs bound (Fig. 2C; Supplemental Table
10). Similar patterns were also found in the Agarwal lentiMPRA el-

ements (Supplemental Figs. 18, 19; Supplemental Tables 13, 14).
We also assessed each of our top 26 candidate repressors and acti-
vators individually by performing a paired comparison of elements
bound or not bound by the factor of interest and matched for the
number of factors bound (Supplemental Fig. 20; Supplemental Ta-
ble 15). We note that findings are generally concordant, with acti-
vators having a higher distribution of differences than repressors.
We explored the possibility that GC content may confound these
findings by comparing GC content differences between matched
sequences (Supplemental Fig. 21), and found that the distributions
were centered at zero and were balanced in either direction, sug-
gesting that GC content could not explain the differences ob-
served. In some cases, predicted activators did have a lower
activity level than did thematched controls, butwenote that these
cases were almost universally nominally significant (P≤0.05) (see
asterisk in Supplemental Fig. 20; Supplemental Table 15), with
ZNF501, ZFX, ZFY, and ASH2L showing a greater degree of discord-
ance with predictions. This may be a reflection of the fact that the
vast majority of factors are predicted to have an activating effect in
our models, indicating that replacement with another factor is
likely to result in a replacementwith a stronger activator. These ob-
servations generally confirm our predictions of TF activating and
repressing activity.

To further show the utility of our model, we sought to direct
binding of these activating and repressing factors to elements us-
ing known sequence preferences to activate or repress MPRA activ-
ity. We included in our MPRA a set of test elements with known
motifs from the JASPAR database for eight putative activating
and five putative repressing TFs. These motifs were inserted into
two different promoter elements with randomized insertion loca-
tion, orientation, and spacing (see Methods). We normalized re-
porter gene expression to control promoters to explore the
impact of adding one, two, or five motifs to the promoters, as it
has previously been noted that the addition of multiple motifs in-
creases signal (Smith et al. 2013).We found that, of the eight tested
candidate activators, five (ATF1, CEBPG, FOSL2, NFYC, and NRF1)
show the expected behavior when a singlemotif is added, whereas
three (MYC, ZNF317, and ZNF331) show the opposite effect (Fig.
2D; see P-values in Supplemental Table 16). Although this was un-
expected, we note that for many TFs there are known context or
cobinding dependencies of function, such as the finding of MYC
mediating repression when binding with ZBTB17 (Walz et al.
2014). Additionally, we note that for ATF1 a single motif results
in activation, whereas additional motifs result in lower signal
than with only a single motif added. These results may be because
of the artificial nature of the assay; in this case, the insertion of
multiple motifs did not lead to a simple interpretation. Of the
five tested candidate repressors, all showed the expected negative
impact on expression. These general trends remained truewhen re-
stricting to only one or the other of the two promoter elements
(Supplemental Figs. 22, 23; see P-values in Supplemental Table 16).

Analysis of HOT sites shows that ABC score increases

with DAP occupancy

HOT sites are regions of the genomewith a high number of associ-
ated DAPs (Yip et al. 2012), and their biological meaning is an area
of ongoing interest (Wreczycka et al. 2019; Hudaiberdiev and
Ovcharenko 2023). In particular, several lines of evidence suggest
that factor association can occur indirectly (Gordân et al. 2009;
Worsley Hunt and Wasserman 2014; Nie et al. 2020), and this
may contribute to HOT site formation. Given the large number
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ofChIP-seq data sets available inHepG2,we sought to provide new
insight into the biology and genome organization that produce
HOT sites. Although 38.5% of cCREs were bound by a few DAPs,
a substantial fraction was bound by large numbers of DAPs
(Supplemental Fig. 3; Supplemental Table 3). We defined HOT
sites as discrete regions with peaks called in ≥25% of the DAPs as-
sayed, as suggested by our previous study (Ramaker et al. 2020).We
identified 13,001 HOT sites in HepG2, representing only 1.7% of
all discrete DAP-associated regions but 52% of all DAP peaks across
experiments in HepG2 cells. We note that HOT sites occur primar-
ily in promoters or in pELS or dELS elements (Supplemental Fig. 3;
Supplemental Table 3); 72.0% are in proximal promoter regions
(i.e., overlapping PLS and pELS cCREs), and 27.5% are distal re-
gions (i.e., overlapping dELS).We found that as the number of fac-
tors increases, HOT sites become more enriched for promoters
(Supplemental Fig. 4; Supplemental Table 3).

Because of this association betweenHOT sites and promoters,
we further explored the relationship between promoter activity
and promoter type in these regions. In our MPRA, we observed a
general positive correlation between the number of DAPs associat-
ed with a promoter and the activity of that promoter element in
the MPRA (Fig. 1B; Supplemental Table 4), as has been previously
reported (Partridge et al. 2020; Ramaker et al. 2020; Agarwal et al.
2023). Similar to other reports (Chen et al. 2014), we found that
HOT promoter regions are primarily in CGIs (6431 of 7411 pro-
moter HOT sites) and frequently at annotated housekeeping genes
(1581 of 7411 promoter HOT sites) (Hounkpe et al. 2021) and that
the likelihood any given housekeeping gene promoter is a HOT
site is very high (94.5%).

To help understand the function of HOT loci and to compare
them with other DAP-associated regions in the genome, we per-
formed a principal component analysis (PCA) on a binary matrix
of all regions bound by at least three DAPs while noting which
DAPs are associated at each region. We confirmed that previously
noted associations between PC1 and PC2 (Partridge et al. 2020) are
maintainedwith the number of factors bound and proximal–distal
distinctions, respectively (Supplemental Figs. 24, 25). We also not-
ed that ABC scores (Fulco et al. 2019) derived from high-resolution
intact Hi-C data for HepG2 showed relationships with both PC1
and PC2 (Supplemental Fig. 26). The strength of connectivity as
measured by ABC score increases along PC1 (number of factors
bound in a region, Spearman’s ρ=0.2592, P≤2.2 ×10−16) and de-
creases along PC2 (proximal vs. distal elements, Spearman’s ρ=
−0.0724, P≤2.2 ×10−16), suggesting that there are stronger loop
interactions when a large number of DAPs are bound.

Motif placement in distal–promoter pairs suggests that 3D

interactions contribute to HOT site formation

We next asked whether the concordance in the number of factors
bound with ABC score (Spearman’s ρ=0.2591, P≤2.2 ×10−16)
(Supplemental Fig. 27) could highlight distinct DAP binding pat-
terns in promoter-distal interactions at HOT and non-HOT loci.
We compared loci in the genome as either HOT or non-HOT, the
latter having one or more associated DAP peaks but below the
threshold of 25% of the DAPs in our data set. We then observed
the number of significant ABC connections that putative enhanc-
ers and promoters of eachHOT classification (HOT promoter, non-
HOT promoter, HOT putative enhancer, non-HOT putative en-
hancer) had with any other region (Fig. 3A). We observed that
HOT putative enhancers have a significantly larger number of con-
nections than do non-HOT putative enhancers and that, converse-

ly, HOT promoters tend to have fewer interactions than do non-
HOT promoters. Because, as noted above, 87% of HOT promoters
are CGI promoters, which are a mix of ubiquitously expressed and
tissue-specific genes, this potentially highlights a mechanism in
which DAP regulation is largely proximal for these promoters.

To determine whether connections in 3D space led to peak
calls for the same DAPs at both connected regions, we explored
the fraction of DAPpeak calls shared between a connected putative
enhancer and promoter in cases inwhichone or the other, both, or
neither of the regions is a HOT site (Supplemental Fig. 28;
Supplemental Table 17).We note that the rate of sharedDAP peaks
is higher when both sites are HOT and is significantly lower when
neither site is HOT (Supplemental Fig. 28, green boxes), consistent
with amodel inwhichChIP-seq peaksmight be detected as a result
of indirect association.

Given this observation, we wanted to distinguish between
two possibilities: The commonDAPassociation is because of (1) in-
dependent direct binding of a DAP at multiple sites (either one
molecule directly binding the two connected DNA regions simul-
taneously or two separate molecules binding, one at each region)
or (2) direct DAP binding at one locus with an indirect pulldown
of nearby connected chromatin in the ChIP-seq data set. To an-
swer this, we identified those DAPs for which a motif is known
and quantified percentages of their peaks in promoters or putative
enhancers that had amotif present.We found that if both the pro-
moter and putative enhancer are HOT, the motif for the shared
DAP is equally likely to be found in either locus of the interacting
pair (Fig. 3B; Supplemental Table 18). In contrast, if only one locus
is a HOT site, there is a preference for the motif of interest to be
found within peaks in the non-HOT site rather than the HOT
site (P=3.37×10−7 Kolmogorov–Smirnov test) (Fig. 3B; Supple-
mental Table 19). This trend remains true, although reduced in
size, when restricting to cases of non-CGI promoters or CGI pro-
moters (Supplemental Figs. 29, 30; Supplemental Table 19). We
summarize this model in Figure 3C. For cases in which a peak
was observed in both the putative enhancer and the promoter
for a given TF and a motif occurs in one of those locations, we hy-
pothesize that a given TF is more likely to be directly interacting
with the DNA where its motif occurs, and a peak is found in re-
gionswithout itsmotif owing to indirect interactions. These obser-
vations are consistent with a model in which the large number of
DAPs found bound at HOT sites can often result from indirect as-
sociation of DAPs at a promoter–enhancer interaction, resulting
in an apparent ChIP-seq peak when direct DAP–locus association
is unlikely. We note that, among the factors analyzed, MYC and
TP53 both contain strong evidence of intrinsically disordered re-
gions based onDisProt annotations (Quaglia et al. 2022). Such dis-
ordered regions are thought to be involved in protein–protein
interactions (Morris et al. 2021; Chen et al. 2022), and several stud-
ies have noted that the disordered regions of these proteins are in-
volved in protein–protein interactions (McEwan et al. 1996; von
der Lehr et al. 2003; Fladvad et al. 2005; Di Lello et al. 2006; Wells
et al. 2008).

DAP localization outside of open chromatin regions

suggests expansion of candidate CREs

We explored cases of multiple DAPs binding outside of annotated
cCREs to assess whether these cases of binding had biological
meaning. Early ChIP-seq efforts by ENCODE showed that >94%
of DAP peaks occurred in open chromatin regions (Thurman
et al. 2012). This is expected because many DAPs prefer binding
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to nucleosome-free DNA and cooperatively bind with complexes
that displace nucleosomes or modify chromatin to make it more
open, such as acetylation. The exceptions to this are DAPs associ-
ated with heterochromatin or lamin-associated regions, or pioneer
factor TFs, whichhave been found to bind to closed chromatin and
lead to nucleosome remodeling and histone modifications that
make the region more accessible to additional DAPs (Becker et al.
2017; McCarthy et al. 2021). We expected to observe both of these
groups of DAPs in our data set but also could find novel DAP asso-
ciations with closed chromatin. We found that only 6.3% of DAP
peaks occurred outside of any type of cCRE defined as having open
chromatin, and 13.4% of peaks occurred outside of an ATAC-seq
peak in HepG2. These observations are in agreement with prior
analyses (Thurman et al. 2012).

For a conservative approach to DAP binding in closed chro-
matin regions, we limited our analysis to those sites bound by

two or more DAPs and regions that were ≥700 bp from a cCRE as-
sociated with open chromatin (Supplemental Table 20; Supple-
mental Fig. 31). We found 16,412 such closed chromatin regions
bound by at least two DAPs. These DAP-bound closed chromatin
regions had, on average, 2.8 associated DAPs. A majority (95.3%)
were outside of an ATAC-seq peak in HepG2, suggesting that
most were found in closed chromatin states (Fig. 4A). Analysis of
histone modifications at these regions revealed that 70.3% lack
any histone signal, whereas another 15.5% of regions had
H3K9me3 signal, a mark of heterochromatin and association
with the nuclear lamin. This suggests binding by factors outside
of open chromatin cCRE regions is more common than expected,
accounting for >5% of bound elements in HepG2 cells but occur-
ring in several thousand independent locations far from cCREs. In
contrast, a substantial set (12.6%)was associated withH3K4me1, a
sign of poised or primed distal elements (Creyghton et al. 2010;

A

B

C

Figure 3. Looping contributes to shared TF binding between putative enhancers (labeled “enhancer” for plot simplicity) and promoters at HOT sites. (A)
Box plot shows the number of loops (y-axis) for putative enhancers and promoters when they are HOT or non-HOT (x-axis). Given that at least one loop is
present, HOT putative enhancers have more loops than non-HOT putative enhancers, and non-HOT promoters have more loops than HOT promoters (t-
test P-value≤2.2 × 10−16). Boxes represent 25%–75% quartiles with line indicating median, whiskers extend to ±1.5 × IQR (interquartile range) past the
boxes, and points are observations falling outside of this range. (B) Density plot of the natural log of fraction promoters with the relevantmotif over fraction
of putative enhancers with the relevant motif for loops in which a DAP’s peak is found in both the putative enhancer and the promoter. Blue indicates that
both the putative enhancer and promoter are HOT. Red indicates that only the promoter is HOT. Orange indicates that only the putative enhancer is HOT.
Gray denotes that neither are HOT. Kolmogorov–Smirnov tests were performed to categorize differences between distributions and are presented in
Supplemental Table 19. (C ) Model of motif and TF placement in looping scenarios. The placement of TFs represents hypothetical placement in this model
based on the occurrence of motifs and not necessarily an actual example of specific TF binding at specific promoters and putative enhancers based on peak
locations observed in data sets.
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Rada-Iglesias et al. 2011). As expected, we found peaks for one or
more pioneer TFs at these poised sites, such as FOXA2, ATF7,
JUND, CREB1, or CEBP, in 41.8% of the H3K4me1 regions. There
are several possible explanations for finding non-cCRE regions
bound by several TFs. It is possible these genomic regions do not
yet have sufficient evidence to be designated as cCREs but may
be designated as such in subsequent versions of the Registry.
Some of these regions might represent false positives from DAP
ChIP-seq data, although we minimized this possibility by limiting
to regions with two or more DAPs bound. We note that although
∼80% of these regions fall in repetitive sequence (Supplemental
Fig. 32), there is substantial overlap of other cCRE regions with re-
petitive sequence content (e.g., 38% of PLS and 57% of dELS over-
lap with repetitive sequence). We further note that the majority of
these regions only show the presence of a few factors, with sMAF

factors highly represented, suggesting that false positives caused
by repetitive sequence are not a consistent problem across ChIP-
seq experiments. We speculate that these regions represent signifi-
cant DAP genomic localization in closed chromatin. Together,
these findings suggest that closed chromatin cCRE regions harbor
important regulatory activity and that TF binding should be con-
sidered in future efforts to identify novel candidate regulatory
elements.

Binding of small MAF proteins at closed chromatin loci

with active or repressive activity

In our analysis of themultiple DAPs bound at closed chromatin re-
gions (Fig. 4A), we found that 44.8% of bound non-cCRE regions
showed association with MAFF, MAFK, or, to a lesser extent,

A

B D E

C

Figure 4. Small MAF (sMAF) proteins bind widely to non-cCRE regions in a sequence-directed manner and show widespread influence on nearby gene
expression. (A) Heat map of non-cCRE regions with binding of various TF and histone marks. MAFF and MAFK show the largest degree of binding of any
suchmark. (B) ATAC-seq signal (y-axis) at regions bound by various TF dimer sets ±500 bp (x-axis). sMAF/sMAF (green) dimers showmarkedly lower ATAC-
seq signal compared with other groups, and sMAF heterodimers with known activating cofactors (blue) show high openness. sMAF heterodimers with
noncofactors (red) show minimal openness, and heterodimers made of other TFs (orange) show high but broad openness. (C) Motifs generated via
MEME using regions bound by noted dimer sets. sMAF/sMAF dimers (top) show more flanking structure outside of the core MAF motif than do hetero-
dimers of sMAF and non-sMAF proteins. (D) Box plot shows the distribution of natural log of expression levels as measured by TPM (y-axis) for genes closest
to each putative dimer set (x-axis). Putative sMAF/sMAF dimers show much lower expression profiles than do other groups. Boxes represent 25%–75%
quartiles with line indicating median, whiskers extend to ±1.5 × IQR (interquartile range) past the boxes, and points are observations falling outside of
this range. (E) Bars show the fraction (y-axis) of putative dimer sets (x-axis) that have evidence for binding in a looped region, based on Hi-C data.
sMAF/sMAF dimers show a significantly lower rate of binding in looped regions than do other dimer types.
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MAFG. These three TFsmake up a family of small MAF (sMAF) pro-
teins. Unlike the related large MAF family of TFs, the sMAF pro-
teins lack a transcriptional activation domain and are known to
act as transcriptional repressors when bound as sMAF/sMAF di-
mers (Motohashi et al. 2006; Katsuoka and Yamamoto 2016).
The vast majority (98.6%) of sMAF coassociations in peaks, puta-
tively indicating sMAF/sMAF dimer binding in these closed chro-
matin regions, consisted of only MAFF/MAFK, indicating these
regions are strong candidates for sMAF repressed cis-elements.
These regions all fall at least 700 bp away from annotated cCREs
and had a mean distance of 2164 bp from the nearest cCRE.

Based on these observations, we explored binding patterns
and associated signals for sMAFproteins in our data set. It is known
that sMAFs can also heterodimerize with non-sMAF proteins such
as NFE2 and act as transcriptional activators (Friling et al. 1990;
Rushmore et al. 1991; Katsuoka and Yamamoto 2016). We exam-
ined global binding of all sMAF TFs in HepG2 cells and categorized
them into two types of loci: (1) bound only by putative sMAF/
sMAF dimers, indicated in our data set by peak overlaps for two
sMAF TFs, or (2) bound by a putative heterodimer composed of
one sMAF with an activating TF, again assumed from peak over-
laps. In this analysis, the former group consisted of 30,463 loci
and the latter of 1281 loci. The two groups have very distinct char-
acteristics. The sMAF/sMAF dimers are found in regions with little
to no ATAC-seq signal, whereas sMAF heterodimers show strong
open chromatin (Fig. 4B). The motif found at sMAF/sMAF dimers
was the full T-MARE element, with a TGC on each end, whereas
the sMAF heterodimers produced a motif of only the core TRE se-
quence (Fig. 4C). As expected, the expression of the nearest genes
to sMAF/sMAF dimers are significantly lower than those nearest to
sMAF heterodimers or to a control set of DAP-bound regions (Fig.
4D). We then asked whether the sMAF bound regions show evi-
dence of looping, possibly indicating a mechanism for direct re-
pression of a connected gene. We used ENCODE Hi-C data and
found almost no evidence for a loop originating at sMAF/sMAF di-
mers, whereas sMAF/cofactor bound loci loop as frequently as re-
gions bound by any two random DAPs (Fig. 4E). Thus, sMAF/
sMAF dimer binding at closed chromatin appears to have a wide-
spread repressive impact on gene expression throughmechanisms
other than looping, whereas the heterodimer behaves as an acti-
vating TF.

Discussion

In this study, we generated ChIP-seq data for nearly half of all
DNA-associated proteins expressed in HepG2 cells, including rep-
resentatives of allmajor families of sequence-specific TFs and span-
ning the full range from highly expressed to nonabundant and
from previously well studied to largely unknown. This substan-
tially larger and more biologically diverse catalog allowed us to
seek specific insights into individual TF functions and to evaluate
more global patterns of genomic organization and gene regula-
tion. The vast majority of known ENCODE cCREs that are openly
accessible in HepG2 cells showed evidence of significant ChIP sig-
nal by at least one of our 680 assayed DAPs, and most remaining
open cCREs that scored as unboundwere computationally predict-
ed to be highly preferred by at least one assayed DAP.We show the
power of this data set by (1) identifying candidate trans-repressors,
(2) exploring binding patterns in distal-promoter interactions, (3)
untangling the contributions of such binding to HOT sites, (4) un-
covering candidate cCREs that lack open chromatin but are bound

by DAPs, and (5) exploring vignettes of a specific class of TFs and
their activities.

We found that themajority of cCRE sequences are bound by a
DAP that currently has ChIP-seq data available (Fig. 1A; Supple-
mental Table 2), and explored the likelihood of covering apparent-
ly unbound cCREs that would find a peak given ChIPing of
additional factors (Supplemental Fig. 6). We found that many of
these unbound regions are predicted to have a high affinity for a
DAPwith existingChIP-seq data (Supplemental Fig. 7; Supplemen-
tal Table 6) and that some regionsmay be bound but have failed to
call a peak owing to false-negative error, based on bigWig signal
(Supplemental Fig. 8). Together, these findings suggest that better
methods for determining DAP–DNA associations may further elu-
cidate regulatory information in existing data.

We tested functional activities of elements across awide range
of genomic elements with a large lentiMPRA data set and supple-
mented the resulting data with recently published independent
functional data in the HepG2 cell line (Agarwal et al. 2023).
Evidence for 26 DAP candidate repressor elements emerged, and
this finding was robust to removal of a major canonical repressor,
REST. Although the ranges in Figure 2B were large, this is expected
as many TFs display context-dependent regulatory behavior. This
is highlighted by our discussion of sMAF genes and their differing
behavior based on binding partners in Figure 4. Another example
of this kind of behavior is in the RFX family, which has a dimeriza-
tion domain used for homo- and heterodimerization both within
the RFX family (Reith et al. 1990;Morotomi-Yano et al. 2002; Aftab
et al. 2008; Sugiaman-Trapman et al. 2018) and with other TFs
(Caretti et al. 2000). Their interactions have been hypothesized
to be important for transcriptional activity (Reith et al. 1994), in-
cluding activation and possible repression (Iwama et al. 1999;
Zhu et al. 2000). Our study highlights the possibility that RFX1
and RFX3 appear to have a repressive effect in HepG2 cells (Fig.
2A). Further study of this family and a deeper examination of TF
cooperation and competition will reveal further nuances of indi-
vidual TF activity. This study, however, has provided broad hy-
potheses for the function of hundreds of TFs. We also note that
the ability to detect repressors, in particular, is complicated by
the possibility of hit-and-run repressors (Shah et al. 2019), and
thus, a factor with repressive activity may not have been captured
by ChIP-seq. The complicated nature of TF behavior outlined
above may explain in part the unexpected behavior of some pre-
dicted activator motifs in our MPRA seen in Figure 2D, such as
MYC, ZNF317, and ZNF331.

The lentiMPRA functional data were also highly useful for
supporting analyses derived from the correlative data represented
by the ChIP-/CETCh-seq experiments. These data supported the
general notion that genomic elements with DAP binding are
more likely to be functional and indeed that there is a correlation
between the number of bound DAPs and the activity of these
elements.

We also found evidence that HOT sites in promoters repre-
sent functional binding rather thanmere hyper-ChIP-able regions
(Wreczycka et al. 2019), as the average element activity continued
to increase with genomic binding signal as factors are added, even
for highly bound regions. In contrast, the increase in element ac-
tivity seenwith increasingly HOT promoters was not true for high-
ly bound distal elements (Fig. 1B; Supplemental Table 4). A
possible explanation for this result is found in the analysis of
ABC connections, ChIP-seq peaks, and motif locations explored
in Figure 3. We found that, for a given HOT region, when making
an active connection with a non-HOT region, specific explanatory
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motifs are more likely to occur in the non-HOT region. We also
found that HOT putative enhancers aremore likely to have a high-
er number of connections than non-HOT putative enhancers (Fig.
3A). It is known that a single enhancer can regulate multiple genes
(Fulco et al. 2016; Han et al. 2018), and this finding may help dis-
tinguish interesting properties about multitarget versus single-tar-
get enhancers. Finally, as the number of factors bound at a putative
enhancer increases, the expression of geneswith ABC support con-
tinues to increase (Fig. 1D; Supplemental Table 8). These observa-
tions are consistent with amodel inwhichhighly active enhancers
regulating multiple promoters have apparent ChIP-seq peaks ow-
ing to close 3D association with promoters at which factors are
directly bound. In this model, when removed from their larger ge-
nomic context, these distal regions would have far fewer factors
directly bound than the ChIP-seq data would suggest, leading to
a lower overall activity. A key caveat in making element activity
correlations with TF occupancy, open chromatin elements, and
3D interactions is that the element sizes and context for these
are very different from the MPRA assays. MPRA elements are
∼170 bp, whereas typical conserved distal elements are 450 bp; ac-
tive promoter regions are often larger than that. In the native chro-
mosome, the entire element is operating and is doing so with the
option to interact with other nearby elements. Thus,MPRA assays,
with their impressively large data outputs, are a valuable founda-
tion to support future multielement and larger-sized element
efforts.

Although Figure 3C highlights one possible model for under-
standing HOT sites as partially a function of indirect association
owing to 3D interactions, we note that there aremanyothermech-
anisms that may explain large numbers of factors binding at the
same location. These may include the known protein–protein in-
teractions through dimerization domains, such as those known
for the sMAF and RFX families, or the noted condensation of fac-
tors through the phase transition of their activation domains, as
recently noted (Boija et al. 2018).

We found that, for closed chromatin regions bound by any
two (or more) factors, sMAF/sMAF dimers are by far the most com-
mon binding pair. It has been reported that sMAF factors can bind
as repressors or can cobind with other DAPs to activate transcrip-
tion (Katsuoka and Yamamoto 2016). We here found evidence
that sMAF/sMAF dimers play a role in repression through mecha-
nisms that do not appear to involve looping. Whether or not
they are bound in known annotated cCRE regions, these dimers
occur in closed chromatin, and nearby genes show a much-re-
duced level of expression compared with genes near sMAF hetero-
dimers with an activator, or other cobound pairs of TFs. These
observations may also be related to the previously mentioned
hit-and-run mechanism of repression (Shah et al. 2019). If this is
the case, then sMAF proteins may be only responsible for mainte-
nance of repressed state, whereas another factormay have induced
the repressed state.

These analyses show the power of large ChIP-seq data sets,
coupled with functional assays, in a specific cellular context.
This includes the ability to mine specific factor behaviors and cor-
responding cis-element classes that are obscured by aggregating
binding data across cell and tissue types. This recognizes that
many TFs have target sites and activities (e.g., enhancing vs. re-
pressing) that dependon cell type because of isoform coding differ-
ences and post-translational activity differences. Furthermore,
bound DNA elements are typically compound sequence structures
whose integrated functional output is a nonlinear combination of
the action of any given bound factor. This means that analyses at

the level of element subtypes within the environment of a single
cell type give important leverage.

There remain hundreds of sequence-specific TFs (Lambert
et al. 2018) for which high-quality ChIP-seq data sets are not yet
available. Having such data sets in a context with a large number
of other factors for which there is ChIP-seq data will allow for a
more refined and concrete understanding of these factors’ func-
tions. Promising tools are being developed to predict the activity
of factors (Schreiber et al. 2020; Avsec et al. 2021), yet these tools
require high-quality data sets in defined contexts for accurate
training. This underlies the need for continued work in generating
and analyzing ChIP-seq data sets. The current effort is limited by
the fact that the vast majority of ChIP-seq data are in cancer cell
line contexts, which affects the identity of factors to be assayed
as well as the relevance of these findings to noncancer biology.
As methods for ChIP-seq continue to be improved, and as comple-
mentary improvements are made in high-throughput cis-element
assays, we expect a richer and more predictive understanding of
the cis–trans code that controls genome activity.

Methods

Data analysis

Data analysis was performed using R versions 3.6.1 and 4.1.0
(R Core Team 2010), as noted in appropriate scripts.

ChIP-seq data sets

We downloaded processed optimal peak calls of all HepG2 ChIP-
seq data sets available on the ENCODE portal on July 6, 2021,
and supplemented the data sets with those performed locally at
the HudsonAlpha Institute for Biotechnology, which were not up-
loaded to the ENCODE portal. In-house data were processed using
the same ENCODE ChIP-seq processing pipeline to be consistent
with data from the ENCODE portal.

Selection of preferred ChIP-seq data sets

For DAPs that were represented by multiple ChIP-seq data sets, we
identified a preferred data set based on the number and severity of
audits present on the ENCODE portal. We identified a list of unac-
ceptable audits as follows:

• Failed IDR,
• Low read depth,
• Control low read depth,
• Extremely low read depth,
• Poor library analysis, and
• Severe bottlenecking.

For this set of audits, in cases of multiple data sets for the same
DAP, we identified the number of audits contained in each data
set. If one data set contained fewer of these audits than the others,
we chose the data setwith the smallest number of audits, including
zero. If more than one data set had this smallest number of audits,
we compared the audits within each data set to determinewhether
a given data set had a less severe set of audits (e.g., low read depth
vs. extremely low read depth) or a smaller number of audits overall.
Ranking of the severity of audits was in the order of the list above,
frommost severe to least severe. Finally, if data sets were not distin-
guishable, we chose the data set with the largest number of peaks.
In cases in which a data set was available on the ENCODE portal,
such a data set was always preferred to those not from the portal.

The sameprocesswas used to identify K562ChIP-seq data sets
for comparison in binding-expression models.
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Gene expression data

We used RNA-seq data sets from the ENCODE portal under acces-
sion ENCSR181ZGR for HepG2 and ENCSR885DVH for K562. We
took the count table of the two replicates and took the average
TPM as the TPM for a given transcript. For genes with multiple
transcription start sites (TSSs), we identified the transcript with
the highest TPM for the purposes of selecting an isoform.

cCRE catalog

The V4 cCRE human data set was downloaded from the ENCODE
portal under accession ENCSR800VNX.

ATAC-seq data sets

ATAC seq peaks were acquired from the ENCODE portal under ac-
cession ENCSR291GJU on February 5, 2021.

HOT sites

Using only those DAP data sets (excluding histone marks) that
were preferred (see above), we restricted peaks to the central 100
bp.Wemerged all peaks and determined the number of DAPs con-
tributing to each merged region. We then identified HOT sites as
those that had at least 25% of all factors bound. As we had 680
unique DAPs in our data set, HOT sites are defined as locations
with 170 or more unique DAPs bound.

gkm-SVM model construction and use

HOT sites and the ENCODE exclusion list were removed from
peaks, and peaks were then sorted by −log10 P-value. Up to the
top 10,000 peaks were then extracted. Null sequences were gener-
ated using the nullseq_generate script from gkm-SVMwith the pa-
rameters -G -x 2 -m 1000 -r 1 (Ghandi et al. 2016).We ran gkmtrain
to produce a model of sequence preference with -l 8 -k 5 -d 2. We
ran this for all data sets. Once made, we applied these models to
the regions of the cCRE catalog to which no DAP ChIP-seq data
set had evidence of association using gkmpredict.

Activity by contact predictions

HepG2 intact Hi-C data set ENCSR888DEJ was used to produce
ABC predictions and was provided to us by Jesse Engreitz.

Hi-C data loop calls

The Hi-C loops for the non-cCRE sMAF analyses in Figure 4 were
called with the Juicer pipeline (Durand et al. 2016). Resolution
calls of 500 bp were used.

Motif derivation

For each data set, we removed all peaks found in HOT sites or the
ENCODE exclusion list, sorted the remaining peaks by −log10
q-value, and determined the number of peaks remaining. If there
were at least 1000 peaks remaining, we then restricted peak width
to the ±50 bp surrounding the peak center. Using the top 500
peaks of the data set, we used MEME version 5.1.0’s meme-chip
method to derive motifs using the following arguments: -dna
-meme-mod zoops -meme-nmotifs 5 -meme-minw 6 -meme-
maxw 50 -spomao-skip -fimo-skip. We then performed several
tests to identify those motifs that were sufficiently enriched in
our data. Namely,

1. The motif’s e-value as determined by MEME must be ≤0.05.
2. We identified the top 501–1000 peaks in the data set, extracted

the sequence ±150 bp from the center of each peak, and deter-

mined the number of times the motif is observed based on
FIMO (Grant et al. 2011). We then performed the samemethod
on null-matched sequences, sampling many times to deter-
mine a mean and standard deviation of the number of times
amotif is observed.We took the z-score of the observed number
of motifs in the test set and calculated a P-value based on the
standard normal distribution. If the P-value was ≤0.00001,
the motif passed this test.

3. For all peaks past the first 500, using the sequence ±150 bp, we
determined the number of times the motif was observed based
on FIMO. For those same peaks, we also extracted an additional
set of control sequences 150 bp upstream of and 150 bp down-
stream from the test regions and determined the number of
times the motif was observed based on FIMO. If the number
of test observations was ≥1.25 times the number of control ob-
servation and the motif was found in at least 10% of test se-
quences, the motif passed this test.

4. Finally, we determined whether the e-value of the motif found
in meme-chip’s centrimo tests was ≤0.05.

If the motif passed tests 1, 2, and either 3 or 4, then the motif
was considered real for the data sets in question.

ABC–HOT relationships with regard to motif placement

Using ABCpredictions, we determined, for each putative enhancer
and promoter region, whether the putative enhancer, promoter,
both, or neither overlapped with a HOT site. For each category
(both HOT, promoter HOT, enhancer HOT, neither HOT), we
then determined, for each factor with a derived motif (see above),
which distal-promoter interactions had a peak for that factor in
both the putative enhancer and the promoter. For each of those
cases, we then determined whether that factor’s motif was found
within the TF’s peak in the putative enhancer or promoter. We
identified the fraction of cases in which the TF was in the putative
enhancer and the fraction in the promoter and then determined
the ratio by taking the log(fraction_promoter/fraction_enhancer).
We then created a distribution plot of these ratios for each of the
four categories of HOT interactions. Kolmogorov–Smirnov tests
were used to identify significant differences among the distribu-
tions. When considering all promoters, we restricted to cases of
factors that had at least 100 instances of shared peaks (i.e., the
peak for the TF was found in both the putative enhancer and the
promoter of a pair) to avoid concerns of noise overly influencing
log-ratio distributions. For restrictions to only CGI and non-CGI
promoters, there were too few TFs with 100 shared peak observa-
tions to perform statistical tests, so we used all available TF data.

CGI and non-CGI promoters

CGI annotations in promoters were taken from Illingworth et al.
(2010), and coordinates were converted from hg19 to hg38 using
the command-line version of the liftOver tool of the UCSC
Genome Browser (Hinrichs et al. 2006).

Binding-expression models

We identified TSSs for genes based on RefSeq TSSs acquired April
12, 2019. For genes withmultiple TSSs, we identified the transcript
with the highest expression level (see above) and used that TSS for
the gene. We took the ±500 bp upstream of the gene’s TSS and de-
termined which TFs showed association with the promoter based
on overlap with peaks of the gene. We then constructed a linear
model by training on 70% of genes and testing on 30% of genes,
with 10× cross-validation to determine the ability of the linear
model to predict gene expression.

Transcription factor function in human HepG2 cells

Genome Research 1889
www.genome.org



Once this was determined, we then wanted to investigate the
estimated impact of each TF on gene expression. We first subsam-
pled different numbers of TFs to predict expression levels, taking
different sample sizes of TFs 500 times, building a model based
on 70% of TSS, and testing on the remaining 30%. We found
that little improvement was to be found for sample sizes of more
than 80 TFs (Supplemental Fig. 33). Therefore, for every TF, we per-
formed 500 samples, subsampling the factor and an additional 79
factors, and built a model of gene expression based upon factor
binding. For each subsampled model, we determined the estimate
of the factor of interest and whether or not it was found to be sig-
nificant in that model. This showed the average ability of a factor
to determine expression, independent of the other factors includ-
ed in the model.

MPRA data and processing

ProcessedMPRA data were acquired from Agarwal et al. (2023) and
are available from ENCODE (https://www.encodeproject.org/) un-
der accessions ENCSR632EPR and ENCSR463IRX. To determine
which factors were considered bound to the corresponding geno-
mic context, we identified the summit of each peak and expanded
to ±25 bp in each direction. Those peaks that were fully contained
by the hg38 genomic coordinates of these elements were consid-
ered bound to the genomic region of the element.

Lentiviral MPRA data were produced by following the proto-
col of Gordon et al. (2020), with minor modifications. Oligos (n=
138,420) (Supplemental Table 21) were synthesized by Twist Bio-
science and were composed of a 170-nt test element with a 15-nt
5′ flanking sequence and a 15-nt 3′ flanking sequence (Supple-
mental Table 21). First-round amplification of the oligo library
was performed as described with 5BC-AG-f01 and 5BC-AG-r01,
but a separate first-round amplification was performed in parallel
with custom primers 5BC-AG-f01B (5′-CTCACTCAGCCTGCATT
TCTGCCAGGGCCCGCTCTAGACCTGCAGGTCGGTTCACGCAA
TG-3′) and 5BC-AG-r01B (5′-GCTTTCGCTTAGCGATGTGTTC
ACTTTGCACAGTACCGGATTGCCAAGCTGGAAGTCGAGCTTC
CATTATATACCCTCTAGTGAGGACCGGATCAACT-3′). These two
reactions gave one library with test elements in forward orientation
and one library with test elements in reverse orientation. These
libraries were combined in equal quantities before second-
round PCR amplification. For barcode association sequencing,
we modified the read 1 and read 2 sequencing primers for our
dual orientation library to (read 1) 5′-CTGCATTTCTGC
CAGGGCCCGCTCTAGACCTGCAGG-3′ and (read 2) 5′-TGG
AAGTCGAGCTTCCATTATATACCCTCTAGTG-3′. All other pri-
mers and protocol steps followed the published method. We pro-
duced lentivirus in 293FT cells using established protocols and
filtered media (0.45 μM) to obtain virus. We seeded HepG2 cells
in six-well plates (1 million cells per well), and 24 h postseeding
spinfected virus into HepG2 cells using established protocols
(2000 RPM, 1.5 h). After 48 h of incubation, we extracted RNA
and DNA from cells using a aNorgen total RNA purification kit
and Qiagen DNeasy blood & tissue kit, respectively; we purified
three replicates, using eight wells per replicate (16 RNA columns
per replicate). All sequencing runs were performed on NextSeq
high-output flow cells. We obtained 151,069,132 reads for barcode
association, 454,643,305 total reads for the three RNA libraries, and
167,815,184 total reads for the three DNA libraries (Supplemental
Table 22). Signal was calculated by determining the normalized
number of reads corresponding to each element in the RNA and
theDNA libraries.We observed amean of 91.74 barcodes per test el-
ement. We confirmed that there was a strong concordance among
replicates (Supplemental Fig. 34) and that there was sufficient bar-
code representation for elements (Supplemental Fig. 35). Promoter

elements were identified by overlapping with GENCODE human
promoter annotations (Frankish et al. 2021). For binding-expression
analyses, we used two sequences, H_046 and ENH_HMM_B_1, and
inserted either one, two, or five instances of establishedmotifs for a
given factor taken from the JASPAR database (Castro-Mondragon
et al. 2022). Location and orientation of inserted motifs were ran-
domized. In the case of multiple motif insertions, minimum spac-
ing was also randomized but was always >5 bp.

PCA analyses

For exploration of the relationship between PCAs of a bindingma-
trix and various genomic features, the protocol was followed as
previously described (Partridge et al. 2020). Briefly, we constructed
a matrix of DAPs bound across 2-kb genomic bins, restricted to
bins with at least three DAPs bound, and performed PCA on the re-
sulting matrix using the princomp() function in R.

Non-cCRE DAP dimer identification

To identify putative dimers in non-cCRE regions, we restricted
peaks of all factors to the summit of the peak ±50 bp.We then iden-
tified all cases of two factor peaks overlapping by at least 50 bp.
Putative sMAF/sMAF dimers were identified by first finding all
such overlaps and then removing any instances of similar overlap
with any other factor. sMAF cofactors were identified as listed by
Katsuoka and Yamamoto (2016), and putative sMAF/cofactor di-
mers were identified by first removing all cases of putative sMAF/
sMAF dimers and then identifying all cases in which a sMAF
peak had at least a 50-bp overlap with a cofactor peak. Finally, pu-
tative sMAF/other and other/other dimers were identified by first
removing all cases of putative sMAF/sMAF and sMAF/cofactor di-
mers and then identifying all cases of 50-bp overlap between a
sMAF peak and other factor or other/other peaks, respectively.

ATAC-seq profiles over putative dimer regions were generated
using deepTools (Ramírez et al. 2016). The heat map in Figure 4A
was generated using the ComplexHeatmap package (Gu et al.
2016).

Repetitive sequence identification

Repetitive sequences were acquired from http://genome.ucsc.edu/
cgi-bin/hgTables by selecting the “repeats” group, designating
GRCh38/hg38, and selecting the output format as “BED” and sav-
ing the resulting BED file.

Data access

All raw and processed MPRA and ChIP-seq sequencing data gener-
ated in this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession numbers GSE235360 and GSE235477, respective-
ly. Code is provided as Supplemental Code, and both code and
relevant data for the creation of plots are available at GitHub
(https://github.com/bmoyers/Moyers_et_al_2023_HepG2_TF/).
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