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Abstract

The sinoatrial node (SAN), the primary pacemaker of the heart, is responsible for the initia-
tion and robust regulation of sinus rhythm. 3D mapping studies of the ex-vivo human heart
suggested that the robust regulation of sinus rhythm relies on specialized fibrotically-insu-
lated pacemaker compartments (head, center and tail) with heterogeneous expressions of
key ion channels and receptors. They also revealed up to five sinoatrial conduction path-
ways (SACPs), which electrically connect the SAN with neighboring right atrium (RA). To
elucidate the role of these structural-molecular factors in the functional robustness of human
SAN, we developed comprehensive biophysical computer models of the SAN based on 3D
structural, functional and molecular mapping of ex-vivo human hearts. Our key finding is
that the electrical insulation of the SAN except SACPs, the heterogeneous expression of Iz,
Ina currents and adenosine A1 receptors (A1R) across SAN pacemaker-conduction com-
partments are required to experimentally reproduce observed SAN activation patterns and
important phenomena such as shifts of the leading pacemaker and preferential SACP. In
particular, we found that the insulating border between the SAN and RA, is required for
robust SAN function and protection from SAN arrest during adenosine challenge. The het-
erogeneity in the expression of A1R within the human SAN compartments underlies the
direction of pacemaker shift and preferential SACPs in the presence of adenosine. Alter-
ations of Iy current and fibrotic remodelling in SACPs can significantly modulate SAN con-
duction and shift the preferential SACP/exit from SAN. Finally, we show that disease-
induced fibrotic remodeling, Iy, suppression or increased adenosine make the human SAN
vulnerable to pacing-induced exit blocks and reentrant arrhythmia. In summary, our com-
puter model recapitulates the structural and functional features of the human SAN and can
be a valuable tool for investigating mechanisms of SAN automaticity and conduction as well
as SAN arrhythmia mechanisms under different pathophysiological conditions.
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we used in this study are available in the CellML
depository. The human SAN cellular model can be
downloaded from Physiome CellML repository:
https://models.physiomeproject.org/workspace/
648. The human atrial cellular model is accessible
through https://models.physiomeproject.org/e/
807/ni_2017 cellml/view. In our study, we applied
and adapted the original cellular SAN models for
different SAN regions with SAN regional
heterogeneity to qualitatively match experimental
results. A custom-built C software was used to
generate all computer simulations and has been
described previously by our group [DOI: 10.1038/
s41467-019-14039-8 and DOI: 10.1161/
JAHA.117.005922]. Custom C code and related
files used for computer simulations and the human
SAN model in this study have been deposited at
GitHub: https://github.com/rsha919/Human_SAN_
2D_Fabbri_Ni.

Funding: This work was supported by NIH
HL115580 and HL135109 (VVF), the Bob and
Corrine Frick Center for Heart Failure and
Arrhythmia, the Ohio State University, the Health
Research Council of New Zealand (#21/355), Royal
Society Te Aparangi Catalyst Fund and the National
Heart Foundation of New Zealand (JZ). The funders
had no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Author summary

The human heart is driven and modulated by the sinoatrial node (SAN), our body’s natu-
ral pacemaker. Recent studies using explanted human hearts discovered that to regulate
heart rhythm robustly, the SAN has three pacemaker compartments—-SAN head, center
and tail characterized by heterogeneous expression of key ion channels and receptors. In
addition, the fibrotically-insulated SAN electrically connects with the right atrium (RA)
through up to five sinoatrial conduction pathways (SACPs). Due to the complexities of
the human 3D structure and limited functional data on SAN conduction, the specific role
of the SAN insulation/border, distinct SACPs and intranodal pacemaker molecular het-
erogeneity in regulating sinus rhythm in health and diseased hearts remain debatable. The
goals of this study were to define the key factors influencing human SAN pacemaking
function and SAN dysfunction by developing and utilizing computer models of the
human SAN. This study presents the first comprehensive biophysical computer model of
the human SAN complex based on direct molecular, structural and functional studies in
the ex-vivo human heart. Our data show that the computer models can closely replicate
pacemaking, SAN activation patterns and exit sites/earliest atrial activation through pref-
erential SACPs, as well as physiological changes including the shift of the leading pace-
maker in the presence of adenosine reported in the human heart ex-vivo. More
importantly, the novel computer modeling simulation results illustrate the crucial role of
the structural and electrical heterogeneity of the human SAN in pacemaking and conduc-
tion. Our human-specific SAN computer model represents a valuable tool for investigat-
ing SAN automaticity, conduction and arrhythmia mechanisms under normal and
various disease conditions.

Introduction

The sinoatrial node (SAN) is the primary pacemaker of the human heart, responsible for gen-
erating and efficiently regulating cardiac rhythm under various physiological conditions [1,2].
The human SAN is a single, “banana-shaped” 3D heterogeneous multicellular structure, com-
posed of specialized pacemaker cells, adipose cells, immune cells, nerve fibers and importantly,
~35-50% dense connective tissue [3-7]. This structure is further compartmentalized into
head, central and tail intranodal pacemakers characterized by heterogeneous ion channels and
proteins that maintain pacemaking and conduction [8,9]. The distinctive fibrotic tissue in the
human SAN together with fatty tissue, and low electrical coupling between pacemaker cells
and atrial myocardium along the SAN border create electrical insulations of the intranodal
pacemakers from the surrounding right atrial (RA) myocardium. This insulation may facilitate
intranodal pacemaking and conduction as well as overcome the sink-source mismatch
between the large RA myocardium (sink) and relatively small SAN pacemakers (source) as
shown in the pioneer modelling study by Joyner and van Capelle [10]. Additionally, cardiac
diseases including heart failure (HF) may lead to pathological molecular and structural (e.g.,
increased fibrosis) remodeling within the SAN pacemaker complex, resulting in SAN pace-
maker and conduction dysfunction (SND) and reentrant arrhythmias [1,2,9,11].

The mechanisms of SAN function and dysfunction have been extensively studied in animal
models [12,13]. These animal studies established a foundation of theories on heart rate regula-
tion and possible mechanisms of SND or sick sinus syndrome but also highlighted large inter-
species variations [14]. Recent ex-vivo studies reveal that the human SAN complex may be
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unique in both structural and electrophysiological aspects that limit the translational applica-
tions of animal studies to clinics [1,2,5]. Importantly, these studies revealed that the multiple
SAN conduction pathways (SACPs) and intranodal pacemakers within the unique 3D SAN
fibrotic structure may provide fail-safe mechanisms to ensure robust, uninterrupted SAN
pacemaking and conduction [1,2,5,6]. Yet, due to the complexities of the human 3D structure
and limited functional data on SAN conduction, the specific role of the SAN insulation/bor-
der, distinct SACPs and intranodal pacemaker molecular heterogeneity in the regulation of
sinus rhythm in health and diseased hearts remains debatable. Thus, despite over a century of
research on the SAN, limited knowledge of the relationship between human SAN function and
the 3D structural-molecular microarchitecture of the human SAN pacemaker-conduction
complex remains a critical barrier to properly understanding SAN dysfunction and arrhythmia
mechanisms and developing new therapeutic approaches, e.g., biological pacemakers [15].

Computer models of cardiac electrical activation provide a powerful framework for under-
standing the structural and functional mechanisms of underlying variable physiological and
pathological conditions, such as HF. Computer simulations also provide unique opportunities
to test the role of each individual factor (e.g. region-specific fibrosis or pacemaker ion channel
expression) in SAN pacemaking and conduction functions. These would be impossible to
achieve in experimental or clinical studies [9,16]. However, currently existing computer mod-
els of the human SAN are either single pacemaker cell models [17] or 2D and 3D models,
which do not incorporate human SAN-specific structural/functional/molecular data [18-20].
For these reasons, heart-specific computer models of the human SAN, incorporating molecu-
lar, structural and functional data from the same cohort of ex-vivo human hearts [1,5,6,8,9,21]
may provide a powerful means to test novel hypotheses.

The goal of this study was to define the key factors influencing human SAN pacemaking
function and SAN dysfunction by developing and utilizing computer models of the human
SAN complex. This novel SAN in silico model was based on data from our recent high-resolu-
tion near-infrared optical mapping, molecular, and detailed 3D histological imaging studies
directly in the human heart ex-vivo [1,9]. Biophysics-based computer models of the human
SAN were designed to simulate electrical pacemaking and conduction between SAN, SACPs,
and RA based on realistic geometric loading and compartment-specific heterogeneity of
molecular and ion channel expressions, as well as the impact of autonomic stimulation with
adenosine, HF-induced remodeling and atrial pacing on SAN function.

Methods
Human SAN optical mapping and 3D reconstruction

Near-infrared optical mapping data and histological imaging and reconstruction of human
SAN used for the current SAN model was published previously in Li et al. 2017 and 2020[5,9]
and described in S1 Text. Briefly, ex-vivo optical mapped donor human SAN preparations
were histologically dissected for 3D structural reconstruction and analysis. 400 histology sec-
tions were imaged at a spatial resolution of 0.5x0.5 um” using a 20X digital slide scanner
(Aperio ScanScope XT, Leica). The high-resolution histology images of the human SAN pace-
maker complex were sequentially stacked, and artificial deformation across the z-axis was min-
imized using a novel 3D image alignment approach [5]. Subsequently, segmentation was
performed on the stacks of Masson’s trichrome to separate the SAN from the neighbouring
RA based on functional and structural data. Myocardial tissue was delineated from fat, blood
vessels and fibrosis based on the colour intensity within the 3D SAN complex (Fig A in

S1 Text). In addition, five SACPs (yellow color) were identified as 1-3 mm of myofibers with
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transitional cells in the SAN border that merged with RA myofibers [5]. High-resolution fiber
fields were obtained using eigenanalysis of the structure tensor [16].

Human SAN computer model

Based on the 3D reconstruction of the optically mapped human SAN complex, we developed a
SAN-SACP-RA model to conduct computer simulations (Fig 1). The reconstructed 3D SAN-
SACP-RA anatomical model had a size of 19.5x4.0x2.6 mm® at an isotropic resolution of

40 um’. The SAN computer model was obtained using a shadow of the 3D SAN model to the
XY plane (parallel to epicardium) as shown in Fig B in S1 Text. As a result, the 2D representa-
tion of the entire 3D human SAN structure included all SACPs and the complete SAN head/
center/tail, which is crucial for the aims of this study. In addition, the computer model used
the myofiber field from histology data. Such model reproduced the geometry of electrical con-
nections between the SAN and the neighbouring RA and was much more efficient to run than
a computer model of the SAN directly based on the 3D histological data. We did not incorpo-
rate the SAN’s internal blood vessels into the model (as physical barriers) as they do not affect
SAN and RA interaction. The insulating wall (at a uniform thickness of 3 pixels) between the
SAN and RA was given a constant potential of -62.5 mV, which is the mean of the resting
potentials of the RA and SAN cells, and a 0.001% diffusivity of the RA diffusivity [22-24].

The cellular activation models for the human SAN center/head/tail and SACPs were
adapted from the Fabbri et al. 2017 model [17], which is the most widely used human SAN
model based on recent experimental data. The following modifications were made by consid-
ering SAN regional heterogeneity data from recent studies [1,2,9] (Fig 1). The ratios of I, I¢
and I; currents among the four SAN regions were listed in Table A in S1 Text, respectively
[1]. The simulated SCLs for isolated SAN pacemakers in the SAN center and head/tail were
813 ms and 798 ms, respectively. The SACP cell models were not able to pace themselves. The
baseline condition was considered to be without adenosine. In our computer model of the
human SAN complex, the maximum concentration of acetylcholine (ACh), 60 nM, led to SAN

A representative human SAN computer model
A Stack of Segmented Models of the SAN Complex

SAN from Histology ~ ©.5"2°”  and Single Cells
Q SAN model CL=798 ms
@
CL=813 ms

0 ms 5000

Fig 1. The reconstruction of the human SAN anatomical and computer activation model. A representative human
SAN computer model at an isotropic resolution of 40 ym® was constructed using a shadow of the 3D
immunehistological segmentation of the human SAN structure including SACPs [1] into a 2D plane. For this
computer model, three different cellular kinetics models were developed for SAN center (1), head and tail (2), and
neighboring RA (3). SAN-sinoatrial node, RA-right atrium, SACP-sino-atrial conduction pathway, CL-cycle length.

https://doi.org/10.1371/journal.pchi.1011708.9001
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arrest, which we referred to as 100% adenosine and a utilized dose of adenosine was repre-
sented as a percentage relative to this maximum value throughout this modeling study. To
incorporate the effects of adenosine/ACh into the SAN cellular models, we utilized the same
approach as described in the study by Fabbri et al.[17] for modeling the effects of ACh by mod-
ulating its concentration. The administration of ACh in the SAN activated the ACh-activated
K" current (Igacp), influencing I, I, and sarcoplasmic reticulum Ca?t uptake. In addition,
expression of the Ixacp, channel or Al adenosine receptor (A1R) was modeled higher in the
SAN center than in the SAN head/tail compartments based on data from human experimental
studies [1]. Modelling of the relative expression of AIR in the SAN head/tail was achieved by
changing the density (max conductance) of the Ix ), current at the head and the tail of SAN.
The RA cells were modeled by using the recently adapted human atrial Courtemanche et al.
cell model [25]. In addition, the impact of adenosine/ACh on RA cells was modeled using the
same formula by Grandi et al. [26] To simulate the electrical remodeling in the SAN complex
under HF, we introduced Ifand Iy, current block by 20% in the SAN and SACPs and 5% Iy,
block in the RA [9]. To simulate the impact of fibrosis in HF, we used 20% fibrosis in both
SAN and SACP regions as we have done previously [9] (Table B in S1 Text).

Electrical conduction among SAN pacemakers and RA cells was modeled using a mono-
domain equation and solved using a parallelized finite difference approach. We used a spatial
step of 0.04 mm and a temporal step of 0.0025 ms in our solver. A forward Euler method was
used to solve the ordinary differential equations of cellular models. The electrical conduction
attributable to intercellular electric coupling via gap junctions was simulated through the diffu-
sion coefficient. In the model, we considered the regional differences in gap junctional cou-
pling between the SAN center, SAN head/tail, SACPs and RA tissues by setting the diffusion
coefficients at a ratio of 7:10:20:50 in these regions (Table C in S1 Text) [9]. In the models, an
anisotropic diffusivity ratio of 1:10 was used as conducted in the past [9,16].

Results
SAN activation at baseline and with application of adenosine

The developed control human SAN computer model reliably reproduced SAN rhythm or
sinus cycle length (SCL), leading pacemaker location and electrical propagation pattern
including preferential SACPs within the SAN complex at baseline and during adenosine
administration, which were identical to these parameters recorded during our ex-vivo map-
ping experiment in the same ex-vivo human heart (Fig 2). Under baseline conditions in the
computer model (Fig 2A left), the leading pacemaker was located in the SAN center (circle),
and the earliest RA activation site was through the middle lateral SACP (magenta asterisk).
The activation time within the SAN before exiting through SACP was ~75 ms (SAN conduc-
tion time—SACT).

Qualitatively similar results were observed in the same human heart optically mapped ex-
vivo at baseline conditions (Fig 2B left). In the presence of a higher concentration of adeno-
sine (84% of the maximum dose) in the computer model, the leading pacemaker shifted to the
SAN tail (Fig 2 right). In addition, the earliest RA activation site was activated through the
superior lateral SACP. The SACT within the SAN was prolonged to 318 ms. An example of
qualitatively similar results observed in the experiment in the presence of a high dose of adeno-
sine is shown in Fig 2B right. In that case, under application of 10 uM of adenosine, we also
observed the shift of the leading pacemaker to the tail, RA activation through the superior lat-
eral SACP and SACT of 370 ms, which is comparable to the model (318 ms). The activation
path of the electrical wave was the same in the model and in the experiment.
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A Computer simulated SAN and RA activation maps
Baseline

SAN —>Atria
314 350

Oms 320
:Y
SCL=930ms X SCL =1996ms X
SACTsr=78ms SACTsr=318ms
® | eading pacemaker * Earliest RA activation site

B Activation maps of the optical mapping
Baseline
[S7e RAMSAN —>Atria SV A | SAN —>Atria

: M 45 80 N 350 400

AT

: Oms 51 , - Oms 370
SCL =596ms SCL =1194ms
SACTsr=51ms SACTsr=370ms
® Leading pacemaker * Earliest RA activation site

Fig 2. The computer activation model of the human SAN complex was validated using the optical mapping of the
same human heart under both baseline and adenosine (Ado). A, The activation maps of the human SAN-RA in the
computer model where the earliest pacemaker originated from the SAN center and propagated into the RA via the
middle lateral SACP under baseline conditions. The introduction of Ado shifted the leading pacemaker to the SAN tail
and changed the exit site to the superior lateral SACP as in ex-vivo optical mapping experiments. B, Optical mapping
of the same human heart ex-vivo had qualitatively similar leading pacemaker sites and propagation patterns [1]. SAN-
sino-atrial node, RA-right atrium, SACP-SAN conduction pathway, SACTsr-SAN conduction time during sinus
rhythm, Ado-Adenosine, CT-crista terminals, IAS-interatrial septum, SVC-superior vena cava.

https://doi.org/10.1371/journal.pcbi.1011708.9002

Importantly, increasing the concentration of adenosine from 0% to 100% in the computer
models (Figs 2A and 3A) led to progressive slowing of the SCL and SACT in parallel with a
shift in the leading pacemaker and earliest atrial activation sites, until complete atrial arrest at
100% adenosine concentration. The simulation results show that the leading pacemaker
shifted inferiorly from the SAN center to the SAN tail, while the earliest RA activation site first
shifted to the inferior lateral SACP for adenosine concentration 50% (Fig 3A) and then to
superior lateral SACP at adenosine concentration 84% (Fig 2A). Both SCL and SACT'sr were
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A Computer simulated activation maps with increasing Ado
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Fig 3. A shift in the leading pacemaker and earliest atrial activation sites in the human SAN model with varying
Ado concentration. A, Increasing the presence of Ado (from 0% to 100%) in the computer model of the human SAN
complex led to a shift in the leading pacemaker and earliest atrial activation sites, eventually exit block and complete
atrial arrest (100% of Ado). B, A similar shift in the leading pacemaker and earliest atrial activation sites was observed
in 11 optically mapped human hearts ex-vivo in the absence and presence of Ado [1]. The increasing dose of Ado led
to a heart-specific pacemaker shift toward the head or tail of the SAN complex, and a higher chance of conducting via
superior or inferior lateral SACPs as in computer model. Also, 100 uM Ado led to cardiac or SAN arrest in five out of
the 11 hearts. SAN-sino-atrial node, SCL-sinus cycle length, SACP-sino-atrial conduction pathway, SACTsr—
sinoatrial conduction time during sinus rhythm, Ado-Adenosine.

https://doi.org/10.1371/journal.pcbi.1011708.g003

increased in the computer model with an increasing dose of adenosine. Experimental results
in the optically mapped human hearts ex-vivo (n = 11) at baseline and in the presence of low
(10 uM) and high (100 uM) concentrations of adenosine are shown in Fig 3B. In functionally
mapped explanted human SANs (n = 11), the increasing dose of adenosine led to a heart-
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specific pacemaker shift toward the head or tail of the SAN complex. An increase in concentra-
tions of adenosine led to a higher chance of conducting via superior or inferior lateral SACPs
as in the computer model. Also, 100 uM Ado led to cardiac or SAN arrest in five out of the 11
hearts similar to what we observed in our simulations.

The heterogeneity in expression of A1 adenosine receptors or Ixacp
channel may explain pacemaker shifts

The heterogeneity in expressions of AIR or Ixacp channel in the human SAN ex-vivo was
shown in our previous experimental studies [1] (Fig 4A). To understand the effect of this het-
erogeneity on SAN function, we implemented this heterogeneity in A1R[1] and hyperpolariza-
tion-activated cyclic nucleotide-gated channel subunits (HCN)[8] to our model with higher
expression levels in the SAN center than its head/tail (Fig 4B). We performed a series of simu-
lations of SAN activation patterns in which we increased the ratios of expressions of A1R
(SAN head/tail to center) from 0.1 to 0.9 in the presence of 20% adenosine. We found that
increasing heterogeneity resulted in gradual shift of the leading pacemaker from the SAN cen-
ter to the tail (Figs 4C and C in S1 Text).

We also modelled the superior-inferior gradient by changing the A1R expressions in SAN
head vs tail (Fig 4D and 4E). We performed simulations in the presence of 20% adenosine
where the expression of AIR in the tail was change from 0.1 to 0.9, and expression in the head
and center were constant at 0.1 and 1.0, respectively (Fig D in S1 Text). Fig 4D shows two dif-
ferent scenarios of AIR expressions in SAN head vs tail: when A1R expressions is higher in the
SAN tail vs head (0.9:0.1), the application of adenosine slowed SAN automaticity and shifted
the leading pacemaker from SAN center (baseline condition) to head (superior). The pace-
maker shift had opposite directionality (from center to tail) when SAN head and tail have the
same A1R expression (0.1:0.1), despite of similar automaticity slowing (SCL from 930ms to
1229 ms vs 1134ms). We documented both these scenarios in ex-vivo human donor hearts
studied with near-infrared transmural optical mapping as it shown in Fig 3B [1]. There is no
leading pacemaker shift with homogenous A1R expressions at the SAN center, head and tail
(Fig E in S1 Text). Thus in human hearts, the heterogeneity in the expression of A1R within
the SAN pacemaker compartments (center, head and tail) could explain the shift of the leading
pacemaker and earliest atrial activation sites under adenosine conditions.

Interestingly, under similar conditions of adenosine, almost all leading pacemakers were
always in the SAN tail/center and never in the SAN head. We hypothesized that it was due to
the regional source-sink relationship within the SAN complex. The SAN head in this specific
human heart had fewer SAN cells (electrical sources) and more SACPs (electrical loading)
than the tail (three SACPs versus two SACPs), which made excitation more difficult. To test
this hypothesis, we performed additional simulations in which we artificially blocked two lat-
eral SACPs in the SAN head (see the two black arrows in Fig 4E right), thereby reducing the
electrotonic load. As a result, the leading pacemaker shifted from the tail to the head in the
presence of 20% adenosine.

The characteristics of SACPs dictate the earliest atrial activation sites

One of the results of pathological remodelling of cardiac tissue is a change in Iy, in the atrial
myocardium [9]. We studied how the change in I, affects the functioning of the SAN com-
plex. We demonstrated that Iy, in SACPs is one of the main determinants of the earliest atrial
activation sites (Fig 5A). Varying the density of the Iy, current in the SACPs alone from its
original value to 85% or 115% led to the slowing or acceleration of SACT, and the earliest atrial
activation shift from the middle lateral SACP to the superior and inferior lateral SACPs or the
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https:/doi.org/10.1371/journal.pchi.1011708.g004
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https://doi.org/10.1371/journal.pcbi.1011708.g005

middle lateral and the left inferior SACPs, respectively. However, the SCL and leading pace-
maker remained unchanged (Fig 5A). Both Iy, and If currents within the SAN complex were
inversely associated with SCL. However, it appeared that Iy, and I¢ currents in the SAN did
not influence the earliest atrial activation or the leading pacemaker sites (Fig 5B).

The role of the insulation boundary between the SAN and RA

The existence of an insulation boundary between the SAN and the RA septum is widely
observed and accepted. However, the existence of the insulation boundary between the SAN
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and the lateral RA is controversial. To illustrate the necessity and potential role of the insula-
tion boundary between the SAN and the lateral RA, we performed computer simulations with
and without the insulation boundary (Fig 6A). In the case of no insulation boundary, we con-
sidered situations with different diffusivities within the SAN complex (the diffusion coefficient
is 100%, 50% and 25% of its normal value). Reducing diffusivities within the SAN complex led
to increased heart rate and prolonged SACT within the SAN. We found that computer models
with 100% and 50% diffusivities produced realistic activation time between 150-200 msec.
Using computer models without the insulation boundary between the SAN and the lateral RA,
we observed only a mild shift of the leading pacemaker and the earliest atrial activation sites
with increasing adenosine (Fig 6B and 6C), which is not consistent with that commonly seen
during experimental studies of animal and human hearts [1,2,9]. Furthermore, even 10% Ado
was sufficient to induce SAN arrest (Fig 6B), which is 10 times lower than that required to
induce SAN arrest with an insulation border (Fig 3A). Thus our simulations suggest that the
insulation boundary between the SAN and the lateral RA is necessary for normal functioning
of SAN and support findings from experimental studies with adenosine.

The impact of HF-induced remodeling on SAN pacemaking and
conduction

We have also studied the effects of ion channel remodeling and fibrosis due to HF on SAN
complex function. We implemented these changes to our model as shown in (Fig 7A). This
figure also shows that electrical remodeling in the SAN cellular kinetics models led to depres-
sion of SAN pacemaking and increased SCL. In our computer simulations, SAN with HF con-
ditions led to exit block even without the presence of adenosine (Fig 7B). When we reversed
the fibrotic remodeling only in the SACPs (Fig 7C), we observed electrical activation and
propagation in the RA at the baseline and in the presence of up to 50% of adenosine. We also
found a similar trend in shifting leading pacemakers and earliest atrial activation sites. At 85%
of adenosine, electrical remodeling without fibrosis in SACP led to exit block (Fig 7C right).
We also found that the fibrotic remodeling in the SACPs alone (20% of fibrosis) without elec-
trical remodeling, produced exit block similar to that under HF remodeling. On the other
hand, in the computer model with HF ion channel remodeling only (Fig 7D), we again
observed electrical activation and propagation in the RA from the baseline to the presence of
50% adenosine. At 85% adenosine, it led to SAN arrest. Our simulation results indicated that
HF jonic channel remodeling influenced the SCL, earliest atrial activation sites and increased
chances of SAN arrest, while fibrotic remodeling in SACPs increased the chance of SAN exit
block.

SAN is prone to arrhythmia and exit block under I, channel block,
adenosine and HF

Finally, we evaluated the human SAN function after RA pacing (Figs 8 and F in S1 Text) and
without any RA pacing (Fig G in S1 Text). In the computer model of the human SAN com-
plex, a train of stimuli at a pacing cycle length of 500 ms was delivered from the right superior
RA, and a typical activation pattern is shown in Fig 8A. Under baseline conditions, once the
RA stimuli were terminated, the SAN recovered to its normal automaticity and function
immediately. We performed systematic simulations in which we varied the degree of the Iy,
channel block and concentration of adenosine. We found that depending on these parameters
we can observe the following situations: a shift in the leading pacemaker and the earliest atrial
activation sites, SAN-RA reentry, SAN exit block and arrest (Fig 8B). Typical propagation pat-
terns for each of the cases are shown in Figs 8B and F in S1 Text. RA pacing led to both
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https://doi.org/10.1371/journal.pcbi.1011708.9006
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https://doi.org/10.1371/journal.pcbi.1011708.9g007
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https://doi.org/10.1371/journal.pcbi.1011708.9008
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localized and macro-reentries. In contrast, we only observed macro reentries in the control
SAN model with increasing Iy, block or adenosine without extrastimuli (Fig G in S1 Text).
The SAN HF model produced SAN exit block post-RA pacing regardless of the presence or
absence of Iy, block or adenosine. Interestingly, the SAN HF model without fibrotic remodel-
ing in the SACPs had a higher tendency of exit block with increasing I, block or adenosine
(Fig 8D). Thus we see that the application of adenosine in combination with Iy, channel block
leads to cardiac arrhythmias and other serious pathologies.

Discussion

This study presents the first comprehensive biophysical computer model of the human SAN
complex based on direct molecular, structural and functional studies in the ex-vivo human
heart. Our data show that the model can closely replicate pacemaking, SAN activation patterns
and exit sites /earliest atrial activation through preferential SACP, as well as physiological
SACT and SCL changes including the shift of the leading pacemaker in the presence of adeno-
sine reported in the human heart ex-vivo [1,9].

Importantly, the novel modeling simulation results provide mechanistic insight into the
crucial role of the structural and electrical heterogeneity of the human SAN in the pacemaking
and conduction function. More specifically:

1. The heterogeneity in the expression of adenosine Al receptors (A1R) or the Ixacp channels
within the human SAN pacemaker compartments explains leading pacemaker and prefer-
ential SACP shifts in the presence of adenosine.

2. The electrical insulation boundary between the SAN and RA except the SACP is required
for normal SAN pacemaker and conduction function and to reproduce the leading pace-
maker and the earliest atrial activation sites, observed in experimental and clinical studies.
Importantly, the insulation prevents the high sensitivity of SAN pacemaking to adenosine,
including complete SAN arrest seen at lower doses of adenosine in the models without the
insulation boundary.

3. The Iy, current density and fibrotic remodelling (e.g. in heart failure HF) in SACPs modu-
late the SAN conduction (e.g. exit block) and the preferential SACP/exits to the atria (e.g.
earliest atrial activation).

4. Intranodal Iy, current suppression or low-dose adenosine intervention leads to shifts in the
leading pacemaker and the earliest atrial activation sites and renders the human SAN pace-
maker-conduction complex vulnerable to SAN-RA reentry, SAN exit block and arrest. The
SAN HF model had a higher incidence of exit block regardless of the presence or absence of
Ina block or adenosine.

Structural and electrical heterogeneity of the SAN

Since the discovery of the SAN by Keith and Flack [3] more than one century ago, significant
strides in our understanding of the SAN complex have been made [5,6,12,27]. It is widely
accepted that the heterogeneous distribution of specialized ion channels, intracellular Na*/Ca**
handling proteins, gap junction channels and receptors within the human SAN complex are
some of the few critical players in SAN pacemaking [5]. In particular, expressions of ion chan-
nels (e.g. Na*, Ca** and HCN1/4), and gap junction proteins are heterogeneous within the SAN
pacemaker complex [27,28]. Furthermore, in contrast to other cardiac regions, the human SAN
has more extensive fibrosis, which is further upregulated in SAN dysfunction or HF [6].
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It is also well established that the existence of a septal area of conduction block, known as
the block zone, prevents the spread of the electric impulse to the interatrial septum directly
from the SAN. The precise mechanism of atrial activation by the leading pacemaker remains a
controversy. In the past, the gradient model, in which there is a gradual change in the intrinsic
properties of pacemaker cells from the center to the periphery of the SAN, was proposed to
explain how SAN could effectively pace the atria [12] The intrinsic pacemaker activity is
greater in cells from the periphery than from the centre of the SAN [29-33]. However, at the
tissue level, the periphery of the SAN is connected to a large mass of atrial muscle in the crista
terminalis (CT) through gap junctions resulting in the inhibition of peripheral pacemaker
activity by the electrotonic influence of the highly hyperpolarized atrial muscle. On the other
hand, central pacemaker cells, which are more distal from the atria, are less affected by atrial
electrotonic effects. Therefore, leading pacemaker activity at baseline conditions always origi-
nates in the central SAN cells, although they are intrinsically slower than the peripheral pace-
maker cells. These results were primarily based on small animals studies, including rabbit
models, which show both lateral (towards CT) and superior-inferior gradient of intrinsic SAN
pacemaker properties. However, in large animal models including canine and human SAN,
the superior-inferior gradient is more prominent while lateral gradient is evident only across
the SACPs, due to the larger CT myocardium requiring more lateral insulation [1,5,6,9]. Ear-
lier Crick et al. [34] reported twice higher density of parasympathetic and sympathetic nerves
fibers in the SAN center vs periphery (tail). The innervation gradient may explain why sympa-
thetic activation can shift atrial exits to superior SACP and parasympathetic activation can
slow sinus rhythm and shift atrial exits inferiorly [35]. However, in both human and canine
SAN, the direction of intranodal pacemaker shift from center to head or tail does not always
correlate with the closest superior or inferior SACP [1,36]. SAN activation can exit via the
superior SACPs even though the leading pacemaker shifted inferiorly to the tail (Figs 2B and
3B). These studies suggest that SAN automaticity gradient and superior or inferior intranodal
pacemaker shift (from center to head or center to tail) depend on the heart-specific SAN com-
partment molecular profiles. However, no one yet measure and compare intrinsic frequency
of pacemaker cells isolated from different SAN pacemaker compartments (head, center and
tail). Instead, we included the electrophysiological and molecular difference between the SAN
center and head/tail (periphery), as well as transitional cells in preferential SACP for electrical
coupling from SAN to RA. In keeping with the classical gradient model, our modelling results
showed that isolated SAN pacemakers in the SAN center were slower than the SAN head/tail,
which is consistent with most experimental results [29-33].

The most significant controversy surrounds the location and nature of the SAN in the
human heart. Dobrzynski and her colleagues found an intermediate region with an expres-
sion of many ion channels between the SAN and RA in the human heart, which is similar to
that seen in the periphery of the rabbit SAN [27]. They speculated that this region, termed
the paranodal area, might contribute to pacemaker shift though they did not conduct any
electrophysiological or optical mapping studies to support the claim. Using high-resolution
optical mapping and histological studies in the human heart ex-vivo, we have shown that
the human SAN complex is a 3D, specialized multi-compartment structure (head, center
and tail) with higher expression of HCN and AIR proteins, lower gap junctional coupling
and Navl.5 in the SAN center than in the SAN head and tail [1,9]. Our comprehensive bio-
physical computer model of the human SAN pacemaker conduction complex was devel-
oped based on the functional and structural mapping in the human heart to investigate the
role of human SAN structure and ion channels heterogeneity in SAN pacemaking and con-
duction functions.
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The novelty of our computer model of the human SAN

Computer models provide a powerful tool for the quantitative examination of structural and
electrical substrates and their individual contributions to cardiac arrhythmia mechanisms
[9,16]. However, much less literature exists for multi-scale human SAN modeling, mainly due
to the structural and functional complexity of the human SAN complex. The first computer
modeling of the SAN by Joyner and Capelle [10] demonstrated that the electrical uncoupling
of the pacemaker cells might be an essential design feature of a healthy SAN complex using a
two-dimensional sheet model. Similar approaches were expanded to study the importance of
gradients in membrane properties (e.g., the ionic current density of the Iyy,) and electrical cou-
pling in 2D [18] and 3D [19] models, and the mechanisms by which the SCN5A mutations
(Na* channel) impair cardiac pacemaking [37]. Earlier 3D computer models of the human
SAN complex were developed primarily for studying the electrical conduction within the RA
[4,28]. The more recent 3D computer model by Kharche et al. [20] was the first to study the
role of the insulating border between the SAN and RA septum, and the paranodal area in the
SAN function. However, they only used the simple three-current Fenton-Karma cellular models
to simulate the human SAN and RA cell kinetics. In addition, SACPs in their model were not
anatomically based, which led to extremely short un-physiological SAN conduction. To date,
there is no comprehensive SAN model that integrated realistic anatomical structures and ion
channel expressions from direct studies of the human SAN complex. As such, no computer
model could successfully reproduce all functional observations at different conditions in normal
and diseased human SAN, including the location of leading pacemakers, preferential SACP
exits, physiological SAN conduction time (70-80 ms at baseline) and SCL (700-900 ms).

Our study takes the next step in defining the key factors influencing human SAN pacemak-
ing function and SAN dysfunction by developing and utilizing computer models of the human
SAN based on the current knowledge of electrical and structural heterogeneity. The unique
strength of our SAN computer model is that it was based on published data from high-resolu-
tion near-infrared optical mapping, molecular mapping and detailed 3D histological analyses
of the human SAN complex ex-vivo [1,5,8,9]. More importantly, it included anatomically
based SACPs directly identified from the 3D immunohistological analyses which provide real-
istic SAN to RA electric loading. In addition, we have adapted the most widely used human
SAN and atrial cellular activation models, i.e., the Fabbri et al. [17] and Courtemanche et al.
cell model [25].

Critical functional insights from the human SAN model

Firstly, we have illustrated the role of structural and electrical heterogeneity in the shift of the
leading pacemaker and the earliest atrial activation sites. Under baseline conditions, the lead-
ing pacemaker is more likely located in the SAN center due to less electrical loading (the rela-
tively larger SAN center region with only one SACP, in contrast with the SAN head and tail),
despite the fact that single isolated SAN head or tail cells have a shorter SCL than that in the
center (798 ms versus 814ms). The difference in cellular SCL is caused by the electrical hetero-
geneity within the SAN complex, particularly, the higher Irand lower Iy, currents in the SAN
center, as widely reported. That is to say that the effect of the electrical heterogeneity is sup-
pressed by the SAN structure (SAN-RA isolation layer and SACPs). In the presence of adeno-
sine, the shift of the leading pacemaker from the SAN center to the head or tail is made
possible by the higher A1R expression in the center, in addition to the heterogeneity of ion
channels Iy, and I; currents between the center and head/tail. Our modeling study also shows
that the difference in the source-sink ratio between the SAN head and tail can also influence
the new leading pacemaker site. Along with the change in the leading pacemaker, the earliest
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atrial activation sites shift in locations as well, though it does not always exit through the near-
est SACP to the leading pacemaker.

Secondly, our study sheds new light on the role of the insulation boundary between the
SAN and neighbouring RA. It is the first time that a computer model of the 3D human SAN
complex with the insulation boundary can replicate the dramatic shift in the leading pace-
maker and the earliest atrial activation sites as commonly observed in the high-resolution opti-
cal mapping of the human heart ex-vivo and clinical studies [9]. On the other hand, modeling
simulations suggest that computer models with reduced diffusivities within the SAN can only
produce a modest shift. In addition, the leading pacemaker tends to localize close to the insula-
tion boundary between the SAN and the septum which is not consistent with the reported
results in the literature [9]. Therefore, our modeling study lends further support to the exis-
tence of the insulation boundary between the SAN and neighbouring RA, except SACPs for
connecting RA electrically.

Finally, our computer simulations indicate that the Iy, remodeling and fibrosis upregula-
tion in the SACPs play a key role in the shift of the earliest atrial activation sites and in the
SAN exit block.

The reduction in Iy, current density and fibrotic remodeling slow down conduction is
widely accepted and are well-known arrhythmogenic factors [38-41]. However, the novelty of
this study is that the I, current density and fibrotic remodeling in SACPs are more important
than in other SAN regions. Therefore, the SACP may be a potential therapeutic target in clinics
for patients with SAN dysfunction. For instance, reversing fibrotic remodeling in the SACPs
will improve the electrical conduction of the SAN to the heart and alleviate the need for elec-
tronic pacemaker implantation. Further development of our modeling analysis for clinical
intervention may provide a powerful, safe approach to test novel treatments to treat SND.

Study limitations

Our computer model of the human SAN complex was based on a shadow of high-resolution
histology images by projecting the SAN model to the imaging plane. It had realistic geometric
regions proportional to the neighboring RA, and different SAN compartments, so it is not a
complete 3D representation of the 3D human SAN complex. Due to the current paucity of
human SAN compartment-specific electrophysiological data, we used the same cellular model
for SAN periphery compartments (head and tail). A computationally efficient, biophysics-
based computer model of the entire 3D human SAN pacemaker-conduction complex and RA
directly based on the 3D imaging data is yet to develop and validate the insights learned from
this study. However, we suggest that taking into account 3D effects may not conceptually affect
the main conclusions drawn from our study as the effects of the SAN structural and molecular
features (e.g. A1R and ionic channels) on the superior/inferior shift of the leading pacemaker
and preferential SACP/earliest atrial activation sites are confirmed by human SAN
experiments.

Conclusions

Our novel biophysical computer model of a human SAN conduction complex combining ex-
vivo functional and 3D structural imaging at the highest resolution to date illustrates for the
first time the crucial role of the structural and electrical heterogeneity of the human SAN in
the pacemaking function. Particularly, our results lend support to the necessity of the insula-
tion boundary between the SAN and neighbouring RA for robust SAN pacemaker and con-
duction function. The study also suggests that the cardiac disease or drug modulations of the
Ina current and fibrosis in intranodal pacemaker compartments and/or SACPs may promote
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SAN reentrant arrhythmias. The further development of 3D computer models based on the
human heart ex-vivo may provide a powerful, safe approach for preclinical testing of novel
treatment for patients with SAN dysfunction worldwide.

Supporting information

S1 Text. Supplemental Materials. Table A. Relative ratios of the densities of the four key
ionic channels (I, Ing, Ix; and Igacp currents) among the human SAN head, center and tail,
and SACPs used in the computer modeling of the control SAN. SACP- sinoatrial pathways,
SAN-sinoatrial node, SCL-sinus cycle length. Table B. Relative ratios of the densities of the
four key ionic channels: I, I, Ix; and Ixacn (A1R expression), and fibrosis among the human
SAN head, center and tail, and SACPs used in the computer modeling of HF. SACP- sinoatrial
pathways, HF-heart failure, A1R —A1 adenosine receptor, SAN-sinoatrial node, SCL-sinus
cycle length. Table C. The regional differences in gap junctional coupling between the SAN
center, SAN head/tail, SACPs and RA tissues by setting different diffusion coefficients in these
regions. SACP- sinoatrial pathways, SAN-sinoatrial node, RA-right atrium. Fig A. 3D micro-
structural composition of the human SAN complex (an ex-vivo human donor heart,). A, 3D
microstructure of all tissue types including myofibers, fibrosis, and fat in the SAN complex
(red) and surrounding atrial tissue (green). B, The myofibers of the SAN complex and sur-
rounding atrial tissue. C, The fibrotic fibers of the SAN complex and surrounding atrial tissue.
D, The fat texture of the SAN complex and surrounding atrial tissue. SAN-sino-atrial node,
CT-crista terminals, IAS-interatrial septum, SVC-superior vena cava, RAA-right atrial
appendage. Fig B. The structure of human SAN computer model. The SAN model structure
was obtained using a shadow of the 3D SAN reconstruction to the XY plane (parallel to epicar-
dium) by project all 2Ds into one plane. As a result, the 2D representation of the entire 3D
human SAN structure included all SACPs and the complete SAN head/center/tail. SAN-sino-
atrial node, SACP-sinoatrial pathways. Fig C. Changes in leading pacemaker locations and
SACPs in the presence of 20% adenosine due to increasing A1R expression level in the
SAN head and tail from 0.1 to 0.9 while keeping A1R in the SAN center constant as 1.
SACP- sinoatrial pathways, SAN-sinoatrial node, RA-right atrium. Fig D. Changes in leading
pacemaker locations and SACPs in the presence of 20% adenosine due to increasing A1R
expression level in the SAN tail from 0.1 to 0.9 while keeping A1R constant in the SAN
head and in the center. A1R was set at 1 to the SAN center and 0.1 to the SAN head. SACP-
sinoatrial pathways, SAN-sinoatrial node, RA-right atrium. Fig E. The heterogeneity of
adenosine A1 receptors (A1R) expressions or the I, cp, channel within the intranodal
pacemaker compartments (head, center and tail) of the SAN complex is required for the
shift in the leading pacemaker and the earliest atrial activation sites during adenosine. A,
For the heterogeneous model, the A1R/Ixsch expression in the SAN center is 10 times higher
than in head/tail (10:1) was used in the heterogeneous A1R computer model. B, In the hetero-
geneous A1R model, administration of 20% Adenosine led to both the leading pacemaker shift
(from center to tail) and the shift of the earliest atrial activation site/ preferential SACP from
the lateral to inferior SACP. C, In contrast, in the SAN model with homogeneous A1R/Ixacp
expression, the same 20% Adenosine didn’t lead to the leading pacemaker and preferential
SACP shifts but more severely suppressed SAN automaticity and conduction. The activation
maps were almost identical for homogenous A1R with 20% Ado and baseline. SAN-sinoatrial
node, SACTsr-SAN conduction time during sinus rhythm, SCL-sinus cycle length. Fig F. Four
activation patterns were observed after the cession of right atrial (RA) pacing with a CL of
500 ms in control SAN model (see Fig 8B in the main manuscript). A, Normal SAN activa-
tion pattern: the first post-pacing SAN beat had the same activation pattern as SAN beats
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before pacing with the leading pacemaker in the center and preferential conduction exit
through the middle lateral SACP. B, Mild changes in pacemaker/SACP post the RA pacing:
the first post-pacing SAN beat had different activation compared with pre-pacing SAN activa-
tion with both leading pacemaker and SACP exit site shifts. C, Severe abnormal conduction:
SAN macro reentries with slower intranodal conduction path between inferior and superior
SACP and a CL of 451 ms spontaneously occurred after RA pacing. D, Severe abnormal con-
duction-Localized SAN reentry between two superior SACPs induced by RA pacing. Two
action potential (AP) tracings are from RA, near the pacing site, and the other is located in the
center of the SAN. SAN-sino-atrial node, SACP-SAN conduction pathway, Ado-Adenosine,
AP-Action potential, CL-cycle length. Fig G. Summary of propagation patterns in control
SAN model with increasing Iy, block or Ado (without extrastimuli). Here control refers to
the leading pacemaker in the SAN center and consistent exit through the lateral middle SACP.
SAN-sino-atrial node, SACP-SAN conduction pathway, Ado-Adenosine.
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