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ABSTRACT
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide 
range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor- 
reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monothera-
pies. This is likely due to the antigen targets of vaccines, “self” proteins to which there is tolerance, as well as 
to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate 
effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant 
family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family 
of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They 
recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and 
propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage 
response that can facilitate the development of a strong adaptive immune response against the target 
antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as 
adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various 
TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and 
synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent 
strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical 
models and ongoing clinical trials.
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Introduction

Cancer immunotherapy has emerged as a promising strategy 
to treat cancer patients by engaging different parts of the 
immune system to recognize and eliminate cancer cells.1 It 
encompasses a wide range of immunological approaches, 
including immune checkpoint blockade, adoptive cell transfer, 
cytokine therapies, and cancer vaccines. Vaccines are classified 
as active immunotherapies which require the host to mount 
a desired immune response, as opposed to passive immu-
notherapies that supply the immune cells or factors directly 
to the host. Vaccines as cancer treatment have been investi-
gated for many decades using autologous inactivated tumor 
cells, subcomponents of tumors delivered as a protein/peptide 
or encoded within a viral or nucleic acid construct, or by 
delivery of tumor antigen loaded onto professional antigen- 
presenting cells. While one cancer vaccine, sipuleucel-T,2 has 
been FDA-approved, most anti-tumor vaccines have not 
shown significant clinical benefit when used as monotherapies. 
This is in part due to the fact that the targets of cancer vaccines 
are “self” antigens, molecules to which the immune system 
should be tolerant. In addition, the tumor microenvironment 
may contain multiple regulatory immune populations and 
mechanisms to avoid detection by tumor-specific T cells that 
might be activated by vaccination.3–5 Consequently, successful 
cancer vaccine strategies will need to take into account means 
to more effectively activate T cells that can recognize “self” 

tumor antigens, and use strategies that target tumor-associated 
mechanisms of immune avoidance.

One approach being used to improve the efficacy of cancer 
vaccines is to target tumor-specific antigens, such as mutations 
specific to an individual person and tumor, rather than tumor- 
associated antigens that are shared by multiple individuals 
with the same tumor type.6,7 The concept is that there should 
be less tolerance to mutation-associated neo-antigens than 
normal “self” antigens. To date, however, while there is much 
enthusiasm for this approach, there are practical issues in 
identifying founder mutations rather than branch mutations, 
and whether targeting a specific mutation-derived neoantigen 
will lead to T cells with anti-tumor efficacy. Moreover, to date 
there is no clinical evidence that this approach is superior to 
targeting shared antigens, at least when vaccines are used as 
monotherapies. However, it has been clear that targeting 
tumor-associated mechanisms of resistance can improve the 
efficacy of tumor vaccines. For example, we demonstrated that 
vaccines can activate tumor antigen-specific CD8+ T cells, 
leading to increased PD-1 expression on these T cells.8 

Expression of PD-L1 in the tumor microenvironment led to 
inactivation of the anti-tumor efficacy of these cells, and block-
ade of PD-1 or PD-L1 with vaccination led to superior anti- 
tumor efficacy in murine models,8,9 and in patients with 
advanced prostate cancer.10,11 The recent decision by FDA to 
grant breakthrough designation to a personalized mutation- 
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associated neo-antigen mRNA vaccine, mRNA-4157-P201 
given with pembrolizumab, based on the demonstration of 
prolonged time to disease progression in a randomized clinical 
trial (NCT03897881) in patients with high-risk melanoma, 
further supports and highlights the efficacy of this general 
approach of giving PD-1 blockade with anti-cancer 
vaccines.12 Other approaches include using agents to target 
immune regulatory populations, such as myeloid-derived sup-
pressor cells or CD4 T regulatory cells, or immune regulatory 
cytokines within the tumor microenvironment, in combina-
tion with anti-tumor vaccines.13–15

Another approach to improve the efficacy of cancer vaccines is 
to use these with agents that affect the function of T cells that are 
activated by vaccination. Adjuvants encompass substances that 
are delivered with vaccines to support the vaccine-mediated 
immune response. Based on their functions, adjuvants are gener-
ally classified into two categories: depot adjuvants and immunos-
timulatory adjuvants.16 Depot adjuvants, such as mineral salts, 
prolong antigen availability at the injection site while immunosti-
mulatory adjuvants, such as cytokines, function to activate innate 
immunity. Because most tumor antigens are self-antigens to 
which the frequency of reactive T cells may be low or ineffective, 
adjuvants for cancer vaccines have typically focused on the use of 
immunostimulatory adjuvants to potentiate immune responsive-
ness and direct the immune response toward T helper type-1 
(Th1) response with fully activated CD8+ T cells.17

Recognition of pathogens by the mammalian immune 
system involves recognition of foreign molecules (pathogen- 
associated molecular patterns, PAMPs) that engage the 
innate immune system for rapid response. Ultimately, an 
adaptive immune response is elicited to provide specificity 
to eradicate a pathogen and provide immunological mem-
ory. The innate immune system also recognizes features 
associated with cellular damage, so called damage- 
associated molecular patterns (DAMPs).18,19 Studies over 
the last several decades have established that activation of 
innate immunity is crucial to drive adaptive immune 
responses. Cancer vaccines have consequently taken advan-
tage of agents that activate PAMPs or DAMPs as adjuvants 
to activate innate immune responses to help direct the 
development of immune response to the antigen targets. 
Among these agents are compounds that activate innate 
immunity receptors, such as toll-like receptors (TLRs).20,21 

TLRs are the largest family of pattern recognition receptors 
(PRRs) that serve as the sensors of danger from pathogens 
or cellular damage. The discovery of TLRs stems from the 
identification of the Toll gene in fruit flies with its crucial 
role in the Drosophila immune system.22 In 1998, the first 
mammalian homologues of the Toll gene were identified, 
and these receptors were named Toll-like receptors.23 

These receptors recognize conserved PAMPs or internal 
molecules from damaged cells (DAMPs), and activate innate 
immune responses.24 Diverse TLRs have been identified in 
both humans and mice (TLR1–10 for humans, TLR1–9 and 
11–13 for mice). Each TLR shows distinct cellular expression 
patterns and cytokine induction based on its primary role in 
recognizing different types of pathogens.25 Conceptually, 
activation of different TLRs may activate different innate 

signals and thus could be useful as vaccine adjuvants to 
optimally augment or skew the resulting immune response 
to the target antigen.26

The ability of TLR agonists to modulate innate immune 
response has positioned them to serve as adjuvants for vac-
cines targeting various infectious diseases. This has also led to 
their study as adjuvants for cancer vaccines.27–30 Certain TLR 
agonists have also been approved as anti-cancer therapies due 
to their direct effects on tumor cells or the tumor immune 
microenvironment, aspects that have been reviewed 
elsewhere.31,32 In this article, we review the immunological 
functions of each TLR with their ligands/agonists (Table 1) 
and update the recent approaches using TLR agonists as vac-
cine adjuvants, specifically for cancer vaccines, in both pre- 
clinical models and clinical trials.

Introduction to toll-like receptors

TLR2

TLR2 was identified in 1998 as one of the first membrane 
proteins found structurally related to Drosophila Toll.23 It is 
expressed on the plasma membrane of various immune cells 
including macrophages, dendritic cells, B cells, and T cells, as 
well as endothelial and epithelial cells.33,34 TLR2 can be acti-
vated by a broad repertoire of molecules with diacyl and 
triacylglycerol moieties, proteins, and polysaccharides. The 
major TLR2 ligands are lipoproteins (LPs), which are ubiqui-
tous in the outer membrane of most bacteria. TLR2 has been 
described to form both homodimers as well as heterodimers 
with other TLR, notably TLR2/TLR1 and TLR2/TLR6.35 Most 
functional studies have evaluated these heterodimers, however, 
it is known that homodimers recognize lipoteichoic acid, bac-
terial peptidoglycan, lipoprotein, porins, viral glycoproteins, 
and hemagglutinin.36 The exact PAMP repertoire required for 
activating TLR2 is determined by the partnering TLR. For 
example, TLR2/TLR1 heterodimer recognizes triacyl LPs, 
while TLR2/TLR6 senses diacyl LPs.37 Upon the recognition 
of PAMPs, two intracellular Toll/Interleukin-1 receptor (TIR) 
domains from each TLR recruit the universal TLR adaptor, 
Myeloid differentiation primary response-88 (MyD88).38 This 
results in the activation of NFκB and downstream production 
of proinflammatory cytokines and chemokines to activate the 
innate immune system. The most well-characterized chemo-
kines upregulated by TLR2 are CCL2 and CXCL8 from den-
dritic cells and macrophages, which recruit other immune cells 
including neutrophils or macrophages.39,40 In addition, TLR2- 
stimulated dendritic cells have been shown to secrete high 
levels of IL-1ß, IL-6, IL-12, or TNFα and express co- 
stimulatory molecules such as CD80 and CD86, which are 
critical for priming T cells.39,41–43

The biochemical diversity of the ligand structures of TLR2 
led to the development of a wide variety of synthetic TLR2 
agonists. Among them, Pam2CSK4 and Pam3CSK4, synthetic 
lipopeptides which mimic the ones found in bacterial cell 
membranes, are the two most commonly used TLR2 
agonists.44 Both agonists have a cysteine residue at the 
C-terminus of di- or triacyl lipopeptides, along with two or 
three amino acids (Pam2Cys or Pam3Cys) that activate TLR2/ 
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6 or TLR1/2 heterodimers, respectively. Other types of TLR2 
agonists also exist: lipoteichoic acids (LTAs) and peptidogly-
cans (PGNs), found in bacterial cell walls, or Zymosan, found 
in yeast cell walls.45–47 In addition, glycosylphosphatidylinosi-
tol (GPI) anchors from Plasmodium falciparum, or lipoarabi-
nomannans (LAMs) from mycobacteria, also have been shown 
to serve as TLR2 agonists.48,49

TLR3

TLR3 was the first antiviral TLR identified in 2001.50 TLR3 is 
broadly expressed in both immune cells and nonimmune cells, 
including DCs, T cells, NK cells, epithelial cells, and 
fibroblasts.51–55 TLR3 is localized in intracellular organelles, 
such as endosomal/lysosomal compartments and endoplasmic 
reticulum (ER). TLR3 responds to double-stranded (ds) RNA, 
typically associated with viral RNA.56 Binding of RNA to the 
TLR3 ectodomain triggers dimerization, and clustered TIR 
domains utilize adapter proteins to promote downstream sig-
naling. Instead of MyD88, however, TLR3 uses TIR-domain- 
containing-adapter-inducing interferon-beta (TRIF), which 
results in the secretion of cytokines or chemokines including 
type-1 interferons (IFNs).57 TLR3 has been shown to promote 
antigen presentation in antigen-presenting cells and trigger 
cross-presentation of the antigen, which can support a robust 
CD8+ T-cell response.58 Chemokines induced by TLR3 are 
also known to trigger a Th1 response, which is important for 
T-cell-mediated anti-tumor immunity.59

As dsRNA serves as a PAMP recognized by TLR3, a number 
of TLR3 agonists have been designed by mimicking the struc-
ture of dsRNA. An example of a synthetic dsRNA TLR agonist 
is Polyinosinic-polycytidylic acid (Poly(I:C)).60 Chemical 
modification of the PolyI:C structure also led to the 
development of other TLR3 agonists such as poly-IC12U and 
poly-ICLC. Poly-IC12U is modified from poly(I:C) with a U 
mismatch at every 12th base of the C strand. This generates 
a mismatched double-stranded RNA to increase the specificity 
for TLR3.61 Poly-ICLC mimics viral genetic material with the 
inclusion of poly-L-lysine and carboxy-methylcellulose in poly 
(I:C) strands. This increases the stability of Poly-ICLC by 
increasing its resistance to endonucleases.62,63 In addition to 
poly(I:C)-based agonists, DNA-RNA hybrids such as ARNAX 
and RGC100 have also been recently developed as they show 
improved stability and solubility. ARNAX acquires stability by 
capping its RNA with DNA (phosphorothioated GpC), which 
provides resistance to nucleases.64 RGC100 has unique struc-
tural characteristics, such as relatively short length (100bp), 
low molecular weight (64.9KDa), and 100% GC content. These 
structural properties tightly stack bases in the dsRNA struc-
ture, thereby improving its resistance to nucleases and 
stability.65–67

TLR4

TLR4 is another TLR member first discovered as a human 
homolog of Toll protein in Drosophila.23 TLR4 is expressed 
on the plasma membrane, predominantly on myeloid lineage 
cells, but is also expressed by epithelial or endothelial cells.68 

The natural ligands for TLR4 are lipopolysaccharides (LPS), 

the outer membrane components of gram-negative bacteria.69 

TLR4 activation is mediated by two co-receptors, CD14, and 
myeloid differentiation factor-2 (MD-2).70 LPS first binds to 
CD14, and then the LPS-CD14 complex is recognized by MD- 
2. MD-2 has a hydrophobic binding socket for the acyl chain of 
LPS, and this socket facilitates the interaction between LPS and 
TLR4. Activation of TLR4 upregulates the secretion of a wide 
range of proinflammatory cytokines and chemokines, includ-
ing IL-1β and IL-6, via both MyD88-dependent and - 
independent pathways.71,72 One of the key molecules induced 
by TLR4 activation is TNFα, which is necessary for local and 
systemic inflammation, DC maturation, and DC migration. 
This promotes the activation and proliferation of Th1 
lymphocytes.73

Although LPS serves as the primary natural ligand for 
TLR4, it is composed of three distinct parts: a glycan polymer, 
an oligosaccharide, and lipid A.74,75 Among these, lipid A has 
been suggested to be the primary moiety necessary to activate 
TLR4 because the acyl-chain binding socket of MD-2 is spe-
cific to lipid A for TLR4 activation.76 This finding has led to 
the development of diverse TLR4 agonists based on the struc-
ture of lipid A, including monophosphoryl lipid A (MPLA), 
glucopyranosyl lipid A (GLA), and ONO-4007. MPLA is 
a derivative of lipid A from Salmonella Minnesota, which 
lacks the R-(3) hydroxytetrade canoyl and 1-phosphate 
group.77 GLA is a hexa-acylated lipid A analog which does 
not have sugar residues on a hydroxyl connection site.78 ONO- 
4007 is a synthetic analog of lipid A which has a lower mole-
cular weight compared to the parent LPS.79

TLR5

TLR5 was also first identified in 1998 with other TLRs as 
a human homolog of Drosophila Toll protein.23 TLR5 recog-
nizes flagellin, a monomer subunit which polymerizes into 
bacterial flagella.80 TLR5 is expressed on the plasma mem-
brane of various immune cells including macrophages and 
dendritic cells, but also on epithelial cells lining the respiratory 
and gastrointestinal tracts. This expression pattern permits 
rapid response to bacterial infections of the lungs or gut.81,82 

Upon flagellin binding, TLR5 receptors homodimerize and 
recruit MyD88 with TIR domain adaptor protein.83 This 
MyD88-dependent signaling upregulates the secretion of IL-8 
from epithelial cells and proinflammatory cytokines such as 
IL-6 or TNFα from immune cells such as monocytes or den-
dritic cells.84,85

Flagellin binds very specifically to TLR5, but the activation 
of TLR5 by flagellin has been reported to induce excessive 
immune responses including systemic inflammation and 
acquisition of unwanted effects such as shock and loss of 
vascular contractility.86,87 In addition, flagellin itself can also 
serve as an immune target, and the induction of flagellin- 
specific antibodies can interfere with the function of flagellin 
as a TLR5 agonist.88 To date, these findings have made TLR5 
less desirable as a vaccine adjuvant. Therefore, recent work to 
develop TLR5 agonists has focused on the interaction between 
TLR5 and flagellin to precisely modulate the immune response 
triggered by flagellin. It has been shown that the D1 domain of 
flagellin, where the tertiary structure is highly conserved, 
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serves as the TLR5 recognition site. A distorted tertiary struc-
ture generated by altering a single amino acid can ablate the 
entire functionality of flagellin to activate TLR5.89,90 Other 
investigators have shown that deleting the B cell epitope region 
from flagellin alleviated the generation of antibodies.91 More 
investigation is necessary to develop TLR5 agonists as poten-
tial vaccine adjuvants.

TLR7/8

TLR7 and TLR8 were first discovered in 2000 as parts of an 
intracellular recognition system that responds to purine-rich 
ssRNA.92,93 Although these two receptors are phylogenetically 
similar in humans, they have distinct characteristics.94,95 Both 
receptors respond to guanosine-rich oligoribonucleotides 
(ORNs), but TLR8 is additionally activated by adenosine- 
and uridine-rich ORNs.96–98 Both receptors are found in 
monocytes, macrophages, and T cells, but TLR7 is predomi-
nantly expressed by plasmacytoid DCs (pDCs) whereas TLR8 
is primarily expressed by myeloid DCs.94,95 While TLR7 forms 
a homodimer once the ligand binds, TLR8 exists as a weak 
homodimer which tightens its conformation upon ligand 
binding.99 Both TLR7 and TLR8 utilize MyD88-dependent 
signaling pathway upon activation, but TLR7 mainly induces 
IRF7-mediated production of type1 interferons while TLR8 
activates NFkB signaling to upregulate proinflammatory cyto-
kines such as IL-12.100,101

Over the past few decades, a number of heterocyclic scaf-
folds have been described as TLR7/8 agonists, including imi-
dazoquinolines (IMQs), benzimidazoles, and pteridinones.102 

Many studies have focused on derivatives of imidazoquino-
lines, such as resiquimod or imiquimod, since their small 
molecular size and hydrophobicity allow easy penetration of 
the epidermal barrier. This makes them ideally suited for 
delivery as vaccine adjuvants.103–105 Most IMQs are able to 
stimulate both TLR7 and TLR8, but a slight modification of the 
chemical structure can alter the selectivity of the agonist. As an 
example, resiquimod can activate both TLR7 and TLR8, but 
a resiquimod-derivative known as imiquimod shows selectiv-
ity toward TLR7 despite its structural similarity to adenosine 
nucleosides.106

TLR9

TLR9 was also identified in 2000 as another intracellular 
receptor located in the endosomal membrane.92 TLR9 detects 
single-stranded DNA.107 Specifically, this receptor detects 
unmethylated CpG motifs.108–110 While these motifs are 
more frequent in bacterial or viral genomes, self-DNA can 
also be recognized by TLR9, a finding that has been associated 
with autoimmunity.111,112 TLR9 shows a narrower expression 
pattern compared to the other members; it is constitutively 
expressed in only pDCs and B cells, but the expression can be 
upregulated in other immune cells including neutrophils and 
monocytes upon their activation.21,100,113,114 Similar to the 
other TLRs, TLR9 also uses a MYD88-dependent signaling 
pathway to upregulate the expression of proinflammatory 
cytokines such as type 1 IFN or co-stimulatory molecules 
CD80 and CD86.115 Reports have shown that TLR9 

stimulation can also facilitate the maturation of pDCs, NK 
cells, and B cells.116–118

Based on the chemical structure, synthetic TLR9 agonists 
are classified into four different groups: class A, B, C, and 
P.119,120 Class A are oligonucleotides that possess poly-G 
nucleotides at both 5’ and 3’ ends, generating a secondary 
structure called a G-quadruplex.117 Class B agonists consist 
of the conventional linear structured single-stranded oligonu-
cleotides. Class C agonists display both linear and dimeric 
structures as they are composed of two polynucleotides that 
partially dimerize to each other.117,121 Class P agonists have 
palindromic sequences at the 3’ end which form a distinct 
secondary structure.120 These differences in chemical struc-
tures result in distinct physiological activities.122,123 For exam-
ple, Class B agonists are transported faster into the late 
endosome compartment because of their single-stranded and 
linear structures, and induce a stronger activation of B cells 
and NK cells than dendritic cells compared to the Class 
A agonists, thereby acting as a less potent IFNα 
inducer.117,121 The secondary structure of class P agonists, 
generated by the palindromic sequences, stabilizes these ago-
nists from degradation by nucleases.120 Recent studies of TLR9 
agonists have focused on improving both the stability and 
efficacy of the agonists. For example, immunomodulatory 
oligodeoxynucleotides (IMO)-type CpG ODNs are modified 
versions of CpG generated by conjugating 3’ ends of two CpG 
nucleotides to a non-nucleotide linker. This triggers stronger 
immune responses compared to traditional CpG 
nucleotides.124,125 MGN1703, considered a third generation 
of CpG-ODN, has a distinct dumbbell-like structure with 
two single-stranded loops containing multiple TLR9 recogni-
tion sites connected by a double-stranded chain to delay 
nuclease-mediated degradation.121,126

TLR10

TLR10 is the latest TLR which was first reported in 2001.127 

Functional TLR10 is expressed in humans while a pseudogene 
exists in mice, a fact that has limited studies of TLR10 as 
a vaccine adjuvant. Unlike other TLRs, the expression of 
TLR10 varies significantly among tissues, and is mostly 
expressed in secondary lymphoid organs such as lymph 
nodes, spleens, and tonsils.128,129 While TLR10 is closely 
related to TLR1 and TLR6,127,130 the exact ligands and func-
tion of TLR10 are still debated. Analysis of the ligand-binding 
pocket suggests that TLR10 may share the ligands with 
TLR2.129 Studies have shown that TLR10 can form either 
homodimers or heterodimers with other TLRs. While the 
function of heterodimerized TLR10 remains unclear, homo-
dimerization of TLR10 is known to induce the production of 
the anti-inflammatory cytokine IL-1Ra via the PI3K/Akt 
pathway.131

TLR11, TLR12, and TLR13

TLR11, TLR12, and TLR13 are additional members of the TLR 
family that have been found in mice, but do not have known 
human homologues. As such, there has been less study of these 
receptors and no studies of their use as cancer vaccine adjuvants. 
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Investigations to date have shown that these three receptors are 
predominantly expressed in intracellular organelles in immune 
cells, such as macrophages and DCs.132–134 All three receptors 
form homodimers, and a heterodimer between TLR11/TLR12 
has been reported.133–135 Profilin serves as a major ligand for 
TLR11 and TLR12, but flagellin also has reported to activate 
TLR11.133,136 Activation of TLR13 requires an unmethylated 
motif present in the large ribosomal subunit of bacterial RNA 
(23S rRNA).137 Similar to other TLRs, all three receptors 
recruit MyD88 upon activation, which results in activation 
of DCs and production of IL-12.135,138,139

Preclinical approaches using TLR agonists as cancer 
vaccine adjuvants

TLR2

Animal model investigations have shown that TLR2 agonists 
can improve the efficacy of cancer vaccines. In a study con-
ducted by Zhang et al., mice were intracranially implanted 
with GL261 glioma cells and received adoptive transfer of 
tumor-specific T cells followed by four injections of a TLR2 
agonist, bacterial lipoprotein (BLP).140 Compared to the con-
trol group treated with tumor-specific T cells alone, the inclu-
sion of BLP significantly improved the survival with complete 
tumor regression observed in 6 of 18 mice. Tumor analysis 
identified an increased CD8+ T-cell infiltration as well as an 
increased ratio of IFNγ+ CD8+ T cells with BLP treatment. In 
addition, the mice that survived had acquired anti-tumor 
immunity as evidenced by the absence of tumor development 
when re-challenged with the same tumor cells. In a separate 
study by Zahm et al., Pam3CSK4, a TLR2 agonist, was used as 
an adjuvant in an ovalbumin-expressing E.G7 tumor model.141 

OT-1 CD8+ T cells were adoptively transferred to E.G7 tumor- 
bearing mice, and the mice were vaccinated with subcutaneous 
injection of SIINFEKL peptide and co-administered 
Pam3CSK4. The addition of Pam3CSK4 significantly sup-
pressed tumor growth compared to the group treated with 
SIINKEFL alone. The analysis of tumor-infiltrating lympho-
cytes identified increased CD8+ T-cell infiltration in response 
to Pam3CSK4.

To further improve the efficacy of cancer vaccines with 
TLR2 agonists, more recent studies have focused on the mod-
ification and bioconjugation of TLR2 agonists to vaccine anti-
gens. For example, Renaudet et al. developed two different 
cancer vaccines, HER-GLP-1 and − 2, by conjugating a HER2- 
specific peptide and a TLR2 agonist, PAM.142 Both conjugates 
showed effective uptake by DCs, resulting in the upregulation 
of MHC-II, CD80, and CD86 expression as well as IL-12 and 
TNFα secretion by the DCs, compared to the group stimulated 
with the peptide alone. Weekly subcutaneous immunization of 
the conjugates in NT2 tumor-bearing mice decreased the 
tumor volume and improved the survival rate compared to 
the control groups. In a similar study by Shi et al., 12 different 
vaccine-TLR2 conjugates were developed with a MAGE-A1- 
specific peptide vaccine and TLR2 agonist (N-Ac PamCS-M-1  
~ 12).143 All conjugates were more effectively taken up by 
dendritic cells and upregulated the secretion of IL-12, IL-6, 
and TNFα compared to groups where DCs were incubated 

with the peptides and TLR2 agonist. Two conjugates, N-Ac 
PamCS-M-6 and N-Ac PamCS-M-7, were able to increase the 
expression of CD86 and CD11c in DCs compared to the group 
stimulated with the mixture of peptide and TLR2 agonist. 
Treatment of MCF-7 tumor-bearing nude mice showed that 
the N-Ac PamCS-M-6 conjugate significantly suppressed 
tumor growth when the mice were subcutaneously immunized 
with a DC-T-cell mixture preconditioned with the conjugate, 
compared to groups with the mixture of cells pre-conditioned 
only with the peptide.

It is clear from these studies that TLR2 agonists can 
improve vaccine-mediated anti-tumor immunity. In addition, 
the conjugation of TLR2 agonist with peptide may be 
a promising strategy to enhance the immunogenicity of pep-
tide antigens. However, more studies are necessary to investi-
gate the possible synergy using TLR2 agonists with other 
vaccine approaches, such as protein-, DNA-, and RNA-based 
cancer vaccines.

TLR3

Since TLR3 stimulation induces type-1 interferon responses, 
several TLR3 agonists have been investigated as promising 
adjuvants for cancer vaccines. In one study, vaccination with 
tumor lysate and poly-IC12U promoted the maturation of DCs 
with increased IL-12 secretion which was demonstrated to 
expand tumor-specific CD8+ T cells.144 In a study reported 
by Zhu et al., poly-ICLC promoted a vaccine-mediated anti- 
tumor response in a murine glioma model.145 Specifically, 
GL261 tumor-bearing mice were subcutaneously immunized 
with three different peptide epitopes (mEphA2, hgp100, 
mTRP-2), along with intramuscular injection of poly-ICLC. 
The combination of vaccines with poly-ICLC significantly 
improved the infiltration of antigen-specific CD8+ T cells in 
CNS tumor sites compared to vaccine-alone or poly-ICLC- 
alone groups. The addition of poly-ICLC improved survival (9 
of 15 mice), compared to groups immunized with peptides 
alone (3 of 10 mice) or poly-ICLC (0 of 10) alone.

ARNAX, a mimic for double-stranded RNA, has also been 
shown to suppress tumor growth when used as an adjuvant in 
ovalbumin-expressing murine tumor models E.G7 and 
MO5.146 Tumor-bearing mice were immunized with whole 
ovalbumin protein along with ARNAX, and the combination 
showed significant suppression of tumor growth in both tumor 
models. In the E.G7-OVA model, 40% of the mice treated with 
ovalbumin + ARNAX showed complete regression. 
Additionally, when surviving mice were re-challenged with 
the same tumor cell line, tumors failed to develop and an 
increase in effector memory CD8+ T cells was detected in the 
spleens, suggesting the development of a lasting anti-tumor 
immunity.146

In addition to the diverse modifications of TLR3 agonists, 
recent studies have also focused on delivering traditional 
TLR3 agonists such as poly(I:C) with different biomaterials. 
For example, Song et al. developed a polypeptide-hydrogel- 
based vaccine for melanoma by combining tumor cell 
lysates, poly(I:C), and self-assembled poly-valine 
hydrogel.147 The inclusion of poly(I:C) further increased 
the ratio of DCs expressing CD80, CD86, and MHC-II 
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compared to the hydrogel vaccine without TLR3 agonist. In 
the B16 melanoma tumor model, mice subcutaneously 
immunized with poly(I:C)-containing hydrogel vaccine sup-
pressed tumor growth rates and tumor weights compared to 
the group treated with the vaccine alone. In a similar study 
by Wang et al., poly(I:C) was incorporated into a cationic 
liposome (DOTAP)-based vaccine with tumor cell lysates to 
generate a PIC-DOTAP liposome complex (PDLC).148 

Splenocytes from healthy mice immunized with PDLC 
showed a 150-fold increase in the production of IFNγ 
upon in vitro re-stimulation with the peptides, compared 
to the group immunized with poly(I:C) or DOTAP alone. 
The complex also showed potent anti-tumor immunity in 
the Hepa1–6 murine tumor model; subcutaneous immuni-
zation of tumor-bearing mice with PDLC showed better 
tumor suppression with increased tumor infiltration by 
CD8+ T cells and NK cells, compared to the groups immu-
nized with poly(I:C) or DOTAP alone.148

These studies demonstrate that TLR3 agonists can potenti-
ate vaccine-mediated anti-tumor responses. In addition, 
improved delivery methods may further improve the efficacy 
of TLR3 agonists as vaccine adjuvants.

TLR4

TLR4 agonists have been extensively studied as cancer vaccine 
adjuvants. For example, Vindevogel et al. treated ovarian ID8 
tumor-bearing mice with a vaccine composed of DCs and 
tumor cell lysates, delivered with an intraperitoneal injection 
of LPS.149 While inclusion of LPS failed to suppress tumor 
growth or improve the survival of mice, the presence of LPS 
facilitated the infiltration of tumors by NK cells and sup-
pressed Treg infiltration. Davis et al. formulated a GM-CSF- 
secreting whole tumor cell vaccines (GVAX) with LPS, and 
tested its therapeutic efficacy in three different murine tumor 
models (B16, SCCFVII/SF, and CT26).150 In comparison with 
the GVAX-treated groups, LPS-GVAX significantly sup-
pressed tumor progression in all models. Moreover, 40% of 
CT26 tumor-bearing mice treated with LPS-GVAX showed 
significant tumor regression, and mice re-challenged with the 
tumor cells proved to be immune to the tumors. In a separate 
study by Shi et al., a thermosensitive hydrogel was utilized to 
deliver a vaccine comprised of LPS and a truncated fibroblast 
growth factor peptide (tbFGF).151 The complex enhanced both 
antibody- and cell-mediated immune responses toward the 
peptide. Increased serum bFGF-specific antibodies were 
detected in mice immunized with the complex, and isolated 
CD8+ T cells from immunized mice slightly improved in vitro 
tumor cell lysis with the upregulation of IFNγ and IL-4 
secretion.

Recent studies have also reported the efficacy of synthetic 
TLR4 agonists as vaccine adjuvants, such as MPLA, by incor-
porating the agonists in nanostructure-based cancer 
vaccines.152,153 In a study published by Hamdy et al., poly 
(lactic-co-glycolic acid) (PLGA) nanoparticles were formu-
lated with a melanoma antigen, a peptide derived from tyrosi-
nase-related protein 2 (TRP2), and TLR4 agonist, 7-acyl lipid 
A.152 Although TRP2 alone was a poorly immunogenic anti-
gen, the formulated nanoparticle helped overcome tolerance to 

this tumor-associated antigen and induced robust anti-tumor 
effects compared to control groups. Activated TRP2-specific 
CD8+ T cells also showed elevated expression of IFNγ. In 
a separate study, Cheng et al. developed a biohybrid liposome 
which served as a cancer vaccine, named vacosome, by recon-
structing plasma membranes from 4T1 cells, MPLA, and 
a lipid matrix consisting of egg phosphatidylcholine (EPC), 
DSPE-PEG-2000 and cholesterol.153 Subcutaneous immuniza-
tion with the vacosome enhanced the maturation of bone 
marrow-derived dendritic cells (BMDCs), along with upregu-
lation of serum level of IL-12 and TNFα in mice. Furthermore, 
mice previously immunized with vacosome and then chal-
lenged with 4T1 tumor cells showed significantly slower 
tumor growth with increased numbers of effector memory 
CD8+ T cells, compared to groups treated with either MPLA 
or the antigen-liposome complex alone.

TLR7/8

Imiquimod is a TLR7 agonist that has been approved as 
a topical monotherapy for basal cell and squamous cell 
carcinoma in situ.154 Studies have demonstrated that imi-
quimod can have direct effects on tumor cells leading to 
apoptosis, as well as activate favorable dermal cellular 
immunity. Several preclinical studies have shown that 
TLR7/8 agonists can also improve the efficacy of cancer 
vaccines. Ma et al. examined the contribution of TLR7 
agonists, imiquimod and gardiquimod, to DC-based anti- 
cancer vaccines.155 Specifically, a DC vaccine was developed 
by co-incubation of DCs and B16 tumor cell lysates for 16 h, 
and B16 melanoma-bearing mice were immunized with 
intravenous infusion of DCs, along with peritumoral injec-
tion of the TLR7 agonists. The inclusion of imiquimod 
showed similar tumor suppression as the DC vaccine 
alone, but gardiquimod significantly improved vaccine- 
mediated suppression of tumor growth. In a separate study 
by Stickdorn et al., a vaccine was formulated using a pH- 
degradable nanogel with ovalbumin protein and a TLR7/8 
agonist, IMDQ.156 BMDCs pulsed with this nanogel facili-
tated the proliferation of OT-1 T cells, and increased serum 
level of TNFα and IFNγ, compared to the group where DCs 
were pulsed with the antigen and IMDQ-nanogel separately. 
In addition, vaccination of ovalbumin-expressing MC38 or 
B16-F10 tumor-bearing mice with intravenous injection of 
IMDQ-containing nanogel showed antigen-specific anti- 
tumor responses. Tumor growth of ovalbumin-expressing 
MC38 or B16-F10 tumors was significantly suppressed com-
pared to native tumors (not expressing ovalbumin).

Similar to TLR2, recent studies with TLR7/8 agonists have 
also focused on the modification or bioconjugation of TLR7/8 
agonists to vaccine antigens to enhance the vaccine-mediated 
anti-tumor response. For example, Chi et al. synthesized TLR7 
agonist SZU-106 and developed a whole tumor cell vaccine, 
Aza-BFcell-106, by chemically linking B16-F10 melanoma cells 
to SZU-106.157 Compared to SZU-106, in vitro stimulation of 
BMDCs with Aza-BFcell-106 showed upregulation of IL-6 and 
TNFα secretion. Aza-BFcell-106 stimulation also increased the 
expression of CD80 and CD86 on BMDCs compared to the 
whole-cell vaccine without SZU-106. In a similar study by 
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Song et al., a nanoparticle vaccine termed TLR7/8a-epitope 
was developed by conjugating imiquimod with peptide antigen 
epitopes derived from Sur, MAGE-1, and gp100.158 

Conjugation of peptide vaccine with imiquimod showed 
improved retention of the vaccine inside lymph nodes and 
significantly increased the number of CD8+ T cells in the 
lymph node, compared to mice immunized with a mixture of 
the antigen and imiquimod. Subcutaneous immunization of 
B16 melanoma tumor-bearing mice with the TLR7/8a-epitope 
showed significant tumor suppression and an increase in CD8 
+ T-cell infiltration, compared to a group immunized with the 
mixture of antigen and imiquimod.158 Lynn et al. also devel-
oped a peptide-based vaccine, termed SNP-7/8a, by conjugat-
ing peptides from a large pool of neoantigens with TLR7/8 
agonists, chemically programmed to self-assemble as 
nanoparticles.159 Subcutaneous immunization of mice and 
non-human primates with SNP-7/8a was able to generate 
and sustain long-lasting antigen-specific CD8+ T cells with 
increased IFNγ expression. Mice inoculated with TC-1 lung 
cancer or B16-F10 melanoma showed suppressed tumor 
growth following immunization with SNP-7/8a, compared to 
groups immunized with the conjugate without antigen.159

Taken together, these studies have shown that TLR7/8 
agonists are able to improve the efficacy of cancer vaccines, 
likely by inducing the activation and maturation of DCs. The 
efficacy of these TLR7/8 agonists may be further improved 
with novel conjugate and delivery approaches.

TLR9

TLR9 activation has also been shown to activate cytotoxic 
T cells and improve vaccine-mediated anti-tumor immunity. 
In a study by Kim et al., splenocytes from mice vaccinated with 
MUC1- and GD3-derived peptides were re-stimulated with 19 
different adjuvants.160 TLR9 agonist CpG ODN induced the 
greatest Th1-biased immune response along with the highest 
IFNγ secretion compared to the other adjuvants. In a separate 
study, Sin et al. co-immunized mice with 20 µg of the TLR9 
agonist ODN1826 and 20 µg of Trp2180–188 peptide.161 

Immunizations were given subcutaneously to B16 melanoma- 
bearing mice on a weekly basis, up to 3 weeks. The combina-
tion of Trp2 peptides and CpG-ODN showed significant 
tumor growth inhibition over the time points measured fol-
lowing treatment, compared to mice treated with either Trp2 
peptides or CpG-ODN alone.

Like other TLR agonist adjuvants, recent studies of TLR9 
agonists as cancer vaccine adjuvants have focused on novel 
delivery strategies to further improve the uptake of the ago-
nists. For example, Shi et al. formulated nano-complex vac-
cines with self-assembling peptide-cationic R8 epitope 
conjugates with CpG ODN1826.162 All nano-complexes with 
the OVA MHC I-restricted epitope (SIINFEKL) robustly acti-
vated purified BMDCs with increased expression of CD86, 
CD40, and MHC-antigen complex in vitro. Moreover, weekly 
immunization of mice bearing B16 tumors expressing ovalbu-
min with nano-complexes containing CpG showed significant 
suppression of tumor growth and increased infiltration of CD4 
+ and CD8+ T cells, compared to mice immunized with the 
nano-complex assembled without CpG.162 In a similar study 

published by Chen et al., a vaccine was designed to target stem- 
cell-like cancer cells by chemically conjugating an OCT4- 
specific peptide with carrier protein keyhole limpet hemocya-
nin (KLH) and a TLR9 agonist.163 Vaccination of F9 terato-
carcinoma-bearing mice led to slower tumor growth and 
longer survival, compared to mice treated with TLR9 agonist 
or OCT4-KLH alone. Analysis of the tumor showed increased 
infiltration of CD8+ T cells, and secretion of pro-inflammatory 
cytokines such as IL-2, IL-6, and IL-12. In a separate study 
reported by Zaks et al., the addition of TLR9 agonists to 
liposome-based vaccines similarly improved vaccine- 
mediated anti-tumor responses.164 Peptide or protein antigens 
(Ovalbumin, trp2, or gp61) and TLR9 agonists (CpG or 
pMB75.6 non-coding plasmid) were loaded within cationic 
liposomes. C57BL/6 mice receiving intraperitoneal delivery 
of vaccines formulated with TLR9 agonists showed increased 
splenic antigen-specific CD4+ and CD8+ T cells. Vaccines 
containing TLR9 agonists also improved cross-priming of the 
CD8+ T-cell response, independent of CD4+ T cells, and 
generated long-lived effector memory T cells which persisted 
for 3 months after vaccination. Immunization of B16 tumor- 
bearing mice with the trp2-specific, CpG-containing vaccine, 
by either subcutaneous or intraperitoneal vaccination routes, 
slowed the growth of tumors compared to groups immunized 
with the trp2 peptide-complexed liposomes alone or trp2- 
pulsed DCs.164

Summary

Pre-clinical studies have demonstrated that TLR agonists can 
potentiate vaccine-mediated anti-tumor immune responses. 
Many of these studies showed that TLR agonists can induce 
maturation of DCs along with secretion of proinflammatory 
cytokines, resulting in robust activation of T cells that can 
mediate anti-tumor activity. Consequently, more recent stu-
dies of TLR agonists as vaccine adjuvants focused on the co- 
delivery of TLR agonists and vaccines together by diverse 
methods, including conjugation with the vaccine antigen, or 
formulation with liposomes or other nano-scale structures. 
Given the results from multiple recent studies with these 
additional delivery strategies, co-delivery of vaccine and TLR 
agonists seems advantageous to improve the vaccine-mediated 
anti-tumor immune responses. However, certain aspects still 
have not been fully explored in preclinical studies. Notably, 
there is a lack of studies comparing the downstream effects of 
activating different TLRs, and even different agonists acting on 
a defined TLR (such as different classes of TLR9 agonists), on 
the downstream function of antigen-specific T cells. For exam-
ple, we have previously found that activation of specific TLR, 
notably TLR1/2, TLR7/8 and TLR9 at the time of CD8+ T cell 
activation leads to a reduction in PD-1 expression on the CD8 
+ T cells and greater anti-tumor activity of these CD8+ 
T cells.141 However, the effects of TLR activation on various 
aspects of downstream T cell function or memory develop-
ment have not been well characterized. Further such studies 
could enable the development of vaccines in which CD8+ 
T cells, or CD4+ T cells, with different function or persistence 
might be desirable. In addition, this could lead to the use of 
specific combinations of TLR agonists as adjuvants, based on 
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their different actions. For example, we have recently found 
that combining TLR agonists, notably TLR3 and TLR9 ago-
nists, could act on professional antigen-presenting cells to 
secrete both type I IFN and IL-12, thus improving the anti- 
tumor function of activated CD8+ T cells.165 Further studies 
using TLR agonist combinations, and delivery approaches 
using these different TLR agonists, are needed.

Clinical studies using TLR agonists as cancer vaccine 
adjuvants

Numerous clinical studies using TLR agonists as cancer vac-
cine adjuvants have been completed, or are currently under-
way, as indicated in Table 2. Collectively, these have 
demonstrated that TLR agonists are safe and promising agents 
as cancer vaccine adjuvants using different types of vaccines.

Many cancer vaccine clinical trials using TLR agonists have 
used protein-based vaccines, and notably vaccines targeting 
New York esophageal squamous cell carcinoma-1 (NY-ESO-1) 
protein. In a study by Pavlick et al., patients with high-risk 
resected melanoma were treated with a vaccine composed of 
NY-ESO-1 and poly-ICLC.168 Patients received subcutaneous 
vaccination of 100 μg NY-ESO-1 protein with 1.4 mg poly- 
ICLC, and with or without montanide (oil-based depot adju-
vant). Vaccine cycles were repeated every 3 weeks for a total of 
4 cycles. The vaccine was well-tolerated without any treat-
ment-related grade 3/4 adverse events. After vaccination, the 
number of patients whose NY-ESO-1-specific CD4+ T cells 
were detected in PBMCs had increased (83%) compared to 
pre-immunization (41%), without additional montanide. CD8 
+ T cell responses were also detectable after immunization. 
Another clinical study was reported by Mahipal et al., who 
investigated the effect of a TLR4 agonist, GLA-SE, as a cancer 
vaccine adjuvant.181 Twelve patients with solid tumors expres-
sing NY-ESO-1 were treated with 250 µg of G305, 
a recombinant NY-ESO-1 protein vaccine combined with 
GLA-SE (0 to 10 µg). The vaccine was administered intramus-
cularly on days 0, 21, and 42. The vaccine regime was well- 
tolerated and only grade 1 or 2 adverse effects were detected, 
including soreness at the injection site. With the vaccination, 
75% of patients developed NY-ESO-1-specific antibodies. 
Overall, T-cell responses were augmented, with CD4+ T-cell 
responses detectable in 44.4% of patients (4 of 9) and CD8+ 
T-cell responses in 36.9% of patients (4 of 11). A similar 
vaccination study with the NY-ESO-1 antigen was conducted 
by Adams et al. using imiquimod (IMQ, TLR7 agonist) as 
a vaccine adjuvant.175 Recombinant, full-length NY-ESO-1 
protein was administered to melanoma patients intradermally 
into an IMQ-preconditioned skin site with additional topical 
application of IMQ. Cycles were repeated every three weeks for 
a total of 4 injections. Vaccine regimens were well tolerated in 
all patients. The IMQ and NY-ESO-1 combination activated 
APC populations and improved their infiltration at the vacci-
nation site. This was associated with activation of humoral and 
cell-mediated immunity. Specifically, PBMCs collected from 
patients after vaccination showed increased CD4+ T-cell 
responses compared to pre-vaccination (7 of 9 vs. 0 of 9 
patients). Analysis of vaccine site skin biopsies demonstrated 
an increased number of IFNγ-secreting NY-ESO-1-specific 

CD4+ T cells, monocytes, macrophages, mDCs, and NK cells 
than in untreated control skin biopsies from the same patients. 
Sabado et al. similarly examined topical application of the 
TLR7/8 agonist resiquimod, combined with subcutaneous 
administration of 100 µg of full-length NY-ESO-1 plus mon-
tanide, in patients with high-risk melanoma.182 Patients were 
given 100 µg NY-ESO-1 protein emulsified in 1.25 mL mon-
tanide (day 1) subcutaneously, followed by topical application 
of placebo gel or 1000 mg of 0.2% Resiquimod gel on days 1, 3, 
and 5. The vaccine-induced NY-ESO-1 specific humoral 
responses with high titers of antigen-specific antibodies, and 
increased CD4+ T-cell responses, in the majority of patients 
compared to placebo gel (83% vs. 73%). In addition, CD8+ 
T-cell responses were only detected with the inclusion of 
resiquimod (3 of 12), while none of the patients immunized 
with the NY-ESO-1 vaccine alone showed CD8+ responses (0 
of 8).182 These protein-based cancer vaccine studies, focused 
on NY-ESO-1 as the tumor antigen, highlight the use of TLR 
agonists as adjuvants. Collectively, these studies suggest that 
the inclusion of TLR agonists can improve antigen-specific 
CD8+ T-cell responses and CD4+ T-cell responses, without 
severe side effects.

Along with protein-based vaccines, many reports have also 
demonstrated that TLR agonists can improve the efficacy of 
peptide-based vaccines. In a study by Sabbatini et al., the 
immunogenicity of overlapping long peptides (OLP) from NY- 
ESO-1 was examined in combination with montanide and 
poly-ICLC.183 Twenty-eight patients with advanced ovarian 
cancer were enrolled to three cohorts: Cohort 1 received NY- 
ESO-1 OLP only (1 mg), Cohort 2 received 1 mg NY-ESO-1 
OLP with 0.5 mL montanide-ISA-51, and Cohort 3 received 
NY-ESO-1 OLP (1 mg), montanide-ISA-51 VG (1 mL), and 
Poly-ICLC (1.4 mg). Vaccines were subcutaneously adminis-
tered on weeks 1, 4, 7, 10, and 13 with the final study safety 
assessment on week 16. The vaccine was well-tolerated and 
NY-ESO-1–specific CD4+ T cells were detected in all patients. 
Antigen-specific CD8+ T cells were detected in 8 of 13 (62%) 
patients vaccinated with OLP and montanide, and in 10 of 11 
(91%) patients vaccinated with OLP, montanide, and ploy- 
ICLC. The frequency and polyclonality of NY-ESO-1–specific 
antibodies in patients vaccinated with OLP, montanide, and
poly-ICLC were higher than in the group of patients treated 
with OLP and montanide (91% vs. 46%). In a similar vaccina-
tion study using imiquimod as an immune modulating agent, 
Mauldin et al. treated 4 patients with metastatic melanoma 
with topical IMQ delivered to sites melanoma plus subcuta-
neous and intradermal injection of a multi-peptide cancer 
vaccine (100 µg each of 12 melanoma-specific peptides and 
a tetanus toxoid-derived helper peptide).184 Vaccines were 
administered in two cycles: days 1, 8, 15 for the first cycle, 
then days 36, 57, 78 for the second cycle. 5% imiquimod cream 
was applied once a day, 7 days per week for 12 weeks, to 
selected superficial skin metastases. The vaccine regimen was 
well tolerated with mild adverse effects and without any dose- 
limiting toxicities, but the study was too small for meaningful 
clinical assessments. Three of four patients developed ex vivo 
T-cell responses with increased IFNγ secretion after vaccina-
tion and IMQ treatment. The number of antigen-specific CD8 
+ T cells was also increased in 2 of 4 patients upon treatment. 
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Gene expression analysis of tumors treated with the vaccine 
and IMQ identified up-regulation of genes related to adaptive 
immunity (TCR, IFNγ, and IL-2 signaling) and T-cell/NK cell 
recruitment (IL2RG, IL2RB, CD3G, CD2, SLAMF6, and 
CD38). In another peptide-based vaccine trial, Speiser et al. 
reported the use of CpG7909, one of the first developed TLR9 
agonists, as a vaccine adjuvant.179 Eight melanoma patients 
received 4 vaccinations subcutaneously in monthly intervals 
with CpG7909 (500 µg), melanoma antigen A (Melan-A) pep-
tide (100 µg), and incomplete Freund’s adjuvant (IFA, 300 ul). 
Vaccination with CpG increased the frequency of antigen- 
specific T cells, to 0.07–3.00% of circulating CD8+ T cells, 
approximately ten times higher than before vaccination (p <  
0.01). A control group of 8 melanoma patients treated similarly 
without CpG demonstrated significantly (p < 0.01) lower post- 
vaccination T-cell frequencies (0.13% ± 0.11%). Expanded 
T cells were mostly effector memory cells, and demonstrated 
antigen-specific secretion of IFNγ, granzyme B, and 
perforin.179 While these were all small, pilot clinical trials, 
these peptide vaccine-based trials demonstrated similar find-
ings to protein-based vaccines, suggesting that the immunolo-
gical efficacy of these vaccines could similarly be augmented 
when combined with TLR agonists.

On the other hand, while the pilot studies above focused on 
the safety and immune response of vaccines delivered with 
TLR adjuvants, several clinical studies have reported low clin-
ical efficacy, and/or low immunogenicity, when TLR agonists 
were combined with protein- or peptide-based vaccines. In 
a phase I clinical study conducted by Dillon et al., a vaccine 
containing nine different breast-cancer-associated peptides 
(100 µg each of peptides derived from MAGE-A1, -A3, and - 
A10, CEA, NY-ESO-1, and HER2/neu) was combined with 
a TLR3 agonist (Poly-ICLC, 1 mg) and a helper peptide 
derived from tetanus toxin (200 µg).169 Twelve patients with 
breast cancer were vaccinated both intramuscularly and intra-
dermally on days 1, 8, 15, 36, 57, 78. Only grade 1 or 2 toxicities 
were detected, including mild injection site reactions or flu- 
like symptoms with fatigue, and there was no dose-limiting 
toxicity found. However, antigen-specific CD8+ T-cell 
responses were detected in only 2 of 11 (18%) patients treated. 
In another phase I clinical study by Neidhart et al., 
a combination of recombinant baculovirus-derived epithelial 
cell adhesion molecule (Ep-CAM, KSA) vaccine with MPLA 
adjuvant in a liposomal emulsion was evaluated for the treat-
ment of metastatic colorectal cancer (mCRC) patients.172 The 
vaccine was formulated with 100 μg of KSA and 200 μg of 
MPLA in a 1.0 ml liposomal oil-in-water emulsion and admi-
nistered, with or without granulocyte-macrophage colony- 
stimulating factor (GM-CSF), to patients subcutaneously 
every 4 weeks. This KSA vaccine with MPLA was shown to 
be safe and tolerable, and elicited significant KSA-specific 
humoral immune responses (7 of 11). However, none of the 
patients in this trial showed a clinical response. Similarly in 
a trial reported by Grewal et al., 23 HLA-A2-expressing 
patients with stage II-IV melanoma received a peptide vaccine 
derived from a melanoma antigen (MART-1a, 0.5 mg) and 
with or without a TLR4 agonist (GLA-SE, 5 µg). Vaccines 
were administered as intramuscular injections with 21-day 
cycles and up to three vaccinations. Antigen-specific immune 

responses were monitored by the number of antigen-specific 
T cells in PBMCs. There was a trend toward increased immune 
response to MART-1a with the inclusion of TLR4 agonist (70% 
vs. 63.6%), but it did not reach statistical significance. 
Furthermore, there was no difference in immune response to 
the wild-type MART-1 with TLR4 agonists (40%), compared 
to the control group (54.5%). Finally, in a clinical study con-
ducted by Ishikawa et al., vaccines using peptides derived from 
two cancer-testis antigens (LY6K and TTK) were combined 
with the TLR9 agonist CpG7909 for the treatment of patients 
with metastatic esophageal squamous cell carcinoma.180 Nine 
patients were vaccinated on days 1, 8, 15, and 22 with peptide 
vaccines LY6K–177(1 mg), TTK-567 (1 mg), and CpG7909 
adjuvant (0.02 or 0.1 mg/kg). Patients who received CpG7909 
had increased serum levels of IFNα and higher frequencies of 
peptide-specific CD8+ T cells in the peripheral blood. 
However, no patient in the trial showed a partial or complete 
response.180

In summary, published clinical studies demonstrate that 
TLR agonists can exert immunostimulatory effects in patients. 
In general, clinical trials combining TLR agonists with protein- 
or peptide-based vaccines demonstrated increased antigen- 
specific CD4+ and CD8+ T cell immune responses. However, 
these have been small studies, not designed to evaluate clinical 
efficacy, and hence larger studies are needed. Certainly, results 
from other vaccine trials have demonstrated that increased 
T-cell response is not necessarily associated with greater anti- 
tumor efficacy,185 and hence trials to evaluate clinical end-
points are needed. In addition, most of the trials to date have 
been conducted in patients with melanoma. While this has 
been useful to enable some comparisons across clinical trials, 
and in many cases using the same antigens (e.g., NY-ESO-1), 
ultimately it will be important to evaluate the use of TLR 
agonists as adjuvants for other types of cancers, and in combi-
nation with agents that target the immunosuppressive tumor 
immune microenvironment. As previously highlighted, it is 
widely believed that better activation of T cells by vaccination 
alone may be insufficient for optimal tumor control, and that 
combination approaches are needed that can concurrently 
modify the immunosuppressive tumor microenvironment. 
For example, trials using vaccines with PD-1 blockade have 
demonstrated more efficacy, and this approach has not yet 
been explored with the addition of TLR adjuvants in preclini-
cal or clinical models. Moreover, the choice of vaccine target 
may be important. For example, the E75 peptide vaccine tar-
geting HER-2/neu for patients with breast cancer has demon-
strated immunogenicity and clinical effects in larger clinical 
trials.186 And the sipuleucel-T vaccine targeting prostatic acid 
phosphatase has been FDA-approved as a treatment for 
advanced prostate cancer.2 However, there have been no trials 
to date using TLR agonist adjuvants for these diseases or 
vaccine targets for which modest clinical responses have been 
observed following anti-tumor vaccine monotherapy treat-
ments, or using these advanced stage vaccines. Lastly, given 
the rapid development and deployment of mRNA vaccines for 
infectious diseases, and early results suggesting their efficacy as 
anti-cancer vaccines,187 it will be important to evaluate the use 
of TLR agonists with other vaccine platforms, notably mRNA 
and DNA-based vaccine platforms. RNA and DNA are known 
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to activate specific TLR, and it has been proposed that part of 
the mechanism for their immunogenicity as vaccines is by 
activating different TLR.188 Hence, nucleic acid vaccines 
might be strategically combined with specific TLR agonists. 
Collectively, these combined studies will provide a much 
broader understanding to select optimal TLR agonists to use 
as cancer vaccine adjuvants, along with agents targeting the 
tumor immunosuppressive microenvironment, for more effec-
tive therapies.

Concluding remarks

Cancer vaccines have great potential to improve the treatment 
of cancer patients. However, cancer vaccines used alone have 
demonstrated modest outcomes, suggesting the need to com-
bine these with other agents, including adjuvants that can 
modulate the function of the resulting immune response. 
Numerous pre-clinical studies have shown that TLR agonists 
can facilitate the vaccine-mediated anti-tumor response by 
supporting the activation of antigen-specific CD8+ T cells in 
various tumor models. This is mediated by the maturation of 
various immune cells, including dendritic cells, and facilitated 
expression of co-stimulatory molecules and inflammatory 
cytokines. Recent pre-clinical approaches using TLR agonists 
has focused on further improving the functionality of vaccines 
with TLR agonists, by modifying their chemical structures or 
combining them with novel delivery strategies. Positive results 
from recent studies with these novel delivery methods indicate 
the importance of co-delivery of vaccine and TLR agonists to 
improve vaccine-mediated anti-tumor responses. Nonetheless, 
further research is required to compare the impact of distinct 
TLR activation when used with different vaccine approaches, 
as well as to assess the effects of different TLR agonists when 
used alone or in combination on the downstream function and 
memory of CD4+ and CD8+ T cells.

Clinical trials have shown the safety of TLR agonists as 
vaccine adjuvants, as well as their ability to augment antigen- 
specific T cells. However, clinical studies to date have been 
small trials with limited evaluation of clinical endpoints. 
Larger studies using different vaccine approaches, in combina-
tion with agents targeting the immunosuppressive tumor 
microenvironment, and used in different disease settings, will 
be necessary. Nevertheless, TLR agonists are viable adjuvants 
for cancer vaccines, and we expect that improvements in 
cancer vaccine efficacy will be achieved with a further evalua-
tion of TLRs and TLR agonists.
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