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Abstract

Genome-wide association studies (GWAS) identified a coding single nucleotide polymor-

phism, MYNN rs10936599, at chromosome 3q. MYNN gene encodes myoneurin protein,

which has been associated with several cancer pathogenesis and disease development

processes. However, there needed to be a more detailed characterization of this polymor-

phism’s (and other coding and non-coding polymorphisms) structural, functional, and molec-

ular impact. The current study addressed this gap and analyzed different properties of

rs10936599 and non-coding SNPs of MYNN via a thorough computational method. The var-

iant, rs10936599, was predicted functionally deleterious by nine functionality prediction

approaches, like SIFT, PolyPhen-2, and REVEL, etc. Following that, structural modifications

were estimated through the HOPE server and Mutation3D. Moreover, the mutation was

found in a conserved and active residue, according to ConSurf and CPORT. Further, the

secondary structures were predicted, followed by tertiary structures, and there was a signifi-

cant deviation between the native and variant models. Similarly, molecular simulation also

showed considerable differences in the dynamic pattern of the wildtype and mutant struc-

tures. Molecular docking revealed that the variant binds with better docking scores with

ligand NOTCH2. In addition to that, non-coding SNPs located at the MYNN locus were

retrieved from the ENSEMBL database. These were found to disrupt the transcription factor

binding regulatory regions; nonetheless, only two affect miRNA target sites. Again, eight

non-coding variants were detected in the testes with normalized expression, whereas Hap-

loReg v4.1 unveiled annotations for non-coding variants. In summary, in silico comprehen-

sive characterization of coding and non-coding single nucleotide polymorphisms of MYNN

gene will assist researchers to work on MYNN gene and establish their association with cer-

tain types of cancers.
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Introduction

Single nucleotide polymorphisms (SNPs) are the most prevailing forms of genome variation in

the human genome, where multiple alleles can exist in some population(s), and the frequency

of the least common allele must be at least 1%. They occur approximately every 300–400 base

pairs away [1]. It has been reported that SNPs are associated with disease markers, disease sus-

ceptibility, and genomic evolution [2]. A high-throughput molecular biology technique called

a genome-wide association study (GWAS) sheds light on the relationship between the fre-

quency of single-nucleotide polymorphisms (SNPs) and other forms of genetic variants and

specific phenotypes. In recent years, GWAS has led to the discovery of numerous genetic loci

or regions associated with common diseases, including cancers [3, 4]. GWAS Catalog [5] has

revealed that a non-synonymous polymorphism (rs10936599) at chromosome 3q, covering the

MYNN gene, is correlated with colorectal cancer [6], telomere length [7], multiple myeloma

[8], bladder cancer [9], and so on.

MYNN gene, located on the 3q26.1 chromosome, encodes a 610 amino acids long protein

called myoneurin (isoform A) [10]. This protein mainly functions as a transcriptional repres-

sor and belongs to the POK (Poxviruses and Zinc-finger (POZ) and Krüppel) family [11]. It is

categorized by the existence of an amino-terminal POZ/ Broad Complex, Tramtrack, and Bric

a’ brac (BTB) domain in addition to eight Kruppel-type zinc fingers at the carboxy-terminal

moiety [10, 11]. The BTB/POZ domain mediates protein-protein interactions with transcrip-

tional co-factors (corepressors, histone deacetylases) through homo-dimerization and hetero-

dimerization. The recruitment of transcriptional corepressors and histone deacetylases

induces heterochromatin formation, followed by inhibition of transcription activation. How-

ever, Krüppel-type zinc finger motifs are responsible for the DNA binding properties. This

gene is associated with gene expression, cancer development, and tumorigenesis [11]. Addi-

tionally, it regulates BMP signaling [12], synaptic gene expression [13], skeletal muscle growth

[10], etc.

Reportedly, rs10936599 is associated with shorter telomere lengths and biological ageing

[14]. Moreover, there may be a significant correlation between the polymorphisms for Telo-

merase RNA Component (TERC) (rs2293607) and MYNN (rs10936599), which is responsible

for elevated risk of colorectal cancer, colorectal adenomas [15], and bladder cancer [16]. Addi-

tionally, it has also impacted the elevated hazard of chronic obstructive diseases [17], chronic

lymphocytic leukemia [18], cutaneous melanoma [19], and multiple sclerosis [20], etc. Despite

the clinical significance of rs10936599, the molecular functions and structural mechanisms are

not fully established yet. This study aimed to detect the effect of this single nucleotide polymor-

phism on the functional characteristics, structural mechanisms, and dynamic behavior of myo-

neurin protein. The insights of this study can contribute to the research and development of

personalized treatments and medications.

Materials and methods

Retrieval of Non-synonymous SNPs (nsSNPs)

MYNN gene was selected for in-silico analysis from the literature study as it has been reported

to be associated with several cancer development processes [8, 16, 18]. Then, we investigated

the human MYNN gene in the ENSEMBL genome browser [21] (https://asia.ensembl.org/

index.html) and selected the ENST00000349841.10 transcript encoding 610 amino acids long

myoneurin protein. Missense variants were filtered using the global minor allele frequency

(MAF) value (0.05–0.5). Moreover, the protein sequence was retrieved from UniProt [22]

(https://www.uniprot.org/).
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Functional consequence analysis of nsSNPs

Sort Intolerant From Tolerant (SIFT) (https://sift.bii.a-star.edu.sg/) was employed to detect

the deleteriousness of nsSNPs. SIFT can distinguish the deleterious and neutral effects of

amino acid substitutions in nsSNPs and missense mutations based on physical characteristics

and sequence homology of amino acids [23]. It utilizes multiple sequence alignment to obtain

normalized probability scores for all substitutions. A score<0.05 is considered a deleterious

substitution.

Polymorphism Phenotyping v2 (PolyPhen-2) (http://genetics.bwh.harvard.edu/pph2/) is

a publicly accessible web server for predicting the structural and functional consequences of

amino acid substitutions [24]. Variants with PolyPhen-2 score of (0.0–0.15) are considered

benign, (0.15–1.0) as possibly damaging, and (0.85–1.0) as damaging.

The Rare Exome Variant Ensemble Learner (REVEL) (https://sites.google.com/site/

revelgenomics/) is an ensemble method for detecting the pathogenic nsSNPs based on tools,

namely MutPred, PolyPhen, FATHMM, SIFT, MutationAssessor, PROVEAN, and several

ensemble methods. REVEL score ranges from (0–1) with a cut-off of 0.5 [25].

MetaLR (https://wglab.org/) distinguishes between neutral and damaging SNPs using logis-

tic regression by providing a score between 0 to 1, where a score>0.5 indicates the damaging

effect [26]. MutationAssessor (http://mutationassessor.org/r3/) is a web server that estimates

the functional effect of missense polymorphisms and mutations based on evolutionary conser-

vation in protein homologs. It produces a score ranging from 0 to 1. nsSNPs with higher scores

are more likely to be pathogenic [27].

MutPred2 (http://mutpred.mutdb.org/), a machine learning-based method, estimates the

pathogenicity and molecular alteration of single nucleotide polymorphisms by integrating

genetic and molecular data [28]. MutPred2 generates a general score from the mean scores of

the neural networks. A score cut-off of 0.50 denotes pathogenicity. Protein ANalysis

THrough Evolutionary Relationships (PANTHER) (http://www.pantherdb.org/tools/) is a

comprehensive, freely available database that employs phylogenetics to analyze protein

sequences and determine their evolutionary links to other proteins [29]. It employs

PANTHER-PSEP (Position-Specific Evolutionary Preservation) to anticipate how nonsynon-

ymous coding single nucleotide polymorphisms may affect the functionality of proteins [30].

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) is a public database of genetic variants

and their clinical significance that gathers data from a variety of sources, such as clinical testing

facilities, research projects, and the scientific literature, and disseminates knowledge regarding

the associations between genetic variants and diseases or other health issues [31]. PON-P2

(http://structure.bmc.lu.se/PON-P2/) is a machine learning-based tool that has been developed

for the classification of amino acid substitutions in human proteins, utilizing the evolutionary

conservation of sequences, the physical and biochemical properties of amino acids, Gene

Ontology (GO) annotations, and functional annotations of variation sites [32].

Protein-protein interaction

NetworkAnalyst (https://www.networkanalyst.ca/) was employed for predicting protein-pro-

tein interaction. With the aid of NetworkAnalyst, generic PPI networks, cell-type or tissue-spe-

cific PPI networks, gene regulatory networks, gene co-expression networks, networks for

toxicogenomics and pharmacogenomics studies, and networks for gene co-expression profil-

ing can be built [33]. Additionally, gene ontology (biological process, molecular function, and

cellular component) data were retrieved from NetworkAnalyst, and the gene ontology plot

was generated using the ggplot2 package in R programming [34].
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Structural analysis

To analyze the structural impact of missense variants, we used the HOPE web tool [35]

(https://www3.cmbi.umcn.nl/hope/), an automatic mutant server. It integrates data from vari-

ous sources, namely genetic annotations from the UniProt database, prediction models from

DAS services, protein’s structural coordinates from WHAT IF web services, and homology

models from YASARA.

Mutation3D (http://www.mutation3d.org/) is a new algorithm and web server that uses a

3D clustering approach to analyze the distribution of amino acid substitutions within tertiary

protein structures [36]. ConSurf [37] (https://consurf.tau.ac.il/consurf_index.php) is a pub-

licly accessible bioinformatics tool to estimate the evolutionary conservancy of amino acid sub-

stitution, using either an empirical Bayesian method [38] or a maximum likelihood method

[39]. The conservation scores provide a relative indicator of evolutionary conservation, where

the lowest conservation score denotes the most conserved position in the sequence. The analy-

sis was carried out with the default parameters.

CPORT (Consensus Prediction Of interface Residues in Transient complexes) (https://

alcazar.science.uu.nl/services/CPORT/) is a consensus method that combines six interface pre-

diction web servers to predict interface residues in protein-protein complexes [40]. It generates

more stable and reliable predictions than individual predictors alone and competitive results

with the ab initio methods. CPORT was employed to detect the active residues in protein-pro-

tein or protein-ligand complexes.

Secondary structure prediction

SOPMA (Self-Optimized Prediction method With Alignment) (https://npsa-prabi.ibcp.fr/

cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html), a bioinformatics tool, was utilized

for predicting the secondary structure of the protein [41]. Based on the homologue model

[42], it generates a secondary structure with 73.2% accuracy.

3D structure modeling

I-TASSER (https://zhanggroup.org/I-TASSER/), a KU-developed bioinformatics tool for pre-

dicting protein structure, was used to model tertiary structure [43]. Based on the significance

score of various threading templates and clustering density, the program calculates the C-score

to measure the accuracy of the predictions. The produced structures were refined using Galax-

yWEB (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) [44]. It is a server for

refining protein structures based on the ab initio method.

Structural models assessment

The improved structures were validated by several structure validation programs, such as

PROCHECK (SAVES v6.0) [45] (https://saves.mbi.ucla.edu/), ProSA-web [46] (https://prosa.

services.came.sbg.ac.at/prosa.php), and Structure Assessment—SWISS-MODEL [47]

(https://swissmodel.expasy.org/assess). A protein structure can be evaluated for its stereo-

chemical quality using the PROCHECK suite. Besides, Z-score is displayed by the ProSA tool

(Protein Structural Analysis) for model evaluation.

Further, RMSD and TM-score between the wildtype and variant structure were estimated

using TM-align (https://zhanggroup.org/TM-align/), a bioinformatics tool for protein

sequence alignment [48] and pyMOL [49] (https://pymol.org/2/).
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Molecular docking

The mutant and the wildtype structure were subjected to molecular docking with a target pro-

tein. As a negative control, two independent ligands were also docked against these protein

structures. The docking was performed using the HDOCK server [50] (http://hdock.phys.

hust.edu.cn/). This server is designed to estimate the protein-protein or protein-nucleic acid

binding complexes based on a hybrid approach of ab initio and template-based modeling. The

predicted complexes were visualized using PyMOL and Biovia Discovery Studio [51] (https://

discover.3ds.com/discovery-studio-visualizer-download).

Molecular dynamics

GROMACS (version 2020.6) simulation software (https://www.gromacs.org/) was employed

to conduct 100 nanoseconds Molecular Dynamics simulations for both the wildtype and vari-

ant models [52]. The simulation chose GROMOS96 43a1 force-field. The spc216 water model

was deployed to build a water box with edges of 0.5 nm from the protein surface. We employed

the proper ions to balance the systems. Following energy minimization, isothermal-isochoric

(NVT) equilibration, and isobaric (NPT) equilibration of the system, a 100 nanoseconds

molecular dynamics simulation with periodic boundary conditions was carried out. The 100

picoseconds snapshot interval was specified in order to analyze the trajectory data. The GRO-

MACS software’s integrated rms, rmsf, gyrate, and sasa modules were used to perform the

root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration

(Rg), and solvent accessible surface area (SASA) studies once the simulation was performed.

Using the ggplot2 program in RStudio, the plots for each of these experiments were generated.

Functional analysis of non-coding SNPs

Non-coding SNPs (introns, 5’ UTR, 3’UTR) were retrieved from the ENSEMBL database by

filtering a MAF value of 0.05–0.5. These non-coding SNPs were analysed in RegulomeDB

(https://regulomedb.org/regulome-search), a database that provides comprehensive annota-

tion of genetic variants in the non-coding regions of the human genome [53]. Furthermore,

the annotated SNPs proceeded for analysis in GTEx Portal [54] (https://gtexportal.org/home/

). The Genotype-Tissue Expression (GTEx) project is an extensive free-access repository to

study tissue-specific gene expression and regulation.

Moreover, the functional importance of the non-coding SNPs was detected by employing

HaploReg v4.1 [55] and PolymiRTS [56]. HaploReg (https://pubs.broadinstitute.org/

mammals/haploreg/haploreg.php) is a publicly accessible bioinformatics tool to investigate

non-coding genomic annotations at variations on haplotype blocks, like potential regulatory

SNPs at genetic disorder loci. The polymorphism in microRNA target site (PolymiRTS)

(https://compbio.uthsc.edu/miRSNP/) is a comprehensive database that provides information

about genetic polymorphisms (SNPs) in microRNAs (miRNAs) and their target sites.

A schematic representation of the workflow of this study is provided in Fig 1.

Results

nsSNP data retrieval

From the ENSEMBL database, only one nsSNP (rs10936599) was obtained from the

ENST00000349841.10 transcript with a MAF value of 0.27. Interestingly, this particular SNP

has also been found for the MYNN gene in the GWAS Catalog [5], a curated genome-wide

association study database. In this analysis, we focused on the G allele of this variant, where

histidine is replaced with glutamine at position 6.
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Fig 1. Flowchart of the pipeline of the analysis.

https://doi.org/10.1371/journal.pone.0296361.g001
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Results of functional consequence prediction

The functional impact of rs10936599 was assessed in nine bioinformatics-based web tools. All

these tools predicted that this specific amino acid substitution at position 6 affects the function

of myoneurin protein (Table 1). The prediction scores of these tools are represented in Fig 2.

Analysis of MYNN (myoneurin) interaction

NetworkAnalyst demonstrated that four proteins (UBC, PAK1, COPS5, and ELAVL1) interact

with MYNN (Fig 3). These proteins are associated with numerous pathways, including gene

expression, regulatory processes, cancer development, and cancer metastasis. It also revealed

that this gene is significantly associated with 63 biological pathways, including the JNK cas-

cade, MAPK cascade, cellular metabolic processes, hypoxia, etc. (S1 Table). Regarding molecu-

lar function, MYNN is involved in enzyme binding, kinase binding, nucleotide binding, etc.

The most significant GO terms in cellular components are the nucleus, cytosol, sarcomere, etc.

The top significantly enriched terms of biological process, molecular function, and cellular

components of gene ontology analysis are visualized in Fig 3.

Effect of rs10936599 on the structure of the protein

Analysis of structural modifications. Amino acid substitution from histidine to gluta-

mine at position 6 was checked in the HOPE server. This server predicted that the variant resi-

due is smaller than the wildtype, which can affect potential external interactions. Also, the

wildtype amino acid seems highly conserved at this position, and this particular mutant resi-

due is not present in homologous proteins. It suggests that the variant hardly results without

affecting the protein. Furthermore, the MetaRNN score of the substitution is 0.827, indicating

that rs10936599 is more likely to be pathogenic. The altered residue is found outside a domain

without known function and nearby Skp1/Btb/Poz Domain Superfamily. This residue rarely

interacts with any known domain but potentially affects interaction with others. The 3D struc-

ture gathered by the HOPE server is represented in Fig 4.

Domain identification in tertiary structure. Mutation 3D revealed that myoneurin pro-

tein consists of two known domains: BTB domain and zf-H2C2_2 domain. BTB domain,

involved in transcription regulation, ion channel, cytoskeleton dynamics, etc. [57], spans from

position 14 to 118. Nevertheless, the other domain, a zinc finger associated with cancer

Table 1. Functional predictions of rs10936599 from nine bioinformatics tools with threshold levels.

Tools Threshold Level Score Prediction URL

SIFT <0.05 0 Deleterious https://sift.bii.a-star.edu.sg/

PolyPhen-2 >0.95 0.94 Probably damaging http://genetics.bwh.harvard.edu/pph2/index.shtml

REVEL >0.5 0.68 Likely disease causing https://sites.google.com/site/revelgenomics/

MetaLR >0.5 0.51 Damaging https://wglab.org/members/15-member-detail/36-coco-dong

MutationAssessor Functional impact score> 3.5 (High)

1.9<Functional impact factor<3.5 (Medium)

0.838 Medium http://mutationassessor.org/r3/

MutPred2 >0.5 0.593 Pathogenic http://mutpred.mutdb.org/index.html

PANTHER Time > 450my (Probably damaging)

450my > Time > 200my (Possibly damaging)

325 Possibly damaging http://www.pantherdb.org/

ClinVar- NCBI Associated https://www.ncbi.nlm.nih.gov/clinvar/

PON-P2 >0.5 0.512 Pathogenic http://structure.bmc.lu.se/PON-P2/

HOPE >0.5 0.827 Pathogenic https://www3.cmbi.umcn.nl/hope/

https://doi.org/10.1371/journal.pone.0296361.t001
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development [58], stretches from amino acid 372 to 398. Additionally, our mutation of interest

was found proximal to the BTB domain.

Analysis of conservancy and active residues of the protein. According to ConSurf, posi-

tion 6 of the MYNN protein sequence is a highly conserved, exposed, and functional residue

(Fig 5). It indicates that polymorphism at this position is deleterious for the function and struc-

ture of the protein. CPORT also disclosed that position is among the active residues of the

protein.

Impact of rs10936599 on protein secondary structure

SOPMA unveiled the comparative secondary structures of wildtype and nsSNP (S1 Fig). The

wildtype structure consists of 30.16% (184 residues) alpha helix, followed by 16.39% (100 resi-

dues) extended strand and 6.89% (42 residues) beta-turn. However, the variant structure con-

tains 30.66% (187 residues), 16.56% (101 residues), and 6.23% (38 residues) of alpha helix,

extended strand, and beta-turn, respectively. Both of the structures contain 46.56% (284 resi-

dues) random coil. Also, the substituted amino acid is located at the alpha helix region. Appar-

ently, there is a difference in both structures, which might cause some functional differences.

Tertiary structure analysis through model simulation

I-TASSER generated tertiary structures for wildtype and nsSNP, using fold recognition or pro-

tein threading method with C scores of -3.78 and -3.91, respectively (Fig 6). Usually, the C-

score lies between [–5,2], where a higher C score implicates higher confidence [43].

Fig 2. Deleterious effect of rs10936599 in several web tools.

https://doi.org/10.1371/journal.pone.0296361.g002
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Post refinement in GalaxyWEB, these models were evaluated in PROCHECK, ProSA,

Structure Assessment—SWISS-MODEL, TM-align, and PyMOL. Several quantitative scores

from these tools are listed in Table 2. Scores of Ramachandran favored regions are 81.1% and

80.7% for the wildtype and variant models. The Ramachandran plots and Z-score plots for

Fig 3. A) Interaction of MYNN with other cellular proteins. B) Significant GO terms associated with MYNN.

https://doi.org/10.1371/journal.pone.0296361.g003

Fig 4. A) Demonstration of the protein used in ribbon display. The side chain of the mutant residue is represented as little balls and is

highlighted magenta, along with the protein, which is highlighted grey. B) Close-up of the substitution, where the protein is shaded grey along

with the side of wildtype and mutant amino acid in green and red, respectively.

https://doi.org/10.1371/journal.pone.0296361.g004
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both the native and variant models are provided in S2 Fig. Notedly, there has not been found

any template or structure for myoneurin protein in RCSB PDB [59] or any other database.

Hence, I-TASSER couldn’t fulfill all requirements for protein threading. However, the RMSD

value between the two models is 5.968, which implies a significant deviation between both

structures. Moreover, the TM-score of 0.84197 indicates structures are roughly in the same

topology.

Molecular docking analysis

Potential ligands for MYNN were retrieved from several databases [22, 60] and literature stud-

ies [61–63]. It was found that NOTCH2 potentially interacts with MYNN [63]. Hence, MYNN

protein (myoneurin) was subjected to blind docking to estimate the change in protein-protein

interaction. The PDB structure of NOTCH2 was retrieved from RCSB PDB under 5MWB

PDB ID. Following docking, the top 10 models for each complex were generated in the

Fig 5. Visualization of conservational analysis in ConSurf.

https://doi.org/10.1371/journal.pone.0296361.g005
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HDOCK server. From those models, two compatible models were selected for comparison

(Fig 7).

The docking results revealed that the docking scores for wildtype and mutants are -254.7

and -269.55, with confidence scores of 0.8901 and 0.9161, respectively (Table 3). It implies that

the mutant binds with NOTCH2 with a higher affinity than the wildtype protein. Additionally,

two independent ligands (Acetaminophen and Adderall) were docked with wildtype and

Fig 6. A) Model structure of wildtype protein. B) Model structure of nsSNP protein. C) Superimposed display of wildtype and variant structure,

where wildtype is colored in green and variant in purple. D) Superimposition of the mutated amino acid position in both models. The wildtype

structure is shaded in green and nsSNP in purple.

https://doi.org/10.1371/journal.pone.0296361.g006

Table 2. Quantitative scores for evaluating modeled structures.

ID Ramachandran favored region PROSA Z-score MolProbity Score RMSD TM-score

Wild Type 81.1 -4.12 1.93 5.968 0.84197

rs10936599 80.7 -4.3 1.85

https://doi.org/10.1371/journal.pone.0296361.t002
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Fig 7. Visualization of the molecular docking complexes of A) wildtype with NOTCH2 B) nsSNP with NOTCH. Here, variant and wildtype structures are

shaded in grey, whereas NOTCH is highlighted in green. Ligand interactions in C) wildtype and NOTCH2 complex D) variant and NOTCH2 with

hydrogen bond donor/acceptor surface.

https://doi.org/10.1371/journal.pone.0296361.g007

Table 3. Docking scores for all docking complexes.

Ligand Wild-type rs10936599

Docking Score Confidence Score Docking Score Confidence Score

NOTCH2 -254.7 0.8901 -269.55 0.9161

Independent Ligand

Acetaminophen -85.41 0.2158 -87.92 0.2242

Adderall -69.65 0.1670 -82.61 0.2062

https://doi.org/10.1371/journal.pone.0296361.t003
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variant structures to detect whether these models form non-specific interactions with random

ligands. These ligands showed poor docking scores with low confidence scores, indicating

these ligands are unlikely to bind with both protein structures.

Analysis of dynamic characteristics

Root Mean Square Deviation (RMSD) is calculated to assess the systems’ stability. A higher

RMSD value indicates the unstable nature of the protein. The variant seemed to stabilize the

protein structure here since the wildtype had a greater RMSD than the variant.

The regional flexibility of the protein is evaluated using the Room Mean Square Fluctuation

(RMSF) method. The flexibility of a specific amino acid site increases with RMSF. Compared

to the variant MYNN, the residues in the wildtype MYNN protein were generally more

flexible.

The degree of compactness is measured by using the radius of gyration. Protein folding is

stable when the radius of gyration is relatively constant. The radius of gyration fluctuation

implies protein unfolding. With the mutant protein, the radius of gyration drastically

decreased, suggesting that it folded quickly. The wildtype MYNN, on the other hand, had a

much larger gyrating radius.

In MD simulations, Solvent Accessible Surface Area (SASA) anticipates the stability of pro-

teins’ hydrophobic cores. The probability of protein instability due to solvent accessibility

increases with increasing SASA score. SASA levels were higher in the wildtype MYNN than in

the variant structure. The results of MD simulations are presented in Fig 8.

Analysis of functional consequences of non-coding SNPs

A total of 18 non-coding SNPs were retrieved from ENSEMBL. Among them, 14 were intron

variants, and four were 3 prime UTR variants (S2 Table).

RegulomeDB generated regulome ranks and regulome scores for these polymorphisms to

predict the functionality of these SNPs (Fig 9). Most of these SNPs were located at transcrip-

tion factor binding or DNase peak (Rank 5), followed by motif hit (Rank 6) and transcription

factor binding + any motif + DNase peak (Rank 3a).

These SNPs proceeded for further analysis in GTEx Portal. Among these, eight SNPs were

detected at the testis with normalized effect sizes ranging from 0.28–0.35 (Table 4). Single tis-

sue Expression quantitative trait loci (eQTL) violin plots are illustrated in S3 Fig. Notedly,

other genes also showed tissue-specific eQTLs other than MYNN.

These non-coding single nucleotide polymorphisms were assessed in PolymiRTS to detect

if these amino acid substitutions affect any miRNA target site. Only two SNPs (rs1920123 and

rs75277808) were unveiled to affect miRNA regions. rs1920123 seems to disrupt a conserved

target site, whereas rs75277808 happens to create a novel target site.

HaploReg v4.1 was employed to analyze non-coding genomic annotations at variants.

Annotations for a total of 11 variants were discovered for the MYNN gene. Among them, eight

were intronic variants, and the remaining three were 3’-UTR variants. Annotations for all of

these SNPs are reported in Table 5.

Discussion

MYNN gene encodes myoneurin protein, which is highly expressed in neuromuscular junc-

tions and involved in regulating muscle attachment and neuromuscular networks [64]. Single

nucleotide polymorphism of MYNN, rs109365 has an impact on the telomere length [14, 64],

gene expression [11], developmental processes [12], and several cancer development processes

[6, 15, 16, 18, 19, 65]. C allele acts as the ancestral allele in rs10936599, whereas minor alleles
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are the T allele with a global MAF value of 0.27 or the G allele [66]. Previously, it has been

reported that the CC genotype entails a higher risk of bladder cancer [9, 16], colorectal cancer

[6, 15], and multiple myeloma [8]with higher odds ratios. Nevertheless, the T allele demon-

strates a relatively protective polymorphism with decreased odds ratios for bladder cancer

[16], colorectal cancer [67], and telomere length [7]. In this study, the objectives were to dis-

cover the functional and structural alterations in myoneurin protein owing to rs109365599 (G

allele) and how it impacts the susceptibility to associated diseases.

Bioinformatics tools and approaches are preferred for converting large-scale and compli-

cated biological datasets into relevant and valuable information [68] because of the more

straightforward and time-saving techniques [69]. To assess the functional impact of nsSNP, a

comprehensive analysis was conducted by employing several in silico tools and methods. Each

prediction tool uses an exclusive algorithm with a specified degree of precision for locating

harmful SNPs, strengthening the prediction analysis. These tools address sequence homology,

physiological features, and genetic, molecular, and statistical data and ensure the highest

Fig 8. RMSD, RMSF, Radius of gyration, and SASA analysis of wildtype MYNN (blue) and variant MYNN (yellow) protein following molecular

dynamic simulations.

https://doi.org/10.1371/journal.pone.0296361.g008
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accuracy. A total of nine bioinformatics tools were used for predicting functional alterations,

and all of the tools revealed that this amino acid substitution significantly disrupts the normal

function of the protein.

For a better comprehension of the significance of the MYNN gene, protein-protein interac-

tion was assessed in NetworkAnalyst. It revealed that myoneurin interacts with ubiquitin C,

COP9 Signalosome Subunit 5, P21 (RAC1) Activated Kinase 1, and ELAV-like protein 1.

Additionally, gene ontology analysis was performed to categorize the biological processes, cel-

lular components, and molecular functions related to this gene. It was observed that myo-

neurin, majorly located in the nucleus, is significantly involved in numerous signaling and

regulatory pathways, namely the JNK cascade, MAPK cascade, cell cycle, transcription, etc. It’s

also linked to biological functions like enzyme binding, transcription regulation, translation

Fig 9. Demonstration of the number of non-coding SNPs located in various regulome ranks. Here, 3a, 5, and 6

denote TF binding + any motif + DNase peak, TF binding or DNase peak, and motif hit, respectively.

https://doi.org/10.1371/journal.pone.0296361.g009

Table 4. Single tissue eQTL prediction for non-coding SNPs.

Gencode Id Gene Symbol Variant Id SNP Id P-Value NES Single Tissue eQTL

ENSG00000085274.15 MYNN chr3_169773941_T_A_b38 rs2251795 3.20E-09 0.3 Testis

ENSG00000085274.15 MYNN chr3_169775495_C_G_b38 rs3950296 2.10E-11 0.35 Testis

ENSG00000085274.15 MYNN chr3_169776839_A_G_b38 rs9866116 1.90E-09 0.3 Testis

ENSG00000085274.15 MYNN chr3_169779797_A_G_b38 rs1317082 2.10E-11 0.35 Testis

ENSG00000085274.15 MYNN chr3_169782699_G_A_b38 rs3772190 2.10E-11 0.35 Testis

ENSG00000085274.15 MYNN chr3_169785644_C_T_b38 rs2141595 5.30E-09 0.29 Testis

ENSG00000085274.15 MYNN chr3_169788353_C_T_b38 rs1920122 4.60E-08 0.28 Testis

ENSG00000085274.15 MYNN chr3_169788385_C_T_b38 rs1920123 4.60E-08 0.28 Testis

https://doi.org/10.1371/journal.pone.0296361.t004
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initiation, etc. Hence, presence of single nucleotide polymorphisms might disrupt these cellu-

lar functions and processes.

Furthermore, to determine the general physiological and functional alterations due to the

point mutation, nsSNP was subjected to analysis in the HOPE server. It unveiled that the

desired SNP decreases the size of the protein, interrupting external interactions. The amino

acid alteration modifies the structure of the protein and suggests this SNP as deleterious.

Mutation 3D was employed to investigate the amino acid change in the spatial pattern of pro-

tein structure and domain identification. This tool reported mainly 2 domains: BTB domain

(11–118) and zf-H2C2_2 domain (372–398). It also unveiled that our concerned mutation is

located near the BTB domain.

The evolutionary rate of an amino acid position is significantly affected by its structural and

functional relevance. Functionally and structurally critical amino acids are highly conserved

because even minor alterations at these residues can cause potential modifications in the pro-

tein’s function [37]. ConSurf disclosed that position 6 in wildtype MYNN is highly conserved,

exposed, and functional residue. CPORT identified binding site amino acids that interact with

the substrate or other proteins. According to CPORT, our mutation of interest was found

among the active residues.

Due to the absence of myoneurin tertiary structure in RCSB PDB, 3D structures were pre-

dicted using the I-TASSER server, which resulted in C scores of -3.78 and -3.91 for wild type

and variant, respectively. It is evident that the C scores were relatively lower for these predicted

structures. Considering that the MYNN protein sequence lacks a tertiary structure in RCSB

PDB and that the I-TASSER prediction is based on protein threading, these scores seemed rea-

sonable. Moreover, this approach was also used in earlier research to predict the three-dimen-

sional structure of proteins [70, 71]. GalaxyWEB was also employed for the structure

refinement process.

The generated structure models were evaluated based on the Ramachandran plot, ERRAT

score, MolProbity score, and Z score, produced by PROCHECK, Structure Assessment—

Table 5. Genomic annotations for non-coding SNPs.

chr 3 3 3 3 3 3 3 3 3 3 3

pos (hg38) 1.7E+08 1.7E+08 1.7E+08 1.7E+08 1.7E+08 1.7E+08 1.7E+08 1.7E+08 1.7E+08 1.7E+08 1.7E+08

variant rs1317082 rs1881966 rs1920120 rs1920122 rs1920123 rs2141595 rs2251795 rs3772190 rs3950296 rs75277808 rs9866116

Ref A G T C C C T G C G A

Alt G A C T T T A A G A G

AFR freq 0.07 0.4 0.4 0.4 0.55 0.07 0.07 0.07 0.1 0.57

AMRf req 0.29 0.36 0.36 0.36 0.36 0.33 0.29 0.29 0.04 0.36

ASN freq 0.58 0.69 0.69 0.7 0.7 0.59 0.58 0.58 0.11 0.69

EUR freq 0.25 0.27 0.27 0.27 0.27 0.29 0.25 0.25 0.01 0.27

Promoter

histone marks

23 tissues

Enhancer

histone marks

BLD, BRN BRST,

BLD, GI

21 tissues BLD, GI

DNAse 6 tissues

Proteins

bound

HAE2F1

Motifs

changed

5 altered

motifs

4 altered

motifs

4 altered

motifs

Evi-1 4 altered

motifs

CEBPA GATA,

RXRA,TATA

Mrg,Pbx3 E2A,ZBTB7A,

Zfp161

5 altered

motifs

dbSNP func

annot

intronic intronic intronic 3’-UTR 3’-UTR intronic intronic intronic intronic 3’-UTR intronic

https://doi.org/10.1371/journal.pone.0296361.t005
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SWISS-MODEL, and ProSA. The atomic particles are regarded as solid spheres with van der

Waals radii in Ramachandran plots. Any angle that causes sphere collisions is sterically unfa-

vorable; hence, such conformations are disallowed. White areas indicate polypeptide confor-

mations where atoms are closer than their van der Waals radii. These areas are sterically

hindered for all amino acids except glycine, which has no side chain. The acceptable alpha-

helical and beta-sheet configurations are red since they have no steric conflicts. Yellow sections

indicate allowed regions if shorter van der Waals radii are involved in the computation, allow-

ing atoms to gather closely. This reveals a left-handed alpha-helix area [72, 73]. The Rama-

chandran plot illustrates the protein backbone’s torsional angles (ϕ and ψ), where 90% of

residues should be in the most favorable locations [74, 75]. 81.1% and 80.7% residues of native

and variant structures were located in the Ramachandran favored region, respectively. These

scores are justified in the sense that there is no tertiary structure found for the MYNN protein

sequence, and I-TASSER prediction is based on protein threading.

Molprobity is a highly recognized technique for validating protein and nucleic acid tertiary

structures. It evaluates structure quality using all-atom contact analysis. Structure quality

increases as the score approaches 0 [76]. However, the ProSA Z-score estimates the structure’s

overall energy deviation from an arbitrary configuration energy distribution. Z-score of -6.07

indicates model quality [46]. MolProbity scores of 1.93, 1.85, and ProSA Z-scores of -4.12, and

-4.3 for native and variant structure models, respectively, suggest these models be acceptable.

The structural deviation between wildtype and missense variant structures was estimated

based on TM-score and RMSD values predicted by TM-align and PyMOL consecutively. The

root mean square deviation (RMSD) between homologous molecules of two protein chains is

a widely utilized estimate of similarities between protein structures. The lower RMSD impli-

cates similar structures [77]. The RMSD value of 5.968 indicates a significant deviation

between both models. Again, TM-scores, another measure of protein similarity, range from 0

to 1, with 1 indicating a perfect match between two structures, below 0.2 implicating a random

match, and above 0.5 presuming roughly the same fold [78]. TM-score of 0.84197 suggests that

not only there is a significant deviation between structures, but also they are not randomly

matched. Again, the secondary structure prediction by SOPMA also disclosed the difference

between mutant and native models.

Molecular docking was performed in the HDOCK server to study interactions with other

proteins and ligands. In the docking analysis, docking scores of -254.7 and -269.55 were

assigned for wildtype and mutants, with confidence scores of 0.891 and 0.9161, respectively,

when docked with NOTCH2. It implies that the variant binds more strongly than the wildtype,

as a greater negative docking score represents a more likely binding model [50]. NOTCH2, a

member of the NOTCH family receptor, is associated with a distinctive oncogenic process

[79]. It is frequently upregulated in several cancers, including hepatocellular carcinoma [80],

gastric cancer [81, 82], glioblastoma [83], medulloblastoma [84], B cell malignancies [85], etc.

This transmembrane receptor family contains extracellular epidermal growth factor-like

(EGF) repeats domain, with several intracellular domains [86]. It has been reported that

EGFR-BTB domain oligomerization activates downstream signaling cascade without EGF

[87]. So, the better binding pose of the variant and NOTCH2 complex implies the overexpres-

sion of NOTCH2 signaling, followed by a greater risk for oncogenesis.

Two independent ligands (acetaminophen and Adderall) were also docked with native and

variant models as the negative control. The results unveiled that the wildtype and mutant mod-

els don’t form non-specific interactions. For evaluating the change in dynamic characteristics

of the protein owing to nsSNP, the molecular simulation was conducted for 100 nanoseconds

using GROMACS software. The analysis showed that the wildtype structure possessed higher

RMSD than the variant, and the same trend was observed for RMSF, radius of gyration, and
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SASA analysis. The nsSNP (rs10936599) alters the stability, compactness, flexibility, and sol-

vent accessibility of the protein. According to RMSD, RMSF, radius of gyration, and SASA

profile, the polymorphism seemed more stable than the wildtype.

Usually, nsSNPs modify the protein structure and function potentially [88]. Previous stud-

ies suggested that changes in protein stability are indeed connected to changes in function. It’s

important to note that stability changes alone cannot reliably predict how a protein’s function

will be affected [88]. Even though the overall structure of the variant seemed more stable, it

might modify specific regions responsible for the protein’s function. Notedly, the non-coding

SNP is situated near the Skp1/Btb/Poz Domain, which mediates protein-protein interactions.

Hence, this variant potentially alters interaction with others.

Non-coding SNPs of MYNN were also studied because a mutation in non-coding regions

can ultimately affect transcription, translation, and phenotype [89]. According to GWAS,

about 90% of all SNPs associated with phenotypes are located in the non-coding region [90].

SNPs of 3 prime UTR regions and 5 prime UTR regions with introns were focused on as func-

tional variants are mostly found in these regions [91]. The non-coding SNPs were subjected to

RegulomeDB analysis to assess whether these variants disrupt the regulatory transcription fac-

tor binding sites [92]. This analysis exposed that most polymorphisms affected transcription

factor binding or DNase peak, followed by motif hit and transcription factor binding + any

motif + DNase peak. GTEx Portal was employed to explore genetic mutations, gene expres-

sion, and other molecular phenotypes in numerous reference tissues through eQTL, relative

gene expression, and splicing quantitative trait loci [93]. Expression quantitative trait loci

(eQTL) is a simple method for identifying potential candidate genes at risk sites [94]. The

GTEx analysis demonstrated single tissue eQTL of SNPs in testes, with normalized expression

represented in violin plots. Further, non-coding SNPs proceeded for analysis in PolymiRTS to

distinguish SNPs that influence miRNA and their target locations [56], as these small, non-

coding RNAs control gene expression post-transcriptionally [95]. Two polymorphisms were

found: rs1920123 disrupting the conserved target site and rs75277808 generating a novel target

site. Lastly, HaploReg v4.1 was utilized for annotating non-coding polymorphisms and fore-

casting their associations with diseases [55].

This study implicated that variant rs10936599 has a pathogenic role in the development of

several diseases and cancers. It is also supported by GWAS Catalog [5] with the higher odd

ratio for the G allele of rs10936599 and previously reported literature [8, 20]. However, this

study needs further research and clinical evidence.

Conclusions

Through a comprehensive bioinformatics approach, this study characterized rs10936599 of

MYNN by unraveling its functional outcomes, structural modifications, molecular interac-

tions, dynamics properties, and other properties. It also predicted a novel 3D structure of the

complete protein sequence. This analysis can support further research in this field, ensuring a

better understanding of this SNP and aiding in developing therapeutic treatments and drug

discovery processes.

Supporting information

S1 Fig. Illustration of the secondary structures of A) native protein B) nsSNP.

(TIF)

S2 Fig. Schematic representation of the Ramachandran plots and ProSA-web Z-score

plots. A) Ramachandran plot of wildtype MYNN structure. B) Ramachandram plot of
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rs10936599 structure. C) ProSA-web Z-score plot of wild structure. D) ProSA-web Z-score

plot of variant structure.

(TIF)

S3 Fig. Presentation of single tissue eQTL violin plots of non-coding SNPs.

(TIF)

S1 Table. List of gene enrichment terms of MYNN.

(XLSX)

S2 Table. List of Non-coding SNPs of MYNN.

(XLSX)
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41. Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by

consensus prediction from multiple alignments. Bioinformatics. 1995; 11(6):681–684. https://doi.org/10.

1093/bioinformatics/11.6.681 PMID: 8808585

42. Levin JM, Robson B, Garnier J. An algorithm for secondary structure determination in proteins based

on sequence similarity. FEBS Lett. 1986; 205(2):303–308. https://doi.org/10.1016/0014-5793(86)

80917-6 PMID: 3743779

43. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008; 9(1):1–8.

https://doi.org/10.1186/1471-2105-9-40 PMID: 18215316

44. Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement.

Nucleic Acids Res. 2012; 40(Web Server issue):W294. https://doi.org/10.1093/nar/gks493 PMID:

22649060

45. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereo-

chemical quality of protein structures. J Appl Crystallogr. 1993; 26(2):283–291. https://doi.org/10.1107/

S0021889892009944

46. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-

dimensional structures of proteins. Nucleic Acids Res. 2007; 35(suppl_2):W407–W410. https://doi.org/

10.1093/nar/gkm290 PMID: 17517781

47. Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: Homology modelling of protein structures

and complexes. Nucleic Acids Res. 2018; 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

PMID: 29788355

48. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic

Acids Res. 2005; 33(7):2302. https://doi.org/10.1093/nar/gki524 PMID: 15849316

49. Schrödinger LLC, DeLano W. PyMOL. http://www.pymol.org/pymol

50. Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein–protein docking. Nat Protoc.

2020; 15(5):1829–1852. https://doi.org/10.1038/s41596-020-0312-x PMID: 32269383
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