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Abstract

Understanding the operation of biological and artificial networks remains a difficult and important 

challenge. To identify general principles, researchers are increasingly interested in surveying 

large collections of networks that are trained on, or biologically adapted to, similar tasks. A 

standardized set of analysis tools is now needed to identify how network-level covariates—such as 

architecture, anatomical brain region, and model organism—impact neural representations (hidden 

layer activations). Here, we provide a rigorous foundation for these analyses by defining a broad 

family of metric spaces that quantify representational dissimilarity. Using this framework, we 

modify existing representational similarity measures based on canonical correlation analysis and 

centered kernel alignment to satisfy the triangle inequality, formulate a novel metric that respects 

the inductive biases in convolutional layers, and identify approximate Euclidean embeddings 

that enable network representations to be incorporated into essentially any off-the-shelf machine 

learning method. We demonstrate these methods on large-scale datasets from biology (Allen 

Institute Brain Observatory) and deep learning (NAS-Bench-101). In doing so, we identify 

relationships between neural representations that are interpretable in terms of anatomical features 

and model performance.

1 Introduction

The extent to which different deep networks or neurobiological systems use equivalent 

representations in support of similar task demands is a topic of persistent interest in 

machine learning and neuroscience [1–3]. Several methods including linear regression [4, 

5], canonical correlation analysis (CCA; [6, 7]), representational similarity analysis (RSA; 

[8]), and centered kernel alignment (CKA; [9]) have been used to quantify the similarity of 

hidden layer activation patterns. These measures are often interpreted on an ordinal scale 

and are employed to compare a limited number of networks—e.g., they can indicate whether 

networks A and B are more or less similar than networks A and C. While these comparisons 
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have yielded many insights [4–12], the underlying methodologies have not been extended to 

systematic analyses spanning thousands of networks.

To unify existing approaches and enable more sophisticated analyses, we draw on ideas from 

statistical shape analysis [13–15] to develop dissimilarity measures that are proper metrics—

i.e., measures that are symmetric and respect the triangle inequality. This enables several 

off-the-shelf methods with theoretical guarantees for classification (e.g. k-nearest neighbors, 

[16]) and clustering (e.g. hierarchical clustering [17]). Existing similarity measures can 

violate the triangle inequality, which complicates these downstream analyses [18–20]. 

However, we show that existing dissimilarity measures can often be modified to satisfy 

the triangle inequality and viewed as special cases of the framework we outline. We also 

describe novel metrics within this broader family that are specialized to convolutional layers 

and have appealing properties for analyzing artificial networks.

Moreover, we show empirically that these metric spaces on neural representations can be 

embedded with low distortion into Euclidean spaces, enabling an even broader variety 

of previously unconsidered supervised and unsupervised analyses. For example, we can 

use neural representations as the inputs to linear or nonlinear regression models. We 

demonstrate this approach on neural representations in mouse visual cortex (Allen Brain 

Observatory; [21]) in order to predict each brain region’s anatomical hierarchy from its 

pattern of visual responses—i.e., predicting a feature of brain structure from function. 

We demonstrate a similar approach to analyze hidden layer representations in a database 

of 432K deep artificial networks (NAS-Bench-101; [22]) and find a surprising degree of 

correlation between early and deep layer representations.

Overall, we provide a theoretical grounding which explains why existing representational 

similarity measures are useful: they are often close to metric spaces, and can be modified 

to fulfill metric space axioms precisely. Further, we draw new conceptual connections 

between analyses of neural representations and established research areas [15, 23], utilize 

these insights to propose novel metrics, and demonstrate a general-purpose machine learning 

workflow that scales to datasets with thousands of networks.

2 Methods

This section outlines several workflows (Fig. 1) to analyze representations across large 

collections of networks. After briefly summarizing prior approaches (sec. 2.1), we cover 

background material on metric spaces and discuss their theoretical advantages over existing 

dissimilarity measures (sec. 2.2). We then present a class of metrics that capture these 

advantages (sec. 2.3) and cover a special case that is suited to convolutional layers (sec. 

2.4). We then demonstrate the practical advantages of these methods in Section 3, and 

demonstrate empirically that Euclidean feature spaces can approximate the metric structure 

of neural representations, enabling a broad set of novel analyses.

2.1 Prior work and problem setup

Neural network representations are often summarized over a set of m reference inputs (e.g. 

test set images). Let Xi ∈ ℝm × ni and Xj ∈ ℝm × nj denote the responses of two networks (with 
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ni and nj neurons, respectively) to a collection of these inputs. Quantifying the similarity 

between Xi and Xj is complicated by the fact that, while the m inputs are the same, there is 

no direct correspondence between the neurons. Even if ni = nj, the typical Frobenius inner 

product, Xi, Xj = Tr Xi
⊤Xj , and metric, ∥ Xi − Xj ∥ = Xi − Xj, Xi − Xj

1/2, fail to capture the 

desired notion of dissimilarity. For instance, let Π denote some n × n permutation matrix and 

let Xi = XjΠ. Intuitively, we should consider Xi and Xj to be identical in this case since the 

ordering of neurons is arbitrary. Yet, clearly ∥ Xi − Xj ∥ ≠ 0, except in very special cases.

One way to address this problem is to linearly regress over the neurons to predict Xi from 

Xj. Then, one can use the coefficient of determination R2  as a measure of similarity [4, 

5]. However, this similarity score is asymmetric—if one instead treats Xj as the dependent 

variable that is predicted from Xi, this will result in a different R2. Canonical correlation 

analysis (CCA; [6, 7]) and linear centered kernel alignment (linear CKA; [9, 24]) also search 

for linear correspondences between neurons, but have the advantage of producing symmetric 

scores. Representational similarity analysis (RSA; [8]) is yet another approach, which first 

computes an m × m matrix holding the dissimilarities between all pairs of representations for 

each network. These representational dissimilarity matrices (RDMs), are very similar to the 

m × m kernel matrices computed and compared by CKA. RSA traditionally quantifies the 

similarity between two neural networks by computing Spearman’s rank correlation between 

their RDMs. A very recent paper by Shahbazi et al. [25], which was published while this 

manuscript was undergoing review, proposes to use the Riemannian metric between positive 

definite matrices instead of Spearman correlation. Similar to our results, this establishes 

a metric space that can be used to compare neural representations. Here, we leverage 

metric structure over shape spaces [13–15] instead of positive definite matrices, leading to 

complementary insights.

In summary, there are a diversity of methods that one can use to compare neural 

representations. Without a unifying theoretical framework it is unclear how to choose among 

them, use their outputs for downstream tasks, or generalize them to new domains.

2.2 Feature space mapping, metrics, and equivalence relations

Our first contribution will be to establish formal notions of distance (metrics) between 

neural representations. To accommodate the common scenario when the number of neurons 

varies across networks (i.e. when ni ≠ nj), we first map the representations into a common 

feature space. For each set of representations, Xi, we suppose there is a mapping into a 

p-dimensional feature space, Xi Xi
ϕ, where Xi

ϕ ∈ ℝm × p. In the special case where all 

networks have equal size, n1 = n2 = … = n, we can express the feature mapping as a single 

function ϕ :ℝm × n ℝm × p, so that Xi
ϕ = ϕ Xi . When networks have dissimilar sizes, we 

can map the representations into a common dimension using, for example, PCA [6].

Next, we seek to establish metrics within the feature space, which are distance functions that 

satisfy:
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Equivalence: d(Xi
ϕ, Xj

ϕ) = 0 Xi
ϕ ∼ Xj

ϕ
(1)

Symmetry: d(Xi
ϕ, Xj

ϕ) = d(Xj
ϕ, Xi

ϕ) (2)

Triangle Inequality: d(Xi
ϕ, Xj

ϕ) ≤ d(Xi
ϕ, Xk

ϕ) + d(Xk
ϕ, Xj

ϕ) (3)

for all Xi
ϕ, Xj

ϕ, and Xk
ϕ in the feature space. The symbol ‘~’ denotes an equivalence relation 

between two elements. That is, the expression Xi
ϕ ∼ Xj

ϕ means that “Xi
ϕ is equivalent to Xj

ϕ.” 

Formally, distance functions satisfying Eqs. (1) to (3) define a metric over a quotient space 

defined by the equivalence relation and a pseudometric over ℝm × p (see Supplement A). 

Intuitively, by specifying different equivalence relations we can account for symmetries in 

network representations, such as permutations over arbitrarily labeled neurons (other options 

are discussed below in sec. 2.3).

Metrics quantify dissimilarity in a way that agrees with our intuitive notion of distance. For 

example, Eq. (2) ensures that the distance from Xi
ϕ to Xj

ϕ is the same as the distance from Xj
ϕ

to Xi
ϕ. Linear regression is an approach that violates this condition: the similarity measured 

by R2 depends on which network is treated as the dependent variable.

Further, Eq. (3) ensures that distances are self-consistent in the sense that if two elements 

(Xi
ϕ and Xj

ϕ) are both close to a third (Xk
ϕ), then they are necessarily close to each other. 

Many machine learning models and algorithms rely on this triangle inequality condition. 

For example, in clustering, it ensures that if Xi
ϕ and Xj

ϕ are put into the same cluster as 

Xk
ϕ, then Xi

ϕ and Xj
ϕ cannot be too far apart, thus implying that they too can be clustered 

together. Intuitively, this establishes an appealing transitive relation for clustering, which can 

be violated when the triangle inequality fails to hold. Existing measures based on CCA, 

RSA, and CKA, are symmetric, but do not satisfy the triangle inequality. By modifying these 

approaches to satisfy the triangle inequality, we avoid potential pitfalls and can leverage 

theoretical guarantees on learning in proper metric spaces [16–20].

2.3 Generalized shape metrics and group invariance

In this section, we outline a new framework to quantify representational dissimilarity, 

which leverages a well-developed mathematical literature on shape spaces [13–15]. The 

key idea is to treat Xi
ϕ ∼ Xj

ϕ if and only if there exists a linear transformation T  within 

a set of allowable transformations G, such that Xi
ϕ = Xj

ϕT . Although G only contains 

linear functions, nonlinear alignments between the raw representations can be achieved 

when the feature mappings Xi Xi
ϕ are chosen to be nonlinear. Much of shape analysis 

literature focuses on the special case where p = n and G is the special orthogonal group 

SO n = R ∈ ℝn × n ∣ R⊤R = I, det R = 1 , meaning that Xi
ϕ and Xj

ϕ are equivalent if there 

is a n-dimensional rotation (without reflection) that relates them. Standard shape analysis 

further considers each Xi
ϕ to be a mean-centered ((Xi

ϕ)⊤1 = 0) and normalized ( ∥ Xi
ϕ ∥ = 1)

version of the raw landmark locations held in Xi ∈ ℝm × n (an assumption that we will 
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relax). That is, the feature map ϕ :ℝm × n Sm × n transforms the raw landmarks onto 

the hypersphere, denoted Sm × n, of m × n matrices with unit Frobenius norm. In this 

context, Xi
ϕ ∈ Sm × n is called a “pre-shape.” By removing rotations from a pre-shape, 

[Xi
ϕ] = {S ∈ Sm × n ∣ S ∼ Xi

ϕ} for pre-shape Xi
ϕ, we recover its “shape.”

To quantify dissimilarity in neural representations, we generalize this notion of shape to 

include other feature mappings and alignments. The minimal distance within the feature 

space, after optimizing over alignments, defines a metric under suitable conditions (Fig. 2A). 

This results in a broad variety of generalized shape metrics (see also, ch. 18 of [15]), which 

fall into two categories as formalized by the pair of propositions below. Proofs are provided 

in Supplement B.

Proposition 1.—Let Xi
ϕ ∈ ℝm × p, and let G be a group of linear isometries on ℝm × p. 

Then,

d(Xi
ϕ, Xj

ϕ) = min
T ∈ G

∥ Xi
ϕ − Xj

ϕT ∥ (4)

defines a metric, where Xi
ϕ ∼ Xj

ϕ if and only if there is a T ∈ G such that Xi
ϕ = Xj

ϕT .

Proposition 2.—Let Xi
ϕ ∈ Sm × p, and let G be a group of linear isometries on Sm × p. Then,

θ(Xi
ϕ, Xj

ϕ) = min
T ∈ G

arccos⟨Xi
ϕ, Xj

ϕT ⟩ (5)

defines a metric, where Xi
ϕ ∼ Xj

ϕ if and only if there is a T ∈ G such that Xi
ϕ = Xj

ϕT .

Two key conditions appear in these propositions. First, G must be a group of functions. 

This means G is a set that contains the identity function, is closed under composition 

(T 1T 2 ∈ G for any T 1 ∈ G and T 2 ∈ G), and whose elements are invertible by other members 

of the set (if T ∈ G then T −1 ∈ G). Second, every T ∈ G must be an isometry, meaning 

that ∥ Xi
ϕ − Xj

ϕ ∥ = ∥ Xi
ϕT − Xj

ϕT ∥ for all T ∈ G and all elements of the feature space. 

On ℝm × p and Sm × p, all linear isometries are orthogonal transformations. Further, the set 

of orthogonal transformations, O(p) = Q ∈ ℝp × p :Q⊤Q = I , defines a well-known group. 

Thus, the condition that G is a group of isometries is equivalent to G being a subgroup of 

O p —i.e., a subset of O p  satisfying the group axioms.

Intuitively, by requiring G to be a group of functions, we ensure that the alignment 

procedure is symmetric—i.e. it is equivalent to transform Xi
ϕ to match Xj

ϕ, or transform the 

latter to match the former. Further, by requiring each T ∈ G to be an isometry, we ensure that 

the underlying metric (Euclidean distance for Proposition 1; angular distance for Proposition 

2) preserves its key properties.

Together, these propositions define a broad class of metrics as we enumerate below. For 

simplicity, we assume that ni = nj = n in the examples below, with the understanding that 

a PCA or zero-padding preprocessing step has been performed in the case of dissimilar 
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network sizes. This enables us to express the metrics as functions of the raw activations, i.e. 

functions ℝm × n × ℝm × n ℝ+.

Permutation invariance—The most stringent notion of representational similarity is to 

demand that neurons are one-to-one matched across networks. If we set the feature map to 

be the identity function, i.e., Xi
ϕ = Xi for all i, then:

dP Xi, Xj = min
Π ∈ P(n)

∥ Xi − XjΠ ∥ (6)

defines a metric by Proposition 1 since the set of permutation matrices, P n , is a subgroup 

of O n . To evaluate this metric we must optimize over the set of neuron permutations to 

align the two networks. This can be reformulated (see Supplement C) as a fundamental 

problem in combinatorial optimization known as the linear assignment problem [26]. 

Exploiting an algorithm due to Jonker and Volgenant [27, 28] we can solve this problem 

in O n3  time. The overall runtime for evaluating Eq. (6) is O mn2 + n3 , since we must 

evaluate Xi
⊤Xj to formulate the assignment problem.

Rotation invariance—Let C = Im − 1/m 11⊤ denote an m × m centering matrix, and 

consider the feature mapping ϕ1 which mean-centers the columns, ϕ1 Xi = Xi
ϕ1 = CXi. Then,

d1 Xi, Xj = min
Q ∈ O

∥ Xi
ϕ1 − Xj

ϕ1Q ∥ (7)

defines a metric by Proposition 1, and is equivalent to the Procrustes size-and-shape distance 
with reflections [15]. Further, by Proposition 2,

θ1 Xi, Xj = min
Q ∈ O

arccos ⟨Xi
ϕ1, Xj

ϕ1Q⟩
∥ Xi

ϕ1 ∥ ∥ Xj
ϕ1 ∥

(8)

defines another metric, and is closely related to the Riemannian distance on Kendall’s shape 

space [15]. To evaluate Eqs. (7) and (8), we must optimize over the set of orthogonal 

matrices to find the best alignment. This also maps onto a fundamental optimization problem 

known as the orthogonal Procrustes problem [29, 30], which can be solved in closed form 

in O n3  time. As in the permutation-invariant metric described above, the overall runtime is 

O mn2 + n3 .

Linear invariance—Consider a partial whitening transformation, parameterized by 

0 ≤ α ≤ 1:

Xϕα = CX(αIn + (1 − α)(X⊤CX)−1/2) (9)

Note that X⊤CX is the empirical covariance matrix of X. Thus, when α = 0, Eq. 

(9) corresponds to ZCA whitening [31], which intuitively removes invertible linear 

transformations from the representations. Thus, when α = 0 the metric outlined below treats 
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Xi ∼ Xj if there exists an affine transformation that relates them: Xi = XjW + b for some 

W ∈ ℝn × n and b ∈ ℝn. When α = 1, Eq. (9) reduces to the mean-centering feature map used 

above.

Using orthogonal alignments within this feature space leads to a metric that is related to 

CCA. First, let ρ1 ≥ … ≥ ρn ≥ 0 denote the singular values of (Xi
ϕα)⊤(Xj

ϕα)/ ∥ Xi
ϕα ∥ ∥ Xj

ϕα ∥. 

One can show that

θα Xi, Xj = min
Q ∈ O

arccos ⟨Xi
ϕα, Xj

ϕαQ⟩
∥ Xi

ϕα ∥ ∥ Xj
ϕα ∥

= arccos
ℓ

ρℓ , (10)

and we can see from Proposition 2 that this defines a metric for any 0 ≤ α ≤ 1. When α = 0, 

the values ρ1, …, ρn are proportional to the canonical correlation coefficients, with 1/n being 

the factor of proportionality. When α > 0, these values can be viewed as ridge regularized 

canonical correlation coefficients [32]. See Supplement C for further details. Past works [6, 

7] have used the average canonical correlation as a measure of representational similarity. 

When α = 0, the average canonical correlation is given by ∑ℓ ρℓ = cos θ0 Xi, Xj . Thus, if we 

apply arccos ⋅  to the average canonical correlation, we modify the calculation to produce 

a proper metric (see Fig. 4A). Since the covariance is often ill-conditioned or singular in 

practice, setting α > 0 to regularize the calculation is also typically necessary.

Nonlinear invariances—We discuss feature maps that enable nonlinear notions of 

equivalence, and which relate to kernel CCA [33] and CKA [9], in Supplement C.

2.4 Metrics for convolutional layers

In deep networks for image processing, each convolutional layer produces a ℎ × w × c
array of activations, whose axes respectively correspond to image height, image width, and 

channels (number of convolutional filters). If stride-1 circular convolutions are used, then 

applying a circular shift along either spatial dimension produces the same shift in the layer’s 

output. It is natural to reflect this property, known as translation equivariance [23], in the 

equivalence relation on layer representations. Supposing that the feature map preserves the 

shape of the activation tensor, we have Xk
ϕ ∈ ℝm × ℎ × w × c for neural networks indexed by 

k ∈ 1, …, K. Letting S n  denote the group of n-dimensional circular shifts (a subgroup of the 

permutation group) and ‘⊗’ denote the Kronecker product, we propose:

Xi
ϕ ∼ Xj

ϕ vec(Xi
ϕ) = I ⊗ S1 ⊗ S2 ⊗ Q vec(Xj

ϕ) (11)

for some S1 ∈ S ℎ , S2 ∈ S w , Q ∈ O c , as the desired equivalence relation. This relation 

allows for orthogonal invariance across the channel dimension but only shift invariance 

across the spatial dimensions. The mixed product property of Kronecker products, 

A ⊗ B C ⊗ D = AB ⊗ CD, ensures that the overall transformation maintains the group 

structure and remains an isometry. Figure 2B uses a toy dataset (stacked MNIST digits) 

to show that this metric is sensitive to differences in spatial activation patterns, but 

insensitive to coherent spatial translations across channels. In contrast, metrics that ignore 
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the convolutional structure (as in past work [6, 9]) treat very different spatial patterns as 

identical representations.

Evaluating Eq. (11) requires optimizing over spatial shifts in conjuction with solving a 

Procrustes alignment. If we fit the shifts by an exhaustive brute-force search, the overall 

runtime is O mℎ2w2c2 + ℎwc3 , which is costly if this calculation is repeated across a large 

collection of networks. In practice, we observe that the optimal shift parameters are typically 

close to zero (Fig. 3A). This motivates the more stringent equivalence relation:

Xi
ϕ ∼ Xj

ϕ vec(Xi
ϕ) = (I ⊗ I ⊗ I ⊗ Q)vec(Xj

ϕ) for some Q ∈ Q, (12)

which has a more manageable runtime of O mℎwc2 + c3 . To evaluate the metrics implied 

by Eq. (12), we can simply reshape each Xk
ϕ from a m × ℎ × w × c  tensor into a mℎw × c

matrix and apply the Procrustes alignment procedure as done above for previous metrics. 

In contrast, the “flattened metric” in Fig. 2B reshapes the features into a m × ℎwc  matrix, 

resulting in a more computationally expensive alignment that runs in O mℎ2w2c2 + ℎ3w3c3

time.

2.5 How large of a sample size is needed?

An important issue, particularly in neurobiological applications, is to determine the number 

of network inputs, m, and neurons, n, that one needs to accurately infer the distance between 

two network representations [12]. Reasoning about these questions rigorously requires a 

probabilistic perspective of neural representational similarity, which is missing from current 

literature and which we outline in Supplement D for generalized shape metrics. Intuitively, 

looser equivalence relations are achieved by having more flexible alignment operations (e.g. 

nonlinear instead of linear alignments). Thus, looser equivalence relations require more 

sampled inputs to prevent overfitting. Figure 3B–C show that this intuition holds in practice 

for data from deep convolutional networks. Metrics with looser equivalence relations—the 

“flattened” metric in panel B, or e.g. the linear metric in panel C—converge slower to a 

stable estimate as m is increased.

2.6 Modeling approaches and conceptual insights

Generalized shape metrics facilitate several new modeling approaches and conceptual 

perspectives. For example, a collection of representations from K neural networks can, in 

certain cases, be interpreted and visualized as K points on a smooth manifold (see Fig. 1). 

This holds rigorously due to the quotient manifold theorem [34] so long as G is not a finite 

set (e.g. corresponding to permutation) and all matrices are full rank in the feature space. 

This geometric intuition can be made even stronger when G corresponds to a connected 

manifold, such as SO p . In this case, it can be shown that the geodesic distance between 

two neural representations coincides with the metrics we defined in Propositions 1 and 2 

(see Supplement C, and [15]). This result extends the well-documented manifold structure of 

Kendall’s shape space [35].
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Viewing neural representations as points on a manifold is not a purely theoretical exercise—

several models can be adapted to manifold-valued data (e.g. principal geodesic analysis [36] 

provides a generalization of PCA), and additional adaptions are an area of active research 

[37]. However, there is generally no simple connection between these curved geometries 

and the flat geometries of Euclidean or Hilbert spaces [38].1 Unfortunately, the majority of 

off-the-shelf machine learning tools are incompatible with the former and require the latter. 

Thus, we can resort to a heuristic approach: the set of K representations can be embedded 

into a Euclidean space that approximately preserves the pairwise shape distances. One 

possibility, employed widely in shape analysis, is to embed points in the tangent space of the 

manifold at a reference point [41, 42]. Another approach, which we demonstrate below with 

favorable results, is to optimize the vector embedding directly via multi-dimensional scaling 

[43, 44].

3 Applications and Results

We analyzed two large-scale public datasets spanning neuroscience (Allen Brain 

Observatory, ABO; Neuropixels - visual coding experiment; [21]) and deep learning 

(NAS-Bench-101; [22]). We constructed the ABO dataset by pooling recorded 

neurons from K = 48 anatomically defined brain regions across all sessions; each 

Xk ∈ ℝm × n was a dimensionally reduced matrix holding the neural responses 

(summarized by n = 100 principal components) to m = 1600 movie frames (120 second 

clip, “natural movie three”). The full NAS-Bench-101 dataset contains 423,624 

architectures; however, we analyze a subset of K = 2000 networks for simplicity. In 

this application each Xk ∈ ℝm × n is a representation from a specific network layer, with 

m, n ∈ 322 × 105, 128 , 162 × 105, 256 , 82 × 105, 512 , 105, 512 . Here, n corresponds to 

the number of channels and m is the product of the number of test set images (105) and the 

height and width dimensions of the convolutional layer—i.e., we use equivalence relation in 

Eq. (12) to evaluate dissimilarity.

Triangle inequality violations can occur in practice when using existing methods.

As mentioned above, a dissimilarity measure based on the mean canonical correlation, 

1 − ∑ℓ ρℓ, has been used in past work [7, 10]. We refer to this as the “linear heuristic.” A 

slight reformulation of this calculation, arccos ∑ℓ ρℓ , produces a metric that satisfies the 

triangle inequality (see Eq. (10)). Figure 4A compares these calculations as a function of 

the average (regularized) canonical correlation: one can see that arccos ⋅  is approximately 

linear when the mean correlation is near zero, but highly nonlinear when the mean 

correlation is near one. Thus, we reasoned that triangle inequality violations are more 

likely to occur when K is large and when many network representations are close to each 

other. Both ABO and NAS-Bench-101 datasets satisfy these conditions, and in both cases 

we observed triangle inequality violations by the linear heuristic with full regularization 

α = 1 :17/1128 network pairs in the ABO dataset had at least one triangle inequality 

violation, while 10128/100000 randomly sampled network pairs contained violations in 

1However, see [39] for a conjectured relationship and [40] for a result in the special case of 2D shapes.
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the NAS-Bench-101 Stem layer dataset. We also examined a standard version of RSA that 

quantifies similarity via Spearman’s rank correlation coefficient [8]. Similar to the results 

above, we observed violations in 14/1128 pairs of networks in the ABO dataset.

Overall, these results suggest that generalized shape metrics correct for triangle inequality 

violations that do occur in practice. Depending on the dataset, these violations may 

be rare (~1% occurrence in ABO) or relatively common (~10% in the Stem layer of 

NAS-Bench-101). These differences can produce quantitative discrepancies in downstream 

analyses. For example, the dendrograms produced by hierarchical clustering differ 

depending on whether one uses the linear heuristic or the shape distance (~85.1% 

dendrogram similarity as quantified by the method in [45]; see Fig. 4B).

Neural representation metric spaces can be approximated by Euclidean spaces.

Having established that neural representations can be viewed as elements in a metric space, 

it is natural to ask if this metric space is, loosely speaking, “close to” a Euclidean space. 

We used standard multidimensional scaling methods (SMACOF, [43]; implementation in 

[46]) to obtain a set of embedded vectors, yi ∈ ℝL, for which θ1(Xi
ϕ, Xj

ϕ) ≈ ∥ yi − yj ∥ for 

i, j ∈ 1, …, K. The embedding dimension L is a user-defined hyperparameter. This problem 

admits multiple formulations and optimization strategies [44], which could be systematically 

explored in future work. Our simple approach already yields promising results: we find that 

moderate embedding dimensions L ≈ 20  is sufficient to produce high-quality embeddings. 

We quantify the embedding distortions multiplicatively [47]:

max(θ1(Xi
ϕ, Xj

ϕ)/ ∥ yi − yj ∥ ; ∥ yi − yj ∥ /θ1(Xi
ϕ, Xj

ϕ)) (13)

for each pair of networks i, j ∈ 1, …K. Plotting the distortions as a function of L (Fig. 4C), 

we see that they rapidly decrease, such that 95% of pairwise distances are distorted by, 

at most, ~5% (ABO data) or 10% (NAS-Bench-101) for sufficiently large L. Past work 

[10] has used multidimensional scaling heuristically to visualize collections of network 

representations in L = 2 dimensions. Our results here suggest that such a small value of 

L, while being amenable to visualization, results in a highly distorted embedding. It is 

noteworthy that the situation improves dramatically when L is even modestly increased. 

While we cannot easily visualize these higher-dimensional vector embeddings, we can 

use them as features for downstream modeling tasks. This is well-motivated as an 

approximation to performing model inference in the true metric space that characterizes 

neural representations [47].

Anatomical structure and hierarchy is reflected in ABO representations.

We can now collect the L-dimensional vector embeddings of K network representations 

into a matrix Z ∈ ℝK × L. The results in Fig. 4C imply that the distance between any two 

rows, ∥ zi − zj ∥, closely reflects the distance between network representations i and j in 

shape space. We applied PCA to Z to visualize the K = 48 brain regions and found that 

anatomically related brain regions indeed were closer together in the embedded space (Fig. 

5A): cortical and sub-cortical regions are separated along PC 1, and different layers of the 
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same region (e.g. layers 2/3, 4, 5, and 6a of VISp) are clustered together. As expected from 

Fig. 4C, performing multidimensional scaling directly to a low-dimensional space (L = 2, 

as done in [10]) results in a qualitatively different outcome with distorted geometry (see 

Supplement E). Additionally, we used Z to fit an ensembled kernel regressor to predict an 

anatomical hierarchy score (defined in [48]) from the embedded vectors (Fig. 5B). Overall, 

these results demonstrate that the geometry of the learned embedding is scientifically 

interpretable and can be exploited for novel analyses, such as nonlinear regression. To 

our knowledge, the fine scale anatomical parcellation used here is novel in the context of 

representational similarity studies.

NAS-Bench-101 representations show persistent structure across layers.

Since we collected representations across five layers in each deep network, the embedded 

representation vectors form a set of five K × L matrices, Z1, Z2, Z3, Z4, Z5 . We aligned these 

embeddings by rotations in ℝL via Procrustes analysis, and then performed PCA to visualize 

the K = 2000 network representations from each layer in a common low-dimensional space. 

We observe that many features of the global structure are remarkably well-preserved—two 

networks that are close together in the Stack1 layer are assigned similar colors in Fig. 

5C, and are likely to be close together in the other four layers. This preservation of 

representational similarity across layers suggests that even early layers contain signatures 

of network performance, which we expect to be present in the AvgPool layer. Indeed, when 

we fit ridge and RBF kernel ridge regressors to predict test set accuracy from representation 

embeddings, we see that even early layers support moderately good predictions (Fig. 5D). 

This is particularly surprising for the Stem layer. This is the first layer in each network, and 

its architecture is identical for all networks. Thus, the differences that are detected in the 

Stem layer result only from differences in backpropagated gradients. Again, these results 

demonstrate the ability of generalized shape metrics to incorporate neural representations 

into analyses with greater scale (K corresponding to thousands of networks) and complexity 

(nonlinear kernel regression) than has been previously explored.

4 Conclusion and Limitations

We demonstrated how to ground analyses of neural representations in proper metric spaces. 

By doing so, we capture a number of theoretical advantages [16–20]. Further, we suggest 

new practical modeling approaches, such as using Euclidean embeddings to approximate 

the representational metric spaces. An important limitation of our work, as well as the past 

works we build upon, is the possibility that representational geometry is only loosely tied to 

higher-level algorithmic principles of network function [10]. On the other hand, analyses of 

representational geometry may provide insight into lower-level implementational principles 

[49]. Further, these analyses are highly scalable, as we demonstrated by analyzing thousands 

of networks—a much larger scale than is typically considered.

We used simple metrics (extensions of regularized CCA) in these analyses, but metrics 

that account for nonlinear transformations across neural representations are also possible 

as we document in Supplement C. The utility of these nonlinear extensions remains 

under-investigated and it is possible that currently popular linear methods are insufficient 
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to capture structures of interest. For example, the topology of neural representations has 

received substantial interest in recent years [50–53]. Generalized shape metrics do not 

directly capture these topological features, and future work could consider developing new 

metrics that do so. A variety of recent developments in topological data analysis may be 

useful towards this end [54–56].

Finally, several of the metrics we described can be viewed as geodesic distances on 

Riemannian manifolds [35]. Future work would ideally exploit methods that are rigorously 

adapted to such manifolds, which are being actively developed [37]. Nonetheless, we found 

that optimized Euclidean embeddings, while only approximate, provide a practical off-the-

shelf solution for large-scale surveys of neural representations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Machine learning workflows enabled by generalized shape metrics.

Williams et al. Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
(A) Schematic illustration of metrics with rotational invariance (top), and linear invariance 

(bottom). Red and blue dots represent a pair of network representations Xi and Xj, which 

correspond to m points in n-dimensional space. (B) Demonstration of convolutional metric 

on toy data. Flattened metrics (e.g. [6, 9]) that ignore convolutional layer structure treat 

permuted images (Xk, right) as equivalent to images with coherent spatial structure (Xi and 

Xj, left and middle). A convolutional metric, Eq. (11), distinguishes between these cases 

while still treating Xi and Xj as equivalent (obeying translation invariance).
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Figure 3: 
(A) Each heatmap shows a brute-force search over the shift parameters along the width 

and height dimensions of a pair of convolutional layers compared across two networks. 

The optimal shifts are typically close to zero (red lines). (B) Impact of sample size, m, on 

flattened and convolutional metrics with orthogonal invariance. The convolutional metric 

approaches its final value faster than the flattened metric, which is still increasing even at the 

full size of the CIFAR-10 test set m = 104 . (C) Impact of sample density, m/n, on metrics 

invariant to permutation, orthogonal, regularized linear α = 0.5 , and linear transformations. 

Shaded regions mark the 10th and 90th percentiles across shuffled repeats. Further details are 

provided in Supplement E.
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Figure 4: 
(A) Comparison of metric and linear heuristic. (B) Metric and linear heuristic produce 

discordant hierarchical clusterings of brain areas in the ABO dataset. Leaves represent 

brain areas that are clustered by representational similarity (see Fig. 1C), colored by Allen 

reference atlas, and ordered to maximize dendrogram similarities of adjacent leaves. In 

the middle, grey lines connect leaves corresponding to the same brain region across the 

two dendrograms. (C) ABO and NAS-Bench-101 datasets can be accurately embedded 

into Euclidean spaces. Dark red line shows median distortion. Light red shaded region 

corresponds to 5th to 95th percentiles of distortion, dark red shaded corresponds to 

interquartile range. The mean distortion of a null distribution over representations (blue 

line) was generated by shuffling the m inputs independently in each network.
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Figure 5: 
(A) PCA visualization of representations across 48 brain regions in the ABO dataset. Areas 

are colored by the reference atlas (see inset), illustrating a functional clustering of regions 

that maps onto anatomy. (B) Left, kernel regression predicts anatomical hierarchy [48] 

from embedded representations (see Supplement E). Right, PCA visualization of 31 areas 

labeled with hierarchy scores. (C) PCA visualization of 2000 network representations (a 

subset of NAS-Bench-101) across five layers, showing global structure is preserved across 

layers. Each network is colored by its position in the “Stack 1” layer (the middle of the 

architecture). (D) Embeddings of NAS-Bench-101 representations are predictive of test set 

accuracy, even in very early layers.
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