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Advances in long-read sequencing (LRS) technologies continue to make whole-genome sequencing more complete, afford-

able, and accurate. LRS provides significant advantages over short-read sequencing approaches, including phased de novo

genome assembly, access to previously excluded genomic regions, and discovery of more complex structural variants (SVs)

associated with disease. Limitations remain with respect to cost, scalability, and platform-dependent read accuracy and the

tradeoffs between sequence coverage and sensitivity of variant discovery are important experimental considerations for the

application of LRS. We compare the genetic variant-calling precision and recall of Oxford Nanopore Technologies (ONT)

and Pacific Biosciences (PacBio) HiFi platforms over a range of sequence coverages. For read-based applications, LRS sensi-

tivity begins to plateau around 12-fold coverage with a majority of variants called with reasonable accuracy (F1 score above

0.5), and both platforms perform well for SV detection. Genome assembly increases variant-calling precision and recall of

SVs and indels in HiFi data sets with HiFi outperforming ONT in quality as measured by the F1 score of assembly-based

variant call sets. While both technologies continue to evolve, our work offers guidance to design cost-effective experimental

strategies that do not compromise on discovering novel biology.

[Supplemental material is available for this article.]

Over the last five years, long-read sequencing (LRS) technologies
have transformed the landscape of genetic variant discovery in
two fundamental ways. First, they have increased the sensitivity
of structural variant (SV) discovery by ∼threefold by providing ac-
cess to repetitive regions of genomes typically masked or excluded
as part of short-read sequencing analyses (Chaisson et al. 2015,
2019; Audano et al. 2019) and by providing breakpoint resolution
of variants previously inferred by indirect read-pair or read-depth
approaches (Collins et al. 2020). Second, LRS has enabled the rou-
tine generation of genome assemblies (Koren et al. 2017; Shafin
et al. 2020), and recent advances in sequencing technology and
methods are now routinely producing phased genome assemblies
fully capturing both haplotypes (Cheng et al. 2021; Porubsky et al.
2021; Lorig-Roach et al. 2023). These advances have begun to im-
prove our understanding of mutational processes, recurrent muta-
tions, and new variants associated with disease and adaptation
(Dutta et al. 2019; Begum et al. 2021; Hsieh et al. 2021; Miller
et al. 2022; Porubsky et al. 2022).

Consequently, large-scale LRS efforts have enabled the con-
struction of improved reference genomes, including pangenomic

representations of species (Liao et al. 2023) and exploration of the
pattern of normal and disease variation across a variety of
National Institutes of Health (NIH) initiatives in unprecedented
detail, for example, the All of Us (All of Us Research Program
Investigators et al. 2019) and GREGoR (https://www.genome
.gov/Funded-Programs-Projects/GREGOR-Consortium, retrieved
September 15, 2022) programs. A critical question in such large-
scale projects is the tradeoff between sensitivity and specificity
for variant discovery as a function of genome coverage. This is es-
pecially important given that throughput and cost are still major
limitations of LRS. In this study, we attempt to address this issue
by comparing two of the most common platforms, Oxford
Nanopore Technologies (ONT) and Pacific Biosciences (PacBio)
HiFi sequencing, as well as commonly used read-based and as-
sembly-based variant callers. To establish a truth set for compar-
ison, we analyze two deeply sequenced human genomes,
HG00733 and HG002, with a specific focus on the recovery of
SVs. Realizing that both LRS technologies and variant callers are
under continuous development, this analysis is a snapshot in
time that aims at informing experimental design to achieve
high sensitivity and specificity within realistic economic
boundaries.
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Results

Because LRS data can enable phased de novo assembly, we distin-
guish two LRS approaches for variant discovery: read-based and as-
sembly-based methods. We define read-based methodologies as
those requiring alignment of individual sequencing reads to a ref-
erence genome and applying specific read-based variant-calling al-
gorithms to these alignments to identify variants. Assembly-based
methods, in contrast, first generate ab initio a whole-genome as-
sembly from LRS reads without guidance from a particular refer-
ence genome, and then proceed analogously by aligning this
assembly to a reference genome to call variants using assembly-
based calling algorithms. Many different tools implement
variant-calling algorithms and they differ in their support for se-
quencing technologies (PacBio, ONT, etc.), variant types (SVs,
indels, etc.), or data input (assembly, reads, etc.). In this study, we
limit our analysis to eight read-based callers (Supplemental Fig.
S1): Clair3 [v0.1-r11] (Zheng et al. 2022), cuteSV [v1.0.13] (Jiang
et al. 2020), DeepVariant [v1.3.0] (Poplin et al. 2018), DELLY
[v1.0.3] (Rausch et al. 2012), PEPPER-Margin-DeepVariant [r0.8]
(Shafin et al. 2021), Sniffles [v2.0.2] (Smolka et al. 2022), PBSV
[v2.8.0] (https://github.com/PacificBiosciences/pbsv, retrieved
April 7, 2003), and SVIM [v1.4.2] (Heller and Vingron 2019), and
two assembly-based callers: PAV [v1.2.2] (Ebert et al. 2021) and
SVIM-asm [v1.0.2] (Heller and Vingron 2021). Assemblies were gen-
erated considering three algorithms: hifiasm [v0.16.1] (Cheng et al.
2021), PGAS [v14-dev] (Ebert et al. 2021; Porubsky et al. 2021), and
Flye [v2.9] (Kolmogorov et al. 2019).

We set out to determine how variant-calling performance dif-
fers depending on the platform, depth of sequence coverage (×),
and computational method. For this assessment, we generated
downsampled sets of HiFi and both standard and ultra-long ONT
(UL-ONT) sequence data at depths of 5, 8, 10, 12, 15, 17, 20, 25,
and 30× assuming a 3.1 Gbp haploid genome size. We applied
standard practice algorithms and procedures and evaluated preci-
sion and recall of each algorithm for single-nucleotide variants
(SNVs), small (<50 bp) indels (insertions and deletions), and SVs
with respect to the human reference genomeGRCh38.We consid-
er two publicly available human genomes that have been se-
quenced extensively: HG002 (the Genome in a Bottle [GIAB]
Ashkenazim child reference genome) (Wagner et al. 2022a) and
HG00733 (a Puerto Rican reference genome from the 1000
Genomes Project). In addition to GIAB analysis of HG002 (Zook
et al. 2016), both genomes have been extensively characterized
for genetic variants by both the Human Genome Structural
Variation Consortium (HGSVC) (Ebert et al. 2021) and Human
Pangenome Reference Consortium (HPRC) (Liao et al. 2023),
which has led to the availability of thoroughly vetted variant call
sets (Ebert et al. 2021) that are used in this study as truth sets (re-
ferred to as HGSVC Freeze 4). Both genomes have the advantage
that they are targets of telomere-to-telomere (T2T) assembly devel-
opment (Rautiainen et al. 2023) and, as such, more accurate and
complete variant call sets will likely be available in the future to
further refine truth sets for comparison. As both of these genomes
have been characterized in multiple LRS efforts, sufficiently deep
and high-quality input sets are available from both ONT and
PacBio. For PacBio HiFi, these sets include 78.6×/17.9 kbp
(depth/N50) and 99.54×/20.6 kbp for HG002 and HG00733, re-
spectively. ONT standard length data sets were 153.4×/30.23 kbp
and 92.3×/33.6 kbp and the UL-ONT data were 33.15×/96.4 kbp
and 38.11×/132.7 kbp for HG002 and HG00733, respectively
(Supplemental Table S1).

Read-based variant calling

Read-based SNVs were called with DeepVariant and Clair3 and
showed the least variability between callers and technologies out
of all three variant categories. At sequence read depth below 15×, re-
call of PacBio HiFi-tuned algorithms consistently outperformed
ONTbyan average of 0.06 (Fig. 1A,D). In fact, at∼10× coverage (cur-
rent production from a single Sequel II SMRT cell) both precision
and recall for HiFi data plateau while reaching a precision of 0.99
and recall of 0.98. At 5× coverage, DeepVariant and Clair3 showed
on average 0.09 higher F1 scores in PacBio compared to ONT (Sup-
plemental Table S2). This was shown in both precision and recall
with DeepVariant performing better with respect to precision and
Clair3 with respect to recall. At coverage depths above 15×, the F1
score plateaued around 0.96 with recall being consistently higher
than precision for all callers and technologies. The data suggest
that HiFi is generally better with regard to recall but that 12× stan-
dard ONT and HiFi perform comparably. When evaluating SNV ac-
curacy in a second sample, HG00733, against the HGSVC Freeze 4
data set (Supplemental Fig. S2), we notice that these trends hold al-
beit with slightly depressed values because of the nature of the SNV
calling in that effort compared to theGIAB data sets. SNV calling for
HG002 performed by GIAB has been subjected to extensive QC and
specific regions are likely under called. In our analysis of 30× cover-
age data sets, we observed 13,147 SNV calls not seen in GIAB for
HG002. Of these 13,147 calls, 324 (2.46%) were observed by all
three technologies using DeepVariant. These SNVs, in addition to
those meeting the same criteria with assembly-based callers, are in-
cluded in the SupplementalMaterial (Supplemental Fig. S3; Supple-
mental Table S3) and are proposed as potential variants for
inclusion in future GIAB releases.

Indels, defined here as insertions or deletions <50 bp, show a
similar profile. There is, once again, a characteristic plateau in F1
score around 12× sequence coverage in HiFi sequencing data; how-
ever, this occurs with an F1 score of 0.65. The ONT F1 score plateaus
around 20× at 0.56. The greatest difference in recall is shown in this
subset between the HiFi and ONT platforms (based on the R9 nano-
pore technology) (Fig. 1B,E). While precision remains comparable
between ONT and HiFi parameterizations of DeepVariant and
Clair3 with an average of 0.54 across all measured depths, recall is
noticeably lower in ONT when compared to PacBio HiFi reads, on
average 0.28 less at depths less than or equal to 12× and 0.35 above
12× (Supplemental Table S4). For this class of variant, ONT reads
prepared with standard library prep perform in line with their UL-
ONT counterparts with respect to precision and recall. Overall, re-
call for indels is higher in HiFi data sets at all coverages, whereas
ONT callers are comparably precise. A large amount of community
development has gone into refining variant callers for ONT and has
allowed these call sets to reduce noise inherent to less accurate ONT
sequence reads at the cost of lower discovery rates.

For SVs, we consider only insertions and deletions greater
than or equal to 50 bp and annotated with QUAL >10. SVs show
the least variability between technologies (Fig. 1C,F) (F1 standard
deviation of 0.01 between HiFi and ONT sequencing platforms
[Supplemental Table S5]). Both sequencing platforms and various
coverages converge on a set of ∼12,800 SVs with each calling on
average 25,634 SVs (Fig. 2A). Of the variants unique to one tech-
nology or the other, 85% map to tandem repeat regions, which
suggest breakpoint resolution rather than technology-specific
bias driving the difference. Different read-based callers, however,
show considerable variation. While recall remains low at lower se-
quence depth (Fig. 2B), mainly because of random sampling bias,
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two callers stand out as having the greatest precision: PBSV and
DELLY. Both callers consistently perform with high precision
(mean 0.89) at low coverage depths and remain consistently
high as depth increases. However, this does come with the
above-mentioned tradeoff between precision and recall. As one in-
creases, the otherwill decrease. Because of a static quality score cut-
off, this relationship may not remain universally true, as different
quality thresholds reduce this tradeoff (Supplemental Fig. S4). In
terms of recall at low-coverage sequence read depths below 12×,
Sniffles performs best with a mean 0.63/0.84/0.71 precision/re-
call/F1 with cuteSV a close second (0.57/0.84/0.67). These esti-
mates of precision and recall are based solely on the detection of
the alternate SV allele.

Assembly-based variant calling

Assembly-based callers have the advantage that they call variants
from large contiguous haplotype blocks essentially providing ac-
cess to larger and more complex forms of genetic variation and
providing extended phasing for all forms of genetic variation
(Wagner et al. 2022b). We generated assemblies using three algo-
rithms: hifiasm (v0.16.1), PGAS (v14-dev), and Flye (v2.9) where
applicable. Hifiasm and PGAS assemblies were generated for the
PacBioHiFi readsets, and Flye assemblies for theONT reads. All var-
iants were called using the phased assembly variant (PAV) caller
(Ebert et al. 2021) in addition to SVIM-asm specifically for SVs.
The state of genome assembly for HiFi andONTare not easily com-
parable; whereas HiFi reads can be assembled with numerous algo-
rithms and assessed for phasing accuracy, ONT reads provide a
greater challenge because of higher sequence error and fewer algo-

rithms that combine both assembly and phasing.Methods such as
Shasta (Shafin et al. 2020), wtdbg2 (Ruan and Li 2020), and Canu
(Koren et al. 2017) show considerable promise, yet currently con-
tiguous, haplotype-phased assemblies are not as easily generated
and thus have not been used as frequently in recent studies.

SNV calling with assembly-based callers generally underper-
forms read-based discovery especially at lower coverages. Precision
in ONT and UL-ONT assembly-based methods shows the greatest
difference with an average reduction of 0.38 across all sequencing
depths (Fig. 3A,D). This is especially true in low-coverage (<12×)
scenarios and is driven by an excess of assembly-based SNV calls
in ONT data sets (mean 8.33M in ONT; mean 10.00M in UL-
ONT). PacBio HiFi methods have the opposite problem in that
they underreport SNVs with a mean of 3.00M calls, although
that does not greatly affect precision. This under calling in HiFi as-
sembly-based SNVcall sets is a result of far less of the genomebeing
assembled into haplotype-resolved contigs at lower coverages (Fig.
4B). The main effect on precision is because of genotyping errors
(Supplemental Fig. S5), which are much more common in assem-
bly-based methods compared to read-based methods. However,
when coverage reaches 12×, assembly-based methods show
excellent recall (mean 0.94) for SNVs across all technologies (Sup-
plemental Table S6), which mirrors the plateau observed in
read-basedmethods. Below this threshold, read-based callers recall
nearly 4× more (2551 vs. 651) SNV windows based on recovery of
over 90%of variants partitioned into 1Mbp (Fig. 4A). Overall, SNV
calling in low-coverage (less than 12×) assemblies is not recom-
mended, but coverages at or above 12× provide comparable preci-
sion as their read-based counterparts with an average of 0.04 lower
recall or a percent increase of 798%.
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Figure 1. Precision and recall for variant classes as a function of long-read sequencing (LRS) coverage using read-based algorithms for HG002. (A) Recall
of genome sample HG002 against Genome in a Bottle (GIAB) truth sets plotted against sequencing coverage for read-based callers Clair3 and DeepVariant.
Clair3 with PacBio HiFi reaches the earliest recall plateau, whereas all callers show saturation by 20×. (B) Recall against GIAB truth sets plotted against se-
quencing coverage for read-based callers across all algorithms capable of calling indels. Recall of both Clair3 and DeepVariant HiFi sets outperform their
ONT counterparts. (C) Recall against HGSVC truth sets plotted against sequencing coverage for read-based callers across all algorithms capable of calling
structural variants (SVs). (D) Precision as a function of sequence coverage. Single-nucleotide variant (SNV) precision remains flat beyond 10×, demonstrat-
ing the ability of callers to distinguish sequencing error from true SNVs. (E) Precision plotted against sequencing coverage for read-based callers across all
algorithms capable of calling indels. Precision values for all technologies and coverages remain flat, but here the increased precision of ONT callers is shown.
(F) Precision plotted against sequencing coverage for read-based callers across all algorithms capable of calling SVs.
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Detecting indels from assembly-based methods is especially
challenging (Fig. 3B,E), in part because of the known LRS error pro-
files associated with indels of smaller motif sizes (Wenger et al.
2019; Delahaye and Nicolas 2021). Inability to correct these errors
at low sequencing depth significantly inflates indel counts
(1,145,880 indel insertion calls on average in PacBio HiFi 5× vs.
444,045 indel insertion calls in PacBio 30×). As such, precision is
lowest for indels called in assemblies below 12× (Supplemental
Table S7). In ONT data sets, this issue is exacerbated by an order
of magnitude at reduced coverages (8,105,758 at 5×) and remains
problematic even at high coverage (1,137,763 at 30×). Precision es-
timates, however, may be underestimated because of the limited
capability of Illumina to detect variation in more complex regions
of the genome that were not accessible to the GIAB truth set.
Additional development and orthogonal validation of indels
should be an active area of LRS technology development.

SVs follow the trend of assembly-based call sets in general
with a steep recall curve, steady precision curve, and early plateau
across sequencing depths and technologies (Fig. 3C,F). For low (be-
low 8×) HiFi coverages, assembly-based methods underperform
their read-based counterparts with respect to recall by an average
of 0.03 (Supplemental Table S8). ONT assemblies show higher re-
call than their read-based counterparts by 0.09 and 0.10 for stan-
dard ONT and UL-ONT, respectively. Above this coverage, all
assembly-based methods outperform read-based methods by at
least 0.08 for recall. The HG002 assemblies using PacBio HiFi reads
at 10× sequencing depth are a clear outlier andmay be attributable
to a systematic failure to remove false duplications, which can af-
fect variant calling in all variant classes. PAV is especially suscepti-
ble to false duplications impacting recall because of its alignment
trimming algorithm.While less pronounced, we did observe a sim-
ilar outlier in HG00733 (Supplemental Fig. S6). Although the as-
sembly size for HG002 is larger than expected, metrics such as
contiguity (N50) and callable loci are consistent with other assem-
blies. Similar outliers may be avoidable with deeper coverage to
support high-quality assembly-based call sets (Ebert et al. 2021;
Liao et al. 2023).

Cross-call-set comparisons

Because LRS technologies claim to access more of the genome and
more complex classes of genetic variants, we first evaluate ge-
nome-wide SV callability. To assess callability across the genome,

we first divided GRCh38 into 1 Mbp windows and intersected
those windows with the HGSVC SV truth set for HG00733, yield-
ing 2679 and 2482 windows for insertions and deletions, respec-
tively. While this only represents 84% of the genome, in this
analysis we are only considering windows here where an SV was
identified and if we consider all 1 Mbp windows where sequence
could be evaluated this rises to 92%. A similar comparison to re-
gions accessible with short-read sequencing technologies recovers
only 85% (Wagner et al. 2021). In order for a window to be estab-
lished as callable, >90%of the calls contained in this windowmust
be accurately recovered (Fig. 5A–D). At low coverages (5×), read-
based methods outperform assembly-based methods for each re-
spective technology. At these low coverages, Sniffles used with
HiFi reads performs the best, recovering 1118/2482 (45%) win-
dows when considering deletion calls. This is almost double the
PacBio HiFi callable windows for assembly-based methods. This
trend holds for insertions, but we do note that Flye assembly-based
methods using UL-ONT perform better than Sniffles onHiFi reads.
At 10× and above, the pattern switches with HiFi assembly meth-
ods outperforming all read-based callers with the starkest differ-
ence occurring at 15× where assembly-based methods recover an
additional 500 Mbp and 383 Mbp of the genome for insertions
and deletions, respectively, than read-based methods.

SVs in clinically important genes in HG002

A list of SVs for clinically relevant genes was released for the GIAB
sampleHG002 (Wagner et al. 2021), including273 challenging genes
or regions that map to repetitive and structurally complex polymor-
phic regions. At 30× coverage, PBSVwas able to recover 97% of these
SVs in clinically relevant genes (Supplemental Table S9). However, at
the lowest coverage depths, Sniffles, once again, drastically outper-
formed the other callers across all technology types, but especially
with PacBio HiFi reads where it reports recall of 0.87 and 0.82 for
SV insertions and deletions, respectively, at just 8× sequencing cover-
age. Compared to read-based methods, assembly-based methods
showed lower recall at low coverageswith amax of 0.72 for insertions
and 0.79 for deletions using Flye with UL-ONT and hifiasm (nontrio
binned), respectively (Supplemental Table S10).

Tandem repeat characterization

LRS technologies allow formore robust characterization of tandem
repeats (Chaisson et al. 2015; Pendleton et al. 2015; Sedlazeck et al.

A B

Figure 2. SV discovery. (A) Venn diagram comparing Sniffles detection of SVs (both insertions and deletions) for 30× HiFi and 30× standard ONT input
read sets. (B) Venn diagram comparing Sniffles SV discovery at 12× and 30× HiFi call sets. A consistent set of calls is generated above 12×.
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2018; Chaisson et al. 2019), the largest of which are known as var-
iable number of tandem repeats (or VNTRs). After SNVs, tandem
repeat variants are among the most abundant forms of human ge-
netic variation comprising >20% of indels and >50% of SVs (Sup-
plemental Table S11; Ebert et al. 2021). Excluding these regions
fromanalysis has little effect on recall, indicating that even though
these regions have been difficult to characterize in prior studies,
most LRS technologies and algorithms are able to detect these var-
iants despite ambiguity in defining the exact breakpoints. Howev-
er, inclusion of these regions potentially comes with a tradeoff in
precision, particularly with read-based methods. To evaluate this,
the ratio of log10(1-Precision) was compared in read- and assem-
bly-based methods (Supplemental Fig. S7) revealing a mean ratio
of 1.78 (TR/NOTR) in read-based methods. Assembly-based meth-
ods were less affected by these regions with a precision ratio near 1
(0.98). This indicates that even at low coverages assembly-driven
variant calling can characterize such variation.

Performance in homopolymer DNA

Accurately calling variants in homopolymer runs is challenging
for both PacBio HiFi and ONT applications (Logsdon et al. 2020;
Shafin et al. 2021;McCartney et al. 2022). These nonrandom error
profiles impact precision and recall, especially for indel variant
calls.When comparing the difference between all indel calls anno-
tated with and without homopolymers, ONT call sets display a
large difference between homopolymer and non-homopolymer
DNA sequence precision and recall (Supplemental Fig. S8). Even
at high coverages, recall for insertions in homopolymer sequence
is as much as 0.13 lower than when compared against the whole
set. The effect that these sequence types have on precision even

at higher depths is still prevalent with even 30× read-based meth-
ods showing a decrease of 0.09 between these regions. DeepVar-
iant calls for UL-ONT reads show a decrease in homopolymer
precision as sequencing depth increases. This could be because
of a prior lack of training data with a ground truth for complex ge-
nomic regions uniquely aligned by this technology.

Genotyping accuracy

Comparison of reported genotypes in SNVs and indels reveal a
high error rate in assembly-basedmethods compared to read-based
methods. Assembly-based methods, on average, show a greater
than fourfold genotyping error rate in indels compared to read-
based methods, and a >17-fold difference with regard to SNVs
(Supplemental Fig. S5). This observation can be driven by two
main factors: assembly accuracy and caller optimization. Especial-
ly at lower coverages, assemblies are prone to false homozygosity
driven by a lack of reads affecting the assembly graph. In addition
to this, PAV is primarily designed for larger variants and not tuned
to capture some classes of SNVs, which results in the genotyping
error rate remaining high even at high coverage.

Large variant discovery

Large (>10 kbp) SVs, especially insertions within or near repeat re-
gions, frequently evade Illumina detection (Medvedev et al. 2009).
An advantage of LRS technologies is that these events can be de-
tected directly from the sequence of the reads or the assembly
themselves.We assessed eachmethod’s ability to recover large var-
iants using theHGSVC validation set fromHG00733, including 63
deletions and 40 insertions. For HiFi reads, two trends emerge:

××

××
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Figure 3. Precision and recall for variant classes as a function of LRS coverage using assembly-based algorithms for HG002. (A) Recall for HG002 for GIAB
truth sets plotted against sequencing coverage for assembly-based callers across all algorithms capable of calling SNVs. (B) Recall for HG002 against HGSVC
truth sets plotted against sequencing coverage for assembly-based callers across all algorithms capable of calling indels. Recall in ONT assemblies performs
better at low coverages before being surpassed by HiFi assemblies at 12×. (C) Recall for HG002 against the HGSVC Freeze 4 truth set plotted against sequenc-
ing coverage for assembly-based callers across all algorithms capable of calling SVs. (D) Precision for HG002 against HGSVC truth sets plotted against sequenc-
ing coverage for read-based callers across all algorithms capable of calling SNVs. ONTmethods are comparable to HiFi precision at high coverages though are
noticeably worse at coverages below 15×. (E) Precision plotted against sequencing coverage for assembly-based callers across all algorithms capable of calling
indels. Like read-basedmethods, values for all technologies and coverages remain low, likely because of the incomplete nature of indels in complex regions in
the GIAB truth set. (F) Precision plotted against sequencing coverage for assembly-based callers across all algorithms capable of calling SVs.
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their limitation in detecting large insertions compared to ONT
reads, likely because of increased ONT sequence read length, and
their increased recall when assembled even at low coverages.
HiFi reads consistently lag behind their ONT counterparts for large
insertions, recovering only half of the insertions in standard ONT
call sets and a third of the insertions detected in UL-ONT
(Supplemental Table S12). However, by assembling these reads,
HiFi data sets outperform ONT when sequence coverage exceeds
8×. Among read-based methods, UL-ONT performs the best with
aminimum of 21/63 large deletions and 15/40 large insertions de-
tected even at low sequence coverages (5×). Across all read-based
algorithms, Sniffles recovers the greatest number of large events
with a maximum of 0.67 and mean of 0.51 recall over all input
types and coverages followed by cuteSVwith 0.65 and 0.41, respec-
tively. It should be noted that DELLY failed to call any SVs above
10 kbp. HiFi assembly-driven methods perform the best overall
with a maximum large variant recall of 0.87 and a mean of 0.65
when PAV is used (Supplemental Table S13). Finally, both read-
and assembly-based methods recovered the largest (238 kbp) dele-
tion, but only assembly-based methods identify the largest inser-
tion of 51 kbp compared to the maximum event size in read-
based methods of 32 kbp.

ONT duplex reads and Revio HiFi data

PacBio and ONT are rapidly developing new sequencing technol-
ogies that improve LRS accuracy and throughput. For example,

ONT recently released an improved flowcell (R10) as well as a
new “duplex” sequencing method (https://nanoporetech.com/
about-us/news/oxford-nanopore-tech-update-new-duplex-meth
od-q30-nanopore-single-molecule-reads-0, retrieved April 8,
2023) significantly improving individual read accuracy by se-
quencing both forward and complementary strands from the
same single molecule (Sanderson et al. 2023). The new release
of the Revio system from PacBio, in contrast, significantly in-
creases throughput and affordability using a chemistry similar
to that of the Sequel II platform (i.e., HiFi sequencing). The recent
release of whole-genome sequencing (WGS) data sets from the
GIAB sample HG002 allows these new emerging LRS platforms
to be compared. We analyzed a 30× duplex data set of WGS
data released by ONT and compared precision and recall to stan-
dard ONT using R9.4.1 flowcells. We find that variant-calling re-
call for specific variant classes is substantially improved for
duplex sequencing over R9 ONT variant calling at all sequence
coverages and for all variant classes. The effect is most pro-
nounced for indel recall at low coverage (≤10×) where duplex var-
iant recall improves by 0.19 (Fig. 6A,B) when compared to
standard ONT. Precision, however, is much more consistent
with standard ONT methods. Of note, in our analysis, the preci-
sion of indel insertions actually diminishes when compared to
standard ONT (an average of 0.06 reduction). This is possibly
because of parameterization of variant-calling algorithms, which
have been largely adjusted for calling in a noisier, more error-
prone, single-strand ONT signal.

A B

Figure 4. Ideogram comparison of autosomal SNV recall at 8× for PacBio HiFi. (A) PacBio HiFi (8×) read-based recall of HG002 SNVs against GIAB truth
sets. A bar over a chromosome depicts a 1 Mbp window where there was <90% SNV recall for Clair3 (green) and DeepVariant (orange) with all regions
where SNVs were called in black. Highlighted regions represent limitations in methodology at low coverage. (B) PacBio HiFi (8×) assembly-based recall
of HG002 GIAB SNV truth set using PAV. There are more 1 Mbp windows with <90% recall irrespective of assembly algorithm including hifiasm-trio (yel-
low), PGAS (blue), or hifiasm (gray).
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Using 30× of WGS data from HG002 generated by the Revio
system (https://www.pacb.com/revio/, retrieved October 26,
2022), we also constructed a phased human genome assembly us-
ing hifiasm. The results were nearly identical to an assembly pro-
duced from a Sequel II HiFi data set, albeit with a single flowcell.
Both the contiguity (contig N50=44 Mbp [Revio] vs. 45 Mbp
[Sequel II]) and accuracy based on quality value (QV) (57 [Revio]
vs. 55 [Sequel II]) were virtually identical. Predictably, assembly-
based variant calling was comparable for both recall (Pearson R=
0.984) and precision (Pearson R=0.997) with some modest im-
provements in SNV recall (+0.02 vs. both truth sets) and small in-
sertion precision (+0.06 vs. HGSVC Freeze 4) (Table 1).

Discussion

Within the limits of the various algorithms and sequencing plat-
forms analyzed here, we make a few general observations and rec-
ommendations based on our analysis against current truth sets
(Zook et al. 2016; Ebert et al. 2021).With respect to SNV discovery,
LRS coverage in excess of 12-fold begins to show a plateau with re-
spect to sensitivity. Read-based approaches such as Clair3 (Zheng
et al. 2022) and DeepVariant (Poplin et al. 2018) significantly out-
perform assembly-based detection methods, such as PAV, which
have been geared to improve SV discovery and breakpoint defini-
tion (Audano et al. 2019; Ebert et al. 2021). While Clair3 with
PacBio HiFi performs the best for SNVs, both deep convolutional
network approaches (Clair3 and DeepVariant) show excellent re-
call with both ONT and PacBio above 20× sequence. Irrespective
of the sequencing platform, sequence coverage at 8× or lower
shows significant reduction in performance and is not advised
for large-scale sequencing projects dedicated to variant discovery.

By contrast, all LRS platforms currently underperform for
indel variant calling and, predictably, they perform themost poor-
ly in regions of homopolymer runs as well as short tandem repeats
—precisely the regions that are most mutable for this class of var-

iation (Willems et al. 2014). Given that caveat, we would recom-
mend PacBio HiFi read-based methods for recall across all read
coverages and ONT for precision, although the difference is slight
and can be tweaked by filtering out variants using additional met-
rics such asGQorQUAL. Amajor challenge facinghumangenetics
is the existence of a well-vetted and complete truth set for indel
variants—detailed studies over the years have restricted analyses
to specific regions of the genome owing to the high rate of false
positives and false negatives from more mutable and difficult-to-
sequence regions (Krusche et al. 2019; Zook et al. 2019; Olson
et al. 2022). Our results suggest that haplotype-resolved assemblies
offer some improvement for recall. Completely sequenced and as-
sembled genomes where T2T chromosomal assemblies are estab-
lished along with vetted indel call sets by multiple sequencing
technologies (e.g., Sanger, Illumina, ONT, and PacBio) will be re-
quired to develop a more comprehensive truth set of indels for
benchmarking. Resources such as the Platinum pedigree (CEPH
pedigree 1463) by Illumina will be particularly useful as they en-
able studying phased genome assemblies and variant calling in
the context of transmission within families (Eberle et al. 2017).

Both PacBioHiFi andONT excel at SV detection, routinely de-
tecting >20,000 SVs and consistently calling the same variants
when sequence coverage exceeds 12× (Fig. 3). SVs that are unique
to one platformover anothermap to tandem repeat regions but are
in close proximity (<10 kbp) to variants called by other technolo-
gies and their size overlap suggests that differences in alignment
and breakpoint definition are still potentially more rate-limiting
as opposed to platform differences in sensitivity. The advance of
LRS for SV detection when compared to Illumina WGS has been
well established over the years (Chaisson et al. 2015, 2019;
Sedlazeck et al. 2018; Shafin et al. 2021) and more sophisticated
callers aswell as computational pipelines continue to be developed
to discover and characterize SVs as part of routine call sets
(Kolmogorov et al. 2023). ONT, and especially UL-ONT, performed
well for detecting large insertions (Supplemental Table S12) and

A B

C D

Figure 5. Evaluation of SV callable bases by technology and algorithm. Read-based callable windows for (A) deletions and (B) insertions, and assembly-
based callable regions for (C ) deletions and (D) insertions. Regions were compared against the HGSVC HG00733 truth set in 1 Mbp windows requiring at
least 90% recall.
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the advantage here is driven primarily by larger read lengths that
canmore often traverse large repetitive DNA to anchor alignments
in unique flanking sequence. Overall, assembly-based approaches
(especially hifiasm) showed the greatest specificity and precision
when calling large SVs (>50 kbp) (Supplemental Table S13).
Because large SVs are muchmore likely to have phenotypic conse-
quence and precise breakpoints are relevant to the effect of this
consequence, assembly-based strategies should strongly be consid-
eredwhen applying LRS to solving cases ofMendelian and denovo
disease (Miller et al. 2021). However, the generation of phased ge-
nome assemblies requires deeper sequencing coverage (at least 15–
20×) and, as such, is still a more expensive option (Supplemental
Figs. S9–S12; Supplemental Analyses). Such deeper data sets have
the added advantage of improving long-range phasing accuracy
(Supplemental Fig. S11; Supplemental Analyses) and integrating
CpGmethylation with haplotypes leading to better interpretation
of the clinical significance of pathogenic mutations (Miller et al.
2022). There are, thus, considerations other than improved variant
detection for choosing LRS.

In summary, when deciding LRS depth targets, the intended
purpose of the project must be considered. If the goal is recovery
and characterization of SNVs at a population scale, low-depth
read-based methods will provide the right balance of maximizing

discovery andnumber of samples in the study.However, if the goal
is sequence resolution of large and complex variants at the level of
individual patients, assembly-based methods, in particular
hifiasm, are currently one of the most accurate strategies for build-
ing phased genome assemblies though these require greater invest-
ment in terms of sequence coverage (well beyond 15×) and
computational processing. The LRS platforms continue to rapidly
evolve in terms of accuracy (ONT) and throughput (PacBio).
Improved modeling of the platform-dependent errors as well as
newer pores or techniques (duplex sequencing) for ONT show con-
siderable promise with suggestions that variant detection accuracy
may in fact rival or surpass that of Illumina (Kolmogorov et al.
2023). Changes, such as duplex sequencing with the R10 pore,
however, currently come at a cost of lower throughput
(Sanderson et al. 2023) and, as a result, added expense to achieve
deep coverage. For the last three years, PacBio HiFi has dominated
the field with respect to accuracy in large part because of the ad-
vent of circular consensus sequencing (CCS); however, multiple
flowcells have been required to achieve deep sequence. The release
of the new Revio platform earlier this year significantly increases
throughput and decreases costs, which will aid production of
high-quality and contiguous assemblies comparable to that of
those generated previously by multiple Sequel II flowcells. Both

Table 1. Revio versus Sequel II assembly-based call-set comparison

SAMPLE SVTYPE
TRUTH
SET

RECALL
(HiFi)

RECALL
(REVIO)

RECALL
DIFF

PRECISION
(HIFI)

PRECISION
(REVIO)

PRECISION
DIFF

HG002 SV (ins) Freeze 4 0.94 0.91 −0.03 0.823 0.865 0.042
HG002 SV (del) Freeze 4 0.927 0.901 −0.026 0.869 0.859 −0.01
HG002 SNV GIAB 0.974 0.998 0.024 0.825 0.811 −0.015
HG002 SNV Freeze 4 0.97 0.992 0.022 0.897 0.879 −0.018
HG002 indel (ins) GIAB 0.955 0.944 −0.012 0.549 0.584 0.036
HG002 indel (ins) Freeze 4 0.959 0.971 0.012 0.706 0.77 0.064
HG002 indel (del) GIAB 0.953 0.947 −0.006 0.605 0.598 −0.006
HG002 indel (del) Freeze 4 0.965 0.986 0.022 0.776 0.789 0.014

PAV assembly-based variant-calling comparison for WGS data generated for HG002 on a Revio system compared to the 30× downsampled HG002
generated via the Sequel II platform compared to the HGSVC truth set (Freeze 4) and Genome in a Bottle (GIAB).

A B

Figure 6. Comparison of precision and recall in duplex ONT variant calling versus standard ONT and HiFi. (A) Ratio of log10(1-Statistic) where Statistic is
either precision (solid line) or recall (dotted line) of duplex ONT compared to standard ONT sequencing. Anything above the y = 1 line indicates an increase
in performance compared to standard ONT and anything below the y = 1 line indicates a decrease in performance compared to standard ONT. (B) Ratio of
log10(1-Statistic) where Statistic is either precision (solid line) or recall (dotted line) of duplex ONT compared to HiFi sequencing. Anything above the y = 1
line indicates an increase in performance compared to standard ONT and anything below the y = 1 line indicates a decrease in performance compared to
HiFi.
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platforms are currently highly complementary. Recently, algo-
rithms that aim to incorporate the strengths of both PacBio HiFi
and ONT reads to generate de novo T2T assemblies have shown
very promising results (Rautiainen et al. 2023). Such hybrid tech-
nology approaches have the potential to supplant any single LRS
technology as soon as the costs drop and the production of LRS as-
semblies become routine. The benefit of complete T2T variant dis-
covery should not be underestimated.

Methods

ONT data generation

UL-ONT data were generated from the HG00733 lymphoblastoid
cell line according to a previously published protocol (Logsdon
2022). Briefly, 3–5 ×107 cells were lysed in a buffer containing 10
mM Tris-Cl (pH 8.0), 0.1 M EDTA (pH 8.0), 0.5% w/v SDS, and
20 µg/mL RNase A (Qiagen, 19101) for 1 h at 37°C. Next, 200
µg/mL Proteinase K (Qiagen, 19131) was added, and the solution
was incubated at 50°C for 2 h. DNA was purified via two rounds
of 25:24:1 phenol-chloroform-isoamyl alcohol extraction fol-
lowed by ethanol precipitation. Precipitated DNA was solubilized
in 10 mM Tris (pH 8.0) containing 0.02% Triton X-100 at 4°C
for 2 d. Libraries were constructed using the Ultra-Long DNA
Sequencing Kit (ONT, SQK-ULK001) with modifications to the
manufacturer’s protocol. Specifically, ∼40 µg of DNA was mixed
with FRA enzyme and FDB buffer as described in the protocol
and incubated for 5 min at RT, followed by a 5-min heat inactiva-
tion at 75°C. RAP enzyme was mixed with the DNA solution and
incubated at RT for 1 h before the clean-up step. Clean-up was per-
formed using the Nanobind UL Library Prep Kit (Circulomics, NB-
900-601-01) and eluted in 225 µL EB. Finally, 75 µL of library was
loaded onto a primed FLO-PRO002 R9.4.1 flowcell for sequencing
on the PromethION,with twonucleasewashes and reloads after 24
and 48 h of sequencing.

PacBio HiFi data generation

PacBio HiFi data were generated from the HG00733 lymphoblas-
toid cell line as previously described (Logsdon et al. 2021) with
modifications. Briefly, DNA was extracted from 4.3×106 cells us-
ing the Monarch HMW DNA Extraction Kit for Cells and Blood
(New England Biolabs) with 1400 rpm lysis speed. After UVabsorp-
tion and fluorometric quantification (Qubit High Sensitivity DNA
kit, Thermo Fisher Scientific) on the DS-11 FX instrument
(Denovix) and evaluation of DNA integrity on FEMTO Pulse
(Agilent), 12 μg of DNA was prepared for sequencing using
Megaruptor 3 shearing (Diagenode, settings 19/31) and the
Express Template Prep Kit v2 and SMRTbell Cleanup Kit v2
(PacBio). The library was size-selected on a PippinHT instrument
(Sage Science) using a 15 kbp high-pass cut. Five SMRT Cell 8Ms
were run on a Sequel II instrument using Sequel II chemistry
C2.0/P2.2 with 30-hmovie times, 2-h pre-extension, and adaptive
loading targets of 0.8–0.85 (PacBio). Circular consensus callingwas
performed with CCS version 6.0.0 (SMRT Link v.10.1) and reads
with estimated quality scores ≥Q20 were selected for downstream
analysis.

External data sets

HG002 HiFi data were acquired as part of the HPRC and are avail-
able at this s3 address: s3://human-pangenomics/T2T/ scratch/
HG002/sequencing/hifi/. HG002 ONT, UL-ONT, and duplex
ONT data were acquired from the EPI2ME project (https
://epi2me.nanoporetech.com/, retrieved April 25, 2023) and are

available in this s3 bucket: s3://ont-open-data/. HG002 Revio
data were acquired directly from PacBio and are available here:
https://downloads.pacbcloud.com/public/revio/2022Q4/.

Comparison sets

Genome in a Bottle (GIAB) v4.2.1 was used to compare SNVs and
indels in HG002. The VCF is available for download here: https://
ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/Ashkena
zimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/. HGSVC
Freeze 4 VCFs, which were used to compare all variant types
in both HG00733 and HG002, are available here: http://ftp
.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/
release/v2.0/integrated_callset/.

Reference genome and reliable regions

To support long-readmapping, only the primaryGRCh38 assembly
was used,which includes chromosome scaffolds, themitochondrial
assembly, unplaced contigs, andunlocalized contigs.No alts, patch-
es, or decoys were present in the assembly during the alignment
stages. This reference was used previously (Audano et al. 2019;
Ebert et al. 2021) and is available for download here: http://ftp
.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/techni
cal/reference/20200513_hg38_NoALT/. Whole-genome analysis
was restricted to regions outside centromeres, pericentromeric re-
peats, and the mitochondrial chromosome where variant calls
were previously determined to be less reproducible (Audano et al.
2019; Ebert et al. 2021). This is available here: http://ftp
.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/techni
cal/filter/20210127_LowConfidenceFilter/.

Downsampling

In-house Python scripts (Supplemental Code) were used to read in-
dexes for our input data sets and subsample reads randomly up to
the desired threshold. We then used SAMtools (Danecek et al.
2021) fqidx to extract the desired reads from our larger sets and
partitioned them into individual bins.

Whole-genome alignment

ONT and PacBio reads were aligned with minimap2 v2.21 (Li
2018). Specific commands used can be referenced in the
Supplemental Material.

Assemblies

Weused two approaches to generate phasedwhole-genome assem-
blies for all PacBio HiFi sampling depths: we used the PGAS pipe-
line as previously described (parameter settings v14-dev) (Ebert
et al. 2021; Porubsky et al. 2021), which does not rely on parental
data to derive genome-wide phase information. Additionally, we
executed hifiasm v0.16.1 (Cheng et al. 2021) with default param-
eters in trio-binning mode, leveraging parental short reads to ob-
tain phase information. For the ONT and UL-ONT read sets, we
implemented a two-step process using first the Flye assembler
v2.9 (Kolmogorov et al. 2019) to generate unphased whole-ge-
nome assemblies with default parameters (preset “‐‐nano-hq”
and “‐‐genome-size” of 3.1 Gbp). Next, these assemblies were con-
verted into diploid assemblies using the HapDup v0.6 tool
(Kolmogorov et al. 2019; Shafin et al. 2020) with default parame-
ters (preset “ont”).

Downsampling with long-read sequencing

Genome Research 2037
www.genome.org

https://epi2me.nanoporetech.com/
https://epi2me.nanoporetech.com/
https://epi2me.nanoporetech.com/
https://epi2me.nanoporetech.com/
https://epi2me.nanoporetech.com/
https://downloads.pacbcloud.com/public/revio/2022Q4/
https://downloads.pacbcloud.com/public/revio/2022Q4/
https://downloads.pacbcloud.com/public/revio/2022Q4/
https://downloads.pacbcloud.com/public/revio/2022Q4/
https://downloads.pacbcloud.com/public/revio/2022Q4/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/integrated_callset/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/reference/20200513_hg38_NoALT/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/reference/20200513_hg38_NoALT/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/reference/20200513_hg38_NoALT/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/reference/20200513_hg38_NoALT/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/reference/20200513_hg38_NoALT/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/reference/20200513_hg38_NoALT/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/reference/20200513_hg38_NoALT/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/reference/20200513_hg38_NoALT/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/technical/filter/20210127_LowConfidenceFilter/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278070.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278070.123/-/DC1


Read-based variant calling

We used Clair3 [v0.1-r11] (Zheng et al. 2022), cuteSV [v1.0.13]
(Jiang et al. 2020), DeepVariant [v1.3.0] (Poplin et al. 2018),
DELLY [v1.0.3] (Rausch et al. 2012), PBSV [v2.8.0] (https://github
.com/PacificBiosciences/pbsv, retrieved April 7, 2003), PEPPER-
Margin-DeepVariant [r0.8] (Shafin et al. 2021), Sniffles2 [v2.0.2]
(Smolka et al. 2022), and SVIM [v1.4.2] (Heller and Vingron
2019) in order to call SVs from the aligned PacBio HiFi, ONT,
and UL-ONT reads at the different coverage levels.

The commands used for each caller and technology are listed
in the Supplemental Material.

In addition, we filtered the cuteSV calls based on the mini-
mum read support reported in the output VCF, as it generated un-
filtered calls. Similarly, we filtered the SVIM calls based on the
reported quality. In both cases, we used value 2 for coverages ≤5;
3 for coverages ≤10; 4 for coverages ≤20; 5 for coverages ≤25;
and 10 for coverages >30. These values were selected such that
they result in the highest F-scores when comparing the filtered
calls to those SVs for GIAB medically relevant genes for HG002.
The pipeline used for SV calling with cuteSV, Sniffles2, and
SVIM can be found at GitHub (https://github.com/eblerjana/lrs-
sv-calling).

Excluded regions for DELLY can be found at GitHub (https://
github.com/dellytools/delly/blob/main/excludeTemplates/human
.hg38.excl.tsv).

Assembly-based variant calls

PAV (Ebert et al. 2021) was applied to phased assemblies using de-
fault parameters. Briefly, assemblies were mapped to the GRCh38
reference genome with minimap2 2.17 (Li 2018), alignment trim-
ming was performed to eliminate redundantly mapped bases, and
variant callingwas performed to detect variants within alignments
as well as large SVs that fragmented alignment records into multi-
ple parts.

Variant merging and annotations

Variant call comparisons for SNVs and indels were performed using
hap.py+vcfeval (https://github.com/Illumina/hap.py, retrieved
September 2, 2023; https://github.com/RealTimeGenomics/rtg-
tools, retrieved September 2, 2023) to match prior precedent of
benchmarking using GIAB sets. Additionally, SVs were matched us-
ing svpop and a custom merge setting (szro-50–200), which first
matches variants on ID (#CHROM-POS-SVTYPE-SVLEN), then
50% reciprocal overlap, and then finally variants of the same type
that arewithin 200 bp of each other and have reciprocal size overlap
of 50%. This strategy allows for increased accuracy in complex re-
gions of the genome where alignments can be biologically
ambiguous.

Sequence content (e.g., homopolymer, tandem repeats),
BED files for SNVs, and indels are based on GIAB benchmarking
files available from GitHub (https://github.com/genome-in-a-
bottle/genome-stratifications). Reference-based annotations for
genomic sequence content for SVs are taken directly from the
UCSC Genome Browser and the UCSC GoldenPath.

F1 score

F1 score is defined as the harmonic mean between precision
and recall and seeks to represent precision and recall in one met-
ric.

F1 = 2× (PRECISION× RECALL)/(PRECISION+ RECALL).

Data access

HG00733 HiFi, ONT, and UL-ONT data generated in this study
have been submitted to the NCBI BioProject database (https
://www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA966152.
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