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ABSTRACT
Lateral roots (LRs) are an important part of plant root systems. In dicots, for example, after plants adapted 
from aquatic to terrestrial environments, filamentous pseudorhizae evolved to allow nutrient absorption. 
A typical plant root system comprises a primary root, LRs, root hairs, and a root cap. Classical plant roots 
exhibit geotropism (the tendency to grow downward into the ground) and can synthesize plant 
hormones and other essential substances. Root vascular bundles and complex spatial structures enable 
plants to absorb water and nutrients to meet their nutrient quotas and grow. The primary root carries out 
most functions during early growth stages but is later overtaken by LRs, underscoring the importance of 
LR development water and mineral uptake and the soil fixation capacity of the root. LR development is 
modulated by endogenous plant hormones and external environmental factors, and its underlying 
mechanisms have been dissected in great detail in Arabidopsis, thanks to its simple root anatomy and 
the ease of obtaining mutants. This review comprehensively and systematically summarizes past research 
(largely in Arabidopsis) on LR basic structure, development stages, and molecular mechanisms regulated 
by different factors, as well as future prospects in LR research, to provide broad background knowledge 
for root researchers.
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Introduction

The root system is a general name for the plant root. The root 
that develops from the seed radicle is called the primary root. 
The primary root develops many branching roots, called sec-
ondary or lateral roots (LRs), at a specific angle with the primary 
root under the joint action of internal and external factors. LRs 
can further produce secondary LRs. Aboveground parts of 
plants, such as the hypocotyl, stem, or leaves, can also develop 
adventitious roots under appropriate conditions that integrate 
endogenous plant hormones and/or external stimulation. Many 
dicotyledonous plants, such as Arabidopsis (Arabidopsis thali-
ana), rapeseed (Brassica napus), tomato (Solanum lycopersicum), 
and carrot (Daucus carota), have an obvious primary root from 
which lateral roots develop upon stimulation by internal hor-
mones, environmental factors, and nutrient supply and quota.

Plant roots not only serve as physical anchors in the soil but 
also support the uptake of water and micronutrients from the 
soil to sustain the growth and development of the aboveground 
plant tissues, including the reproductive organs. The LRs that 
develop from a primary root determine the structure and func-
tion of the plant root systems. The regulation of LR growth and 

development is complex, and there have been few systematic 
reviews in this area. This review is designed to fill this gap and 
help researchers better understand existing research on LRs.

Basic structure of the plant root systems

Based on morphological characteristics, plant root systems can 
be divided into two types. Most dicotyledons have a primary root 
system, as illustrated in the model plant Arabidopsis, with a long, 
well-developed primary root and clear branching of LRs. In 
contrast, most monocotyledons have a fibrous root systems, as 
seen in rice (Oryza sativa). The main root of the fibrous monocot 
root stops growing or even dies early in development, but many 
adventitious roots and crown roots grow from the base of the 
hypocotyl and the lower stem nodes. The length and thickness of 
each root is similar, and they form the root system together with 
the seed root. In maize (Zea mays), post-embryonic root devel-
opment starts with the formation of the primary root and semi-
nal scutellar roots and then continues with the formation of 
adventitious crown roots, brace roots, and LRs.1 By contrast, 
the root system of a typical dicotyledonous seedling includes 
a primary root, LRs, and adventitious roots.2,3
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Formation of LRs

LRs are an essential part of the root systems. In dicots, LRs are 
clearly more numerous and explore more soil surface area than 
the primary roots, with their exact spatial range dictated by how 
much the LRs develop. In monocots, LRs constitute almost the 
entirety of the fibrous root system. Therefore, the physiological 
function of the entire root system is largely determined by the 
extent of LR development. Many plants form large aboveground 
parts to maximize sunlight capture and distribute carbon back-
bones via their vascular bundles, but they also need strong 
anchoring support from their roots, which is provided by LRs, 
as they account for most of the root system. The developmental 
plasticity of LRs may be used as a marker for a plant’s ability to 
adapt to changes in soil conditions. LR development occurs post- 
embryonically, but its internal cellular structure is identical to 
that of the primary root. In Arabidopsis, a typical dicot, the 
formation of a LR can be divided into eight stages.4

In stage I, the LR primordium begins to form. Near the 
root tip, columnar pericycle cells go through cell division 
perpendicular to the polar direction of Arabidopsis, resulting 
in 8 to 10 cells of the same size, which quickly increase 
radially. During the second stage, the central cells originating 
from stage I undergo a periclinal division to form an outer 
layer (OL) and an inner layer (IL), followed by another round 
of periclinal division of the outer cells during stage III to form 
two layers of outer layer cells (OL1 and OL2). In stage IV, the 
inner layer cells undergo a periclinal division to form two 
layers of inner layer cells (IL1 and IL2), and the LR primor-
dium breaks through the endodermis of the primary root. 
During stage V, the middle cell of the outer layers (OL1 and 
OL2) divides three times, while the inner cells grow radially, 
pushing the outer cell outward and forcing the LR primor-
dium to enter the primary root cortex. At stage VI, the outer 
cells divide; the inner cells continue to elongate along the root 
radius and take on the characteristics of vascular bundles; the 
epidermis, cortex, and endodermis form at the periphery of 
the LR primordium; and the LR primordium enters the pri-
mary root epidermis. During stage VII, the cell division and 
differentiation become more complex, with most divisions 
occurring perpendicularly to the primary root axis, allowing 
the LR primordium to grow outward through the epidermis. 
Finally, at stage VIII, each part of the LR primordium 
becomes established as an LR.5

Formation of new meristems in LRs

Each LR primordium protruding from the epidermis of the 
primary root has its own root apical meristem (RAM), just like 
any primary root. The meristem contains a quiescent center 
(QC) with low mitotic activity and stem cells that surround the 
QC and can later differentiate into the various root 
structures.6,7 Many regulators also play a crucial role in pri-
mary root growth and development.

The LR primordium takes on characteristics of a meristem 
as early as when it is composed of three to five cell layers.8 

During stage VI, three cell layers later give rise to the epi-
dermis, cortex, and endodermis; the assumed stele tissue; 
and the potential root cap at the tip of the LR primordium. 

The establishment of each new meristem is closely related to 
the generation of an auxin maximum at the position of the 
future LR primordium.9,10 This process requires the reloca-
tion of the PIN-FORMED (PIN) family of auxin efflux car-
riers, mainly PIN1.11,12 PIN1 can be detected in root cells 
starting at the earliest stages of LR development. Indeed, 
from stage I to stage VIII, PIN1 accumulates in all except 
the outermost cells of the LR primordium. After the LR has 
matured, PIN1 localization returns to the typical pattern seen 
in the primary root, with accumulation in the vascular 
tissue.13 Many factors can regulate the phosphorylation 
state of PIN1, including the kinase PINOID (PID), Protein 
Phosphatase 2A family members (PP2As), Mitogen- 
Activated Protein Kinase 6 (MPK6), and MAPK Kinase 7 
(MKK7), leading to changes in PIN1 polar location and thus 
affecting the development of lateral branches and roots.14–16 

During LR growth, another type of hormone, cytokinin 
(CK), can induce the removal of PIN1 from the plasma 
membrane in a specific region by regulating PIN1 endocy-
tosis, resulting in the depletion of PIN1 from the cell 
membrane.12 CK-regulated PIN1 polar localization is also 
related to the degree of PIN1 phosphorylation.11

The effects of three PLETHORA (PLT) transcription factors, 
PLT3, PLT5, and PLT7, during LR outgrowth are also crucial to 
LR development.17 In the plt3plt5plt7 triple loss-of-function 
mutant, the morphology of the LR primordium, the auxin 
response gradient, and the expression of meristem/tissue recog-
nition markers are impaired during the transition between phase 
I and phase II due to the circumferential cell division of “sym-
metry destruction,” in which the cells first obtain different 
identities on the paraxial and radial axes. In particular, during 
LR growth, PLT1, PLT2, and PLT4, genes that are usually 
expressed later than PLT3, PLT5, and PLT7, are not induced in 
the mutant primordium, resulting in a “PLT null” LR primor-
dium. Reintroducing any PLT branch members into the 
plt3plt5plt7 mutant primordium completely restores the layer 
identity of the second stage and repairs the mutational defects in 
meristem and tissue establishment. Therefore, any of the six PLT 
genes can activate the formative cell divisions that lead to de 
novo meristem establishment and tissue patterning associated 
with a new growth axis.18

Regulatory mechanisms underlying LR development

In general, only a few pericycle cells can develop into LRs, 
suggesting the existence of regulatory mechanisms that deter-
mine which cells will form LRs.19 Plant hormones are involved 
in the regulation of LR development. In addition, external 
environmental factors such as water availability and nitrogen 
and phosphorus status also contribute to regulating LR forma-
tion to adapt to a changing environment.

Regulation of LR development by auxin

While multiple plant hormones regulate LR development, the 
most important growth regulator is auxin.20 Auxin concentra-
tion changes rhythmically with a period of about 6 hours in the 
basal meristem, which is in agreement with the period of LR 
initiation.21,22 The polar auxin transport mutation auxin 
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resistant 1–7 (aux1-7) abolished this rhythm in auxin concen-
tration and produced fewer LRs. When the auxin concentra-
tion of the basal meristem increases on one side, the columnar 
pericycle cells in the corresponding xylem pole begin to divide 
to form an LR primordium.23 In Arabidopsis, INDOLE- 
3-ACETIC ACID INDUCIBLE14 (IAA14) is the most impor-
tant transcriptional regulator of auxin signaling during LR 
development. In plants carrying the IAA14 gain-of-function 
allele slr-1 (solitary root1-1), anticlinal divisions fail to occur in 
pericycle cells and LRs were completely underdeveloped.24 

However, the loss-of-function mutant allele iaa14-1 resulted 
in no obvious phenotypic changes, indicating that other IAA 
proteins may also participate in auxin-mediated LR 
development.25–28

IAA family members regulate auxin signaling by binding to 
or releasing AUXIN RESPONSE FACTORs (ARFs). In the 
context of LR development, IAA14 binds to ARF7 and ARF19 
and blocks their activation of transcription. In agreement with 
this result, the arf7arf19 double mutant exhibits a similar phe-
notype to the slr-1 mutant, with a reduced number of LRs.25–29 

However, in contrast to the complete loss of LRs in slr-1, the 
arf7arf19 double mutant can form a few LRs, indicating that 
other ARF proteins also regulate LR development.30 In addi-
tion, LR development can be restored by overexpressing the 
genes encoding the transcription factors LATERAL ORGAN 
BOUNDARIES-DOMAIN16 (LBD16) and LBD29 in the 
arf7arf19 double mutant. LBD family members are plant spe-
cific and play an important role in the development of lateral 
tissues. The LBD16 and LBD29 promoters contain binding sites 
for ARF7 and ARF19, making them direct targets of ARF7 and 
ARF19.31

SnRK1 (Snf1-RELATED-KINASE1) regulates LR forma-
tion by phosphorylating the bZIP63 (BASIC LEUCINE 
ZIPPER63) transcription factor, which can then directly 
bind and activate the promoter of ARF19; ARF19 is the key 
regulator of LR initiation.32 Arabidopsis seedlings that were 
cultured under different light and nutritional conditions to 
explore the effect of energy homeostasis on root structure, 
weak light, or short-term unexpected darkness (uD) showed 
increased emerged LR density (eLRD), but with little change 
in the length of the primary root.32 Measurement of the 
sucrose, glucose, and fructose contents and the expression 
of the energy stress–related gene DIN6/ASN (DARK- 
INDUCED6/APARAGINE SYNTHETASE1) in seedlings 
under different conditions confirmed that uD could instanta-
neously disrupt energy metabolism, and short-term uD could 
reduce soluble sugar and trehalose 6-phosphate contents, 
resulting in the expression of low-energy-stress genes. 
DIN6/ASN is a downstream gene of the central metabolic 
kinase SnRK1. To explore the effect of SnRK1 on LR forma-
tion, the authors created snrk1α1 and snrk1α2q knockout 
mutants. The eLRD of the snrk1α1 mutant decreased signifi-
cantly after uD treatment, showing that snrk1α1 acts to main-
tain LR activation after stress and SnRK1 is a required 
participant in the regulation of LR density during energy 
disturbance.32 Compared with those of the wild type, the 
primary root length and eLRD of the bzip63 mutant 
increased, and LR formation induced by weak light also 
decreased. Therefore, bZIP63 is necessary for the increase in 

eLRD during short-term disturbance of energy steady state.32 

The promoter of ARF19 contains a G-box cis element 
(G-box1) and is a target of bZIP63 binding, as further con-
firmed by chromatin immunoprecipitation PCR (ChIP-PCR). 
The arf19 mutant no longer induced eLRD in short-term 
darkness, indicating that ARF19 is also necessary for this 
response. These results indicate that SnRK1, bZIP63, and 
ARF19 together regulate LR development during energy 
homeostasis disturbance. This study thus provided mechan-
istic insights into how energy shapes the agronomically 
important root system.32

Auxin signaling mediated by various auxin/indole-3-acetic 
acid compounds (Aux/IAAs) and ARFs regulates LR develop-
ment by controlling the expression of downstream genes.33–35 

LATERAL ROOT PRIMORDIUM1 (LRP1), a member of the 
SHORT INTERNODES/STYLISH (SHI/STY) family, has been 
identified as an auxin-inducible gene. LRP1 is expressed in all 
stages of LR development except in the primary root, and its 
expression is regulated by histone deacetylation in an auxin- 
dependent manner. LRP1 acts downstream of the auxin 
response Aux/IAA ARF module during LR development. 
Auxin-mediated LRP1 induction is lost in the emerging LRs 
of slr-1 and arf7arf19 mutant roots. In plants treated with the 
auxin transport inhibitor N-1-naphthylphthalamic acid (NPA), 
LRP1 helps regulate the formation of LR after the normal and 
asymmetric division of LR founder cells.36 Overexpression of 
LRP1 (LRP1-OE) resulted in an increase in the number of LR 
primordia in phases I, IV, and V, resulting in a decrease in LR 
density, indicating that LRP1 is involved in LR primordium 
development. YUCCA4 (YUC4), whose expression is induced 
by LRP1, is involved in auxin biosynthesis and contributes to 
the increase in endogenous auxin accumulation in LRP1-OE 
roots. LRP1 interacts with the SHI, STY1, SRS3, SRS6, and 
SRS7 proteins of the SHI/STY family, indicating that these 
proteins may play redundant roles in root development. 
Deacetylation of auxin and histone affects LRP1 expression 
and plays a role in processes downstream of LR, creating an 
auxin response module that negatively regulates the develop-
ment of LR primordia by regulating the dynamic balance of 
auxin in Arabidopsis.37

Auxin synthesized from the LR primordium promotes cell 
separation near the tip of the primordium to spatially accom-
modate its growth. As the LR develops from the pericycle cells in 
the inner layer of the primary root, it needs to break through 
multiple cell layers: three layers in Arabidopsis (endodermis, 
cortex, and epidermis), and more than three layers in other 
plants such as rice.38 Proteins related to cell wall remodeling 
play an important role in the breakthrough of LRs. The gene 
encoding the auxin influx carrier LIKE AUX1 3 (LAX3) is 
expressed specifically near the LR primordium to modulate the 
expression of several cell wall remodeling proteins, including 
PECTIN LYASE2 (PLA2), POLYGALACTURONASE (PG), 
EXPANSIN17 (EXP17), and GLYCOSYL HYDROLASE17 
(GLH17).39–41 PLA2 and PG are involved in the degradation 
of demethylated pectin in the cell wall. EXP17 is another com-
ponent of the plant cell wall that lacks enzymatic activity but can 
nevertheless relax the plant cell wall.
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The normal elongation of LRs depends on normal polar 
auxin transport. Mutations in the gene encoding the auxin 
transporter MULTIDRUG RESISTANCE PROTEIN1 
(MDR1) do not affect the initiation of LRs in Arabidopsis, 
but do prevent root elongation. Auxin concentrations are nor-
mal in the primary root tip of the mdr1-1 mutant, but much 
lower in LR tips, compared to those in the wild type.42

Studies have shown that an H3K27 methyltransferase, 
CURLY LEAF (CLF), inhibits LR formation by depositing 
inhibitory H3K27me3 markers on the chromatin of the key 
polar auxin transporter gene PIN1.43 This found that the 
H3K27me3 demethylase REF6 promotes the initiation of LR 
primordia and the emergence of LRs. REF6 binds directly to 
the chromatin of PIN1, PIN3, and PIN7. Dysfunction of REF6 
resulted in elevated H3K27me3 levels on PIN1/3/7 and inhib-
ited PIN gene expression. Genetic analysis of clfref6 double 
mutants showed that there was antagonism between CLF and 
REF6 in their effects on LR formation. These results suggest 
that H3K27 methylation and demethylation activities may be 
coordinated to ensure appropriate LR organogenesis.44

Ultraviolet B (UV-B) light inhibited the LR growth of 
Arabidopsis in a UV RESISTANCE LOCUS8 (UVR8)- 
dependent manner.45,46 Monomeric UVR8 inhibits auxin 
response in a tissue-autonomous manner, thereby regulating 
LR growth. Auxin and UV-B radiation have antagonistic effects 
on auxin-regulated gene expression. UVR8 physically interacts 
with MYB73 and MYB77 (MYB domain proteins 73 and 77) in 
a UV-dependent manner. UVR8 inhibits LR development by 
regulating MYB73/MYB77. When activated by UV-B light, 
UVR8 localizes in the nucleus, inhibits the DNA-binding activity 
of MYB73/MYB77, and directly inhibits the transcription of its 
target auxin response gene. The UV-B-dependent interaction 
between UVR8 and MYB73/MYB77 is an important module 
for integrating light and auxin signals that enables them to 
coordinately regulate root development.47

TARANI, also called UBIQUITIN PROTEASE14 (TNI/ 
UBP14), is necessary for LR primordium development. The 
UBP14 protein maintains normal auxin response through 
ubiquitin recycling. A tni mutant in Arabidopsis, in which 
poly-ubiquitin hydrolysis is reduced, shows pleiotropic phe-
notypic defects, including reduction in LR numbers, due to 
the stabilization of several AUX/IAAs and reduced auxin 
response. The smaller number of LRs observed in tni 
mutants may be due to defects in primordium initiation 
or its subsequent elongation. Here, we tested this by label-
ing the LR primordia with a pCYCB1;1::CYCB1;1-GUS 
reporter and calculating the number of LRs at different 
developmental stages. The decrease in the activity of TNI, 
a marker of LR primordium, leads to the delay of LR 
primordium initiation, thus shortening the LR of tni 
seedlings.48

In addition to the classical auxin signaling pathway, there are 
other important auxin signaling pathways involved in LR devel-
opment. For example, MITOGENACTIVATED PROTEIN 
KINASE14 (MPK14) positively regulates the development of LR. 
The MPK14-deficient mutant mpk14 has a LR development defect 
phenotype.49 MPK14 can interact with ETHYLENE RESPONSE 
FACTOR13 (ERF13). Moreover, auxin has been found to activate 
MPK14, which then phosphorylates ERF13, induces ERF13 

degradation, and thereby relieves the inhibition of LR develop-
ment by ERF13. 35S:ERF13-MYC overexpression plants have 
a phenotype of significantly reduced LR breakthrough, which is 
caused by inhibition of the transformation of LR primordia from 
phase IV to phase V.49 A screen for genes regulated downstream of 
ERF13 showed that ERF13 can participate in LR development by 
inhibiting the expression of 3-ketoacyl-CoA synthase16 (KCS16) 
and then affecting the synthesis of very-long-chain fatty acids 
(VLCFAs). Furthermore, VLCFAs could affect the degradation 
of pectin in the cortical cell wall at the LR primordium, thus 
affecting the transformation of LR primordium from phase IV to 
phase V.49 In summary, this study clarified that auxin phosphor-
ylates ERF13 by activating MPK14 kinase activity, and the phos-
phorylated ERF13 is degraded by the 26S proteasome to release the 
expression of the downstream gene KCS16 and promote the 
synthesis of VLCFAs. VLCFAs further influence the degradation 
of pectin in the cortical cell wall at the LR primordium, thus 
affecting the transformation of LR primordium from phase IV to 
phase V and the subsequent development of LRs. This study 
expanded the molecular pathway of auxin regulation of LR devel-
opment and revealed, for the first time, the details of a downstream 
molecular mechanism whereby mitogen-activated protein kinase 
(MAPK) signal regulates LR development.49 This further enriched 
our understanding of the molecular regulatory network of auxin 
regulation of LR development.

Recent studies have reported the molecular mechanism 
whereby nonclassical auxin signal regulates the cell division pat-
tern during lateral root development through receptor-like protein 
kinase transmembrane kinases (TMKs).50 Double mutants with 
functional deletion of TMK1 and TMK4 have serious LR devel-
opment defects and are insensitive to auxin treatment. At the 
cellular level, they show serious disorders of LR primordium cell 
division. TMK1/4 specifically interact with and phosphorylate two 
kinases, MKK4 and MKK5, in the MAPK signaling pathway.50 In 
this pathway, MKK4 and MKK5 are reported to act upstream of 
MPK3 and MKP6 to participate in the regulation of asymmetric 
cell division and stomatal development.51 The researchers 
observed that MKK4/5 and MPK3/6 were also involved in auxin- 
mediated LR development.50 Meanwhile, both MKK4/5- and 
MPK3/6-inducible double mutants showed disordered division 
of LR primordium cells.50 Previous studies showed that auxin 
can trigger the phosphorylation of MPK3/6, but the specific 
mechanism involved was not explained.52 This study showed 
that TMK1/4 is involved in auxin-mediated phosphorylation of 
MPK3/6 and thereby suggested that auxin may help control the 
division of LR primordium cells, and thus LR development, by 
regulating the phosphorylation level of MKK4/5-MPK3/6 through 
TMK1/4.50 This discovery of a TMK1/4-MKK4/5-MPK3/ 
6-mediated nonclassical auxin-regulated LR development path-
way further improved our understanding of the molecular regu-
latory network involved in auxin regulation of LR development.50

Regulation of LR development by other plant hormones

In addition to auxin, other plant hormones also regulate LR 
development, with most participating in crosstalk with auxin 
signaling. CKs are negative regulators of LR development 
and are generally antagonistic to auxin during plant growth 
and development. Mutations in CK signaling components, 
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such as Arabidopsis response regulators (ARRs) or 
Arabidopsis histidine kinases (AHKs), can lead to an 
increase in LR number in Arabidopsis.53,54 Higher CK cata-
bolism in vivo will decrease CK contents, which also results 
in more LRs.55 CK inhibits the development of LRs in peri-
cycle cells in the xylem pole, and the expression of genes 
related to CK biosynthesis in these cells inhibits LR develop-
ment. By contrast, the expression of CK catabolism-related 
genes in xylem polar pericycle cells eliminates the repression 
of LRs by CK.56 Exogenous application of CK restricts the 
progression of LR development to stages IV and V, mainly 
by affecting auxin-induced PIN expression and, thus, polar 
auxin transport.57

Abscisic acid (ABA) mainly acts in the late stage of LR 
development. ABA INSENSITIVE3 (ABI3) is an important 
transcription factor in ABA signaling. The formation of LRs 
is less sensitive to exogenous auxin or auxin transport inhibi-
tors in the abi3 mutant,58 whereas mutants in ENHANCED 
RESPONSE TO ABA1 (ERA1) encoding a farnesyl- 
transtransferase display more lateral roots. ABA is therefore 
necessary for auxin-mediated LR development. ABA is also 
involved in the effects of inorganic salts on LRs. High concen-
trations of nitrate (NO3

–) can inhibit the development of LRs 
just after the LR primordium protrudes from the primary root. 
Indeed, the inhibitory effect of NO3 

– is lower in the ABA 
biosynthesis mutants aba deficient1 (aba1), aba2, and aba3 
and the ABA-insensitive mutants abi4 and abi5.59

Brassinosteroids (BRs) and auxin play synergistic roles in 
the formation of LRs. The number of LRs is lower in the BR 
receptor mutant br-insensitive1 (bri1), and exogenous BR 
application seldom changes auxin concentration at the root 
tip in wild-type seedlings. BRs appear to promote LR develop-
ment by promoting polar auxin transport.60

There has been no in-depth study on the relationship 
between gibberellins (GAs) and LR development, although 
several reports have shown that GAs can affect LRs. GA- 
deficient pea (Pisum sativum) plants produce fewer nitrogen- 
fixing nodules and LRs than wild-type plants.61 Similarly, pri-
mary root growth is inhibited in Arabidopsis GA-deficient 
mutants, but their LR phenotypes were not reported in detail.62

Ethylene (ETH) negatively regulates the formation of LRs in 
Arabidopsis by affecting polar auxin transport.63 Exogenous 
application of ETH precursors decreases the number of LRs in 
the wild type, as does higher endogenous ETH biosynthesis in 
the ethylene overproducer1 (eto1) mutant. By contrast, the 
ETH-insensitive mutants ethylene triple response1 (etr1) and 
ethylene insensitive2 (ein2) produced more LRs. It is worth 
noting that higher ETH levels enhance polar auxin transport, 
indicating that ETH has a positive regulatory effect on this 
process. Testing various mutants lacking individual auxin 
transporters identified AUX1 as the ETH target. Exogenous 
application of a high ETH concentration inhibits the formation 
of LR primordia but promotes the growth of existing LR 
primordia, while low ETH concentrations promote the initia-
tion of LR primordia.64

Methyl jasmonate (MeJA) can also promote LR develop-
ment. Treatment with exogenous MeJA can increase the 
expression levels of ANTHRANILATE SYNTHASE ALPHA 
SUBUNIT1 (ASA1), which encodes a key rate-limiting step in 

auxin biosynthesis, leading to higher auxin contents in vivo 
that then promote LR genesis. MeJA can also affect local auxin 
accumulation in roots by inducing the expression of PIN1, 
PIN2, and AUX1.65 MeJA has also been shown to regulate 
auxin contents via the transcription factor ERF109 and its 
downstream target genes ASA1 and YUCCA2 (YUC2), which 
encode auxin biosynthetic enzymes.66

A more recently identified plant hormone, strigolactone 
(SL), has attracted attention by negatively regulating the num-
ber of lateral buds in aboveground tissues, but it can also 
regulate the development of LRs. SL mainly negatively regu-
lates LR development, in line with the greater number of LRs in 
SL biosynthesis or signal transduction mutants. Conversely, 
the exogenous application of the SL analog GR24 diminishes 
the number of LRs that form in wild-type Arabidopsis 
seedlings.67

Role of polypeptide hormones in LR development

Polypeptide hormones regulate the growth and development of 
plant LRs,68 including the CLE (CLAVATA3/EMBRYO 
SURROUNDING REGION (ESR)) family, the RGF (ROOT 
MERISTEM GROWTH FACTOR)/CLEL (CLE-like) 
/GOLVEN family, the CEP (C-Terminally Encoded Peptide) 
family, and the IDA (INFLORESCENCE DEFICIENT IN 
ABSCISSION) family. The polypeptide hormones CIF1 
(CASPARIAN STRIP INTEGRITY FACTOR1) and CIF2 are 
necessary for the formation of intact Casparian strip, which 
helps control water and salt transport from the roots to the rest 
of the plant.69 CIF2 is expressed at the beginning of LR pri-
mordia formation, and its encoding peptide restrains LR 
formation.70 CIF1 and CIF2 are often sensed by a receptor- 
like protein kinase (RLK) on the cell surface to initiate signal 
transduction, thus regulating plant growth and development.

Cell-to-cell and cell-to-environment communication play 
decisive roles during LR growth and development. RLKs are 
single-transmembrane-domain proteins located at the cell sur-
face that perceive signals from the environment or neighboring 
cells.71 RLKs play a vital role in LR growth, development, and 
adaptation the environment. For example, Arabidopsis 
CRINKLY4 (ACR4) is homologous to the RLK CRINKLY4 
(CR4) from maize. ACR4 regulates pericycle cell divisions dur-
ing LR initiation.72 Two other RLKs, HAESA (HAE) and 
HAESA-LIKE2 (HSL2), regulate cell wall remodeling and 
degeneration when LRs break through the endodermis, cortex, 
and epidermis of the primary root.73 When plants experience 
nitrogen deficiency, CEPRECEPTOR1 (CEPR1) and CEPR2 can 
sense CEP polypeptide hormones to regulate the development of 
LRs.74 CLAVATA1 (CLV1) and PHLOEM INTERCALATED 
WITH XYLEM (PXY) also play an important role in regulating 
the development of LRs.68,75,76

Some CLE proteins are closely involved in LR development. 
Under nitrogen-deficient conditions, CLE1, CLE3, CLE4, and 
CLE7 expression is induced in the primary root pericycle in 
Arabidopsis. The overexpression of CLE blocks the formation 
of LRs, indicating that CLE1, CLE3, CLE4, and CLE7 may 
inhibit LR formation. Under the same conditions, the clv1 
mutant exhibits longer LRs, indicating that CLV1 acts as 
a receptor for small CLE peptides. In fact, exogenous 
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administration of small CLE3 peptides inhibits the formation 
of LRs in wild-type but not clv1 seedlings, indicating that the 
inhibition of LR formation by CLE depends on CLV1.75 These 
results suggest that CLE peptides whose encoding genes are 
expressed in the pericycle are secreted extracellularly and may 
be sensed by CLV1 in adjacent phloem cells, regulating down-
stream signals to inhibit LR formation.68,75

CEP peptides, which were identified by bioinformatics and 
high-performance liquid chromatography (HPLC), affect the 
development of primary roots and LRs by blocking the division 
and growth of RAM cells.77 In the legume barrel clover 
(Medicago truncatula), MtCEP1 negatively regulates LR 
development.78 Arabidopsis cep3 mutants form more LRs 
under various abiotic stresses, such as nitrogen deficiency, 
salt stress, and osmotic stress.79 Arabidopsis CEP1 to CEP5 
are expressed mainly in LR primordia and less so in above-
ground tissues.80 The overexpression of CEP genes also pre-
vents the development of the primary root and LRs, as well as 
morphogenesis of aboveground tissues. Notably, the exogen-
ous application of CEP1, CEP3, CEP5, and CEP9 disrupts the 
development of LRs.

Two receptor-like protein kinases, CEPR1 (also named 
XYLEM INTERMIXED WITH PHLOEM1 XIP1) and 
CEPR2, can bind to different CEPs.74,81 Consistent with the 
function of CEPs in inhibiting LR development, the cepr1 
single mutant and the cepr1cepr2 double mutant produce ele-
vated numbers of LRs.74

The LR protrudes from the endodermis, cortex, and epider-
mis cell layers of the primary root and must separate these cells 
before it can emerge into the neighboring soil.5 This protrusion 
is similar to the abscission of plant organs, with IDA, for 
instance, participating in both floral organ abscission and 
protrusion of LRs.73,82 The accumulation of auxin in the over-
lapping cortex and epidermal cell layers of LRs can induce the 
degradation of SLR/IAA14, allowing the newly released ARFs 
to promote IDA expression.73 IDA is perceived by HAE/HSL2, 
which causes cell wall relaxation by inducing the expression of 
cell wall remodeling enzymes.73,83 In agreement with the above 
signal transduction pathway, cell wall pectin of adjacent cells 
cannot be degraded in the ida single mutant or the haehsl2 
double mutant, preventing the separation of adjacent cells and 
thus blocking the protrusion of LR primordia through the 
cortex and epidermis.73

Rapid alkalinization factors (RALFs) affect cell growth by 
regulating calcium (Ca2+) responses, MAPK signaling, and 
alkalinization, and also participate in LR development. The 
overexpression of RALF1 lowers the density of LRs and par-
tially represses RALF1 expression to promote the protrusion of 
LRs, indicating that RALF1 negatively regulates LR 
protrusion.84 RALF1 and other RALFs, such as RALF19 and 
RALF34, also participate in the initiation of LRs,84,85 as does 
RALF-LIKE34 (RALFL34). Indeed, RALFL34 is expressed in 
the pericycle cells of the protoxylem. The ralfl34 mutant shows 
an ‘aberrant’ cell division pattern and a higher LR density, 
indicating that RALFL34 plays a role in pericycle cell division 
during LR initiation.86

THESEUS1 (THE1) is the RALF34 receptor, and together 
they fine-tune the initiation of LRs. The ralf34 and the1 mutants 
exhibit an increase in the proportion of LRs at stage I and 

abnormal asymmetric divisions of established cells.86,87 The 
THE1-RALF34 signaling module affects the initiation of LRs 
by regulating the integrity of cell walls, which depends in part on 
the RLK FERONIA (FER). The fer-4 mutant displays an abnor-
mal columella stem cell morphology and produces more LRs, 
and its roots have a slow gravity response, phenotypes that are 
reminiscent of auxin polar transport defects. The polarity of 
PIN2 is altered in the fer-4 mutant, which is accompanied by 
a shortening of actin filaments, indicating that FER regulates 
actin-mediated PIN2 polar localization, which is then responsi-
ble for the defects in LR development and gravity response.68,88

TARGET OF LBD SIXTEEN2 (TOLS2) is a small secreted 
peptide consisting of 11 amino acids in its processed, mature 
form. Its encoding gene is expressed in LR precursor cells and is 
induced by auxin. This direct target of LBD16 can inhibit LR 
initiation.89 PUCHI is an APETALA2 (AP2)-type transcription 
factor that can regulate LR development; PUCHI expression is 
induced by TOLS2 and requires RLK7, indicating that PUCHI is 
a downstream target of RLK7 signaling.90–92 The TOLS-RLK7- 
PUCHI signaling module selects the cells within the root tip 
oscillating zone and inhibits the initiation of LRs, thus ensuring 
a proper spatial distribution of LRs along the primary root.68,92

The Arabidopsis genome encodes 11 CLEL family members. 
CLEL is also called RGF and GOLVEN (GLV), reflecting the 
multiple roles played by this family.93,94 Ten of the 11 members 
of this gene family are expressed during LR development, and 
the overexpression of most members leads to LR defects. For 
example, overexpression of CLEL2, CLEL6, and CLEL7 delays 
the development of LRs by interfering with the division of 
pericyclic cells and inhibiting LR initiation.68,95,96 Treatment 
of wild-type seedlings with exogenous RGF1 (also called 
CLEL8) can reduce the number of LRs. Importantly, percep-
tion of the RGF1/CLEL8 signal requires receptors from the 
RGF1 INSENSITIVE1 (RGI1) family, as the rgi1rgi2rgi3rgi4 
quadruple mutant does not respond to RGF1 treatment.97

Phytosulfokine (PSK) is a five-amino-acid sulfated peptide 
that affects the dedifferentiation and proliferation of plant cells. 
There are five PSK genes in Arabidopsis, all of which are 
expressed in LR primordia.98 The regulation of primary root 
length by PSKs is mainly perceived through 
PHYTOSULFOKIN RECEPTOR1 (PSKR1) and PKSR2, while 
exogenous PSK treatment can affect the protrusion and total 
length of LRs by increasing cell number, but this process is 
independent of PSKR1, indicating that PSK may bind to other 
receptors to regulate the development of LRs.68,98

Regulation of LR development by nutrient status

The plant root system integrates internal developmental pro-
cesses and biotic and abiotic factors. The plasticity of the root 
system is an important feature shaping its growth and devel-
opment. For instance, a localized supply of nitrogen in the 
form of nitrate can promote LR development. However, the 
initiation and development of LRs are repressed in high- 
nitrogen 99,100 and high-carbon/high-nitrogen (C/N) 
environments.101 Regulation of root development by nitrogen 
status appears to play different roles at different stages of LR 
development. Indeed, the inhibition of LR development caused 
by a high C/N ratio likely takes place during LR initiation, as 

e2081397-6 Y. ZHANG ET AL.



a high C/N ratio limits auxin transport.101 By contrast, the 
inhibition of LR elongation induced by high N occurs at later 
stages when LRs elongate, after the LR meristem has formed.59 

While the number of LR primordia formed under different 
N concentrations is similar, the resulting LR elongation varies, 
with shorter LRs under high N. Local N supply only raises the 
LR elongation rate but has little effect on LR number.99 Studies 
in Arabidopsis showed that the promotion of LR formation by 
local N supply depends on the perception of the NO3 

– signal 
by the LR, which leads to an increase in the activity of the LR 
meristem.100,102 The MADS box transcription factor 
ARABIDOPSIS NITRATE REGULATED1 (ANR1) is an 
important regulator of NO3 

– signaling.102 NITRATE 
TRANSPORTER1.1 (NRT1.1, also named CHLORINA1 
CHL1) is both a NO3 

– transporter and receptor (a 
transceptor).103 NRT1.1 regulates the growth of new primary 
roots and LRs,104 the inhibition of NRT2.1 expression by NO3

– 

,105 and the promotion of seed germination by NO3
–.106 LR 

initiation is also affected when seedlings are grown on low- 
phosphorus soil, although already established LR primordia 
appear to grow better; like very high N, low phosphorus supply 
inhibits LR initiation.107 LRs in barley (Hordeum vulgare) are 
longer in soils rich in potassium, whereas potassium deficiency 
blocks LR development in Arabidopsis.108 In nitrogen-poor 
areas of the soil, the auxin transport function of NRT1.1 is 
activated, resulting in inhibition of root growth.109,110 

Activated NRT1.1 induces the expression of the auxin receptor 
gene AUXIN SIGNALING F-BOX3 (AFB3), thereby regulating 
primary root growth and LR density.111,112 Low nitrogen con-
centrations inhibit the growth of LR primordia by inducing the 
production of small CLE peptides.75 In addition, under low- 
nitrogen conditions, AGAMOUS-LIKE2 1 (AGL1) upregulates 
auxin biosynthesis genes, leading to increased auxin levels in 
the LR primordium and LR and thus stimulating LR primor-
dium initiation and LR elongation.113

By contrast, mild nitrate deficiency positively affects LR elonga-
tion. However, both nitrate and ammonium salts (for the latter, via 
processes dependent on the ammonium transporter AMT1;3;,114 

and especially their local levels, positively affect LR formation, and 
nitrogen deficiency usually reduces LR formation. This type of 
complex regulation can greatly reduce the cost of plant root 
metabolism, allowing the plant to devote more energy to root 
elongation when nitrogen is scarce but more energy to root initia-
tion when nitrogen is more plentiful. In addition to nitrogen and 
phosphorus, other nutrients also affect root development, but little 
is known about the underlying regulatory mechanisms. Deficiency 
in sulfur, magnesium, or iron reduces LR density in Arabidopsis, 
while that of potassium, calcium, zinc, manganese, or boron 
increases LR density.115,116 Excessive manganese represses auxin 
biosynthesis and the expression of the auxin transporter genes 
PIN4 and PIN7.117 Similarly, excessive iron inhibits the expression 
of PIN2 and blocks LR formation,118 and it also induces AUXIN 
RESISTANT1 (AUX1) expression and triggers root elongation.119

Nitrate can influence many aspects of plant growth and 
development, for example, promoting root growth and inhibit-
ing the synthesis of secondary metabolites. A nitrate-induced 
NAC family 120 transcription factor, NAC056, promotes nitrate 
assimilation and root growth in Arabidopsis. NAC056 is 
a nuclear-localized transcription activator that is mainly 

expressed in roots and hypocotyls. A nac056 mutant showed 
deficient root growth, whereas NAC056 overexpression pro-
motes LR initiation and nitrate deficiency tolerance. It was 
found that NAC056 regulates the expression of genes required 
for NO3 

– assimilation and directly targets the key nitrate 
assimilation gene NIA1. In addition, mutation of NIA1 inhib-
ited LR development and nitrate tolerance of 35S:NAC056 
transgenic plants. Therefore, NAC056 mediates the response 
of plants to environmental nitrate signals and promotes root 
growth in Arabidopsis.121

As water is essential for plant growth and development, 
plant roots have evolved different strategies to cope with 
drought. The uneven distribution of water in the soil also 
affects the formation of LRs. Indeed, plant roots can perceive 
extremely small changes in water availability in their sur-
rounding environment and respond with changes in root 
configuration. Only the side of the primary root in contact 
with water produces a new LR, a process known as hydro-
patterning, which in Arabidopsis depends on the SUMO 
modification of the transcription factor ARF7. The modified 
ARF7 combines with IAA3 to form a protein complex that 
inhibits transcription, thus affecting the initiation of LR by 
negatively regulating the expression of auxin response 
genes.122 By contrast, if the soil lacks water, the formation 
of LRs is prevented, a process called xerobranching that is 
mediated by the ABA signaling pathway. However, hydropat-
terning is not affected in ABA signaling mutants. This model 
does not require the coordinated regulation of CK signal 
transduction and auxin biosynthesis, or the participation of 
ABA in arsenate-induced root growth inhibition.123,124 Plants 
adapt to different water levels in the soil by switching back 
and forth between hydropatterning and xerobranching, 
allowing their roots to make more effective use of water 
resources. In addition to being more tolerant to nitrogen 
starvation, maize lines with fewer but longer LRs are more 
tolerant to drought, indicating that the reduction of LR 
growth might help plants deal with general drought stress in 
a slightly arid environment.125

The uptake of water and inorganic salts depends to a large 
extent on the development of LRs. Rice is a typical silicophilic 
crop with a high silicon content. Silicon can enhance the 
toughness of leaves and significantly improves the resistance 
of rice. The absorption rate of silicon is much lower in the rice 
non-lateral-root mutant RM109 and is accompanied by a lower 
deposition of silicon in the leaf epidermis.126 Like those of 
other organs, the growth and development of LRs require 
building blocks and energy. In some cases, reducing the num-
ber of LRs is beneficial for nutrient uptake: For example, under 
drought conditions, maize plants with fewer LRs grow longer 
roots to explore deeper into the soil for a water source, whereas 
plants with many LRs are more limited to the moisture avail-
able at the soil surface.125

Regulation of LR development by environmental factors

Once rooted in the soil, plants face a variety of environmental 
factors, including light and temperature, some of which influ-
ence root structure and LR growth. Arabidopsis shoots that 
perceive a drop in the red/far-red light ratio respond by 
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repressing the formation of LRs. The abundance of the tran-
scription factor ELONGATED HYPOCOTYL5 (HY5) 
increases in the LR primordium when the relative fluence of 
far-red light rises and requires the red/far-red photoreceptors 
phytochromes. Later studies demonstrated that HY5 affects LR 
formation by diminishing the abundance of the auxin trans-
porters PIN3 and LAX3.127 Likewise, during rice root develop-
ment, unilateral light exposure induces the formation of LRs 
on the illuminated side.

Plants typically experience salt stress concurrently with 
drought stress and osmotic stress. In Arabidopsis, salt stress 
results in root enlargement and shortening, while the number 
of LR primordia decreases, and the expression of some genes 
related to the cell cycle is repressed.128 The overexpression of 
chickpea (Cicer arietinum) CAP2 (Chickpea AP2) in tobacco 
(Nicotiana tabacum) increases the number of LRs and 
enhances tolerance to salt stress and osmotic stress. The 
expression of many abiotic stress–related genes and auxin 
response genes related to LR development is also 
upregulated.129 Salt stress can induce the expression of 
NAC2, encoding a transcription factor involved in auxin and 
ETH signaling. NAC2 overexpression changes the number of 
LRs in Arabidopsis, indicating that NAC2 is an important 
factor mediating the inhibition of LRs by salt stress.130The 
Salt Overly-Sensitive (SOS) signaling pathway also plays an 
important role in plant resistance to salt stress. Under low- 
salt conditions, the sensitivity of LR development of the mutant 
sos3-1 to salt stress increases, as a result of lower auxin levels at 
the primordia of cotyledons and LRs.131 These results illustrate 
the close relationship between plant salt stress responses and 
auxin-mediated LR development.

Drought also affects the development of LRs. When water 
availability in the soil is uneven, roots attempt to avoid dry 
areas and grow toward moisture.132 The addition of mannitol 
to the growth medium to simulate drought stress either 
induces the development of LRs in Arabidopsis or delays 
their development. Drought stress induces the accumulation 
of ABA and inhibits the initiation of LRs, which is consistent 
with the inhibition of LR formation by exogenous ABA. This 
process relies on the osmotic stress response protein 
LATERAL ROOT DEVELOPMENT2 (LRD2); LRD2 and 
ABA signaling further interact with auxin, in turn regulating 
LR initiation.133 To delve deeper into the complex mechan-
isms behind drought regulation of LR development, several 
Arabidopsis mutants with defects in drought-mediated 
repression of LR growth have been isolated. In the dig3 
(drought inhibition of lateral root growth3) mutant, drought 
or ABA has little effect on LR development compared to the 
wild type, indicating that DIG3 is necessary for ABA to 
inhibit LR growth.134

Sugars not only are the energy source and intermediate 
metabolites for plant growth and development, but also play 
a role in signal transduction by regulating the development of 
a variety of organs, including LR development. The mode of 
regulation of plant LR growth and development by sugars is 
currently thought to be mediated by the HEXOKINASE1 
(HXK1) and glucose-TOR (TARGET OF RAPAMYCIN) sig-
naling pathways. When glucose is not present in the medium, 
LR growth of both the glucose insensitive2 (gin2) mutant and 

wild-type Arabidopsis is inhibited. Upon glucose addition, LR 
growth returns to normal in both genotypes, indicating that the 
activation of the RAM by glucose is not dependent on the 
HXK1 pathway.135 However, when Arabidopsis seedlings are 
subjected to different concentrations of glucose, the changes in 
the LRs and primary root of the gin2 mutant are lower than 
those seen in the wild type, indicating that glucose imposes an 
effect on LR and primary root growth through a concentration 
gradient that relies on the HXK1 signaling pathway.136 In 
addition, glucose-TOR signaling contributes to the regulation 
of a series of growth processes, including LR development in 
plants.137 Rapamycin, an inhibitor of the TOR kinase, represses 
the signal emanating from glucose-TOR signaling. Wild-type 
Arabidopsis seedlings treated with rapamycin show an induc-
tion of LR growth that is largely comparable to that of estra-
diol-inducible TOR RNA interference lines.

The MEDIATOR (MED) complex plays a variety of func-
tions in plant development, hormone signal transduction, 
and biological and abiotic stress tolerance through tran-
scriptional coordination. MED12 and MED13 are involved 
in root structure formation and auxin and sugar reactions. 
med12 and med13 single mutants showed shoot and root 
phenotypes consistent with effects on auxin homeostasis, 
including changes in primary root growth, LR development, 
and root hair elongation.138 MED12 and MED13 are neces-
sary to activate primary root cell division and elongation, 
auxin response, and stem cell niche (SCN) gene expression. 
It should be noted that most mutant phenotypes can be 
rescued by providing sucrose to the growth medium. The 
growth response of primary roots of wild-type and med12, 
aux1-7, and med12aux1 single and double mutant plants to 
sucrose and to the auxin transport inhibitor NPA revealed 
a correlation between med12 phenotype and the activity of 
auxin uptake permeability enzymes and showed that MED12 
acted upstream of AUX1 in the growth response of roots to 
sugar.138

The spacing of plant LRs along the main root is driven 
by oscillatory signals, usually called the “root clock”,139 

representing a pre-patterning mechanism that can be 
affected by environmental signals. Light is an important 
environmental factor that was previously reported to reg-
ulate the root clock. Light has been found to activate the 
transcription of the light morphology gene HY1 to main-
tain high frequency and amplitude of the oscillation sig-
nal, resulting in the repeated formation of pre-branching 
sites. HY1 produced locally by peripolar cells in stem or 
xylem is sufficient to regulate LR branching. In addition, 
HY1 can induce the expression of HY5 and its homolog 
HYH and regulates the intracellular localization and 
expression of auxin transporter as a signal body, so as to 
promote the accumulation of auxin in the oscillation 
region and stimulate LR branching. These basic mechan-
istic insights improved the understanding of the molecular 
basis of light-controlled LR formation and provide 
a genetic link between stem- and root-derived signals in 
the regulation of periodic LR branching.140
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Roles of gravity and mechanical signals in LR development

The spatial occurrence of LRs is also affected by gravity and 
mechanical factors.23,141–143 For example, a LR primordium143 

can form on the outside of the gravity bend of the primary root. 
The auxin reporter construct DR5:VENUS-YFP (driving Yellow 
fluorescent protein (YFP) expression from the synthetic pro-
moter DR5) showed auxin accumulation in pericycle cells at 
this location.141,142 However, it is difficult to explain how peri-
cycle cells deviating from gravity can accumulate high concen-
trations of the hormone, as auxin transport typically follows 
the direction of gravity.144,145The high auxin accumulation in 
pericycle cells deviating from the gravity vector is thought to be 
due to the effect of mechanical factors on cell size. As a possible 
molecular mechanism, the gene encoding the auxin influx 
transporter AUX1 is highly expressed in pericycle cells, leading 
to the observed high accumulation of auxin.142It has also been 
reported that mechanical induction leads to the expression of 
auxin-responsive genes at the beginning of LR initiation, which 
requires the relocalization of PIN1 in the xylem cells adjacent 
to the columnar pericycle cells.141 Another pathway indepen-
dent of auxin has also been proposed.9,10 The Arabidopsis 
axr4-2 mutant has fewer LRs than the wild type, and the plants 
are generally smaller. In tensile tests, axr4-2 has lower average 
tensile strength than the wild type, but between single plants, 
the single root of axr4-2 with the strongest tensile strength per 
plant was stronger than that of the wild type.146

Other regulatory factors affecting LR development

Other regulators modulate LR development. An Arabidopsis 
double mutant lacking ARABIDILLO-1 and ARABIDILLO-2 
function forms fewer LRs than the wild type, while overexpres-
sion of either gene results in more LRs. Both proteins contain an 
F-box domain, which may regulate LR development by mediat-
ing the degradation of an unknown protein.147

The NADPH oxidase subunits RESPIRATORY BURST 
OXIDASE HOMOLOG D (RBOHD) and RBOHF negatively 
regulate LR development by acting on the pool of superoxide in 
the cell. In an Arabidopsis rbohDrbohF double mutant, super-
oxide radicals accumulate in the root, leading to higher perox-
idase activity; the rbohDrbohF double mutant also produces 
more LRs.148

POLY(ADP-RIBOSE) POLYMERASEs (PARPs) are DNA 
repair enzymes that cope with DNA damage. The parp1parp2 
double mutant produces more LRs that elongate faster than in 
the wild type, which is accompanied by an upregulation of the 
expression of genes related to cell division; the mutant also 
displays a larger meristem.149

Conclusion and prospects

The genes involved in LR development have been studied in 
detail in the model plant Arabidopsis (Figure 1). LRs develop 
post-embryonically but take on the same basic structure as 
primary roots. In Arabidopsis, LR development goes through 
four steps: initiation, primordium development and formation, 
activation of the lateral root apical meristem, and LR orientation 
and elongation.150 LR primordia originate from pericycle cells 
151 outside the xylem at a certain distance from the primary root 
meristem. These cells from the pericycle, also known as primor-
dial cells, undergo multiple rounds of cell division to form the 
incipient LR primordium. The primordial cells are not in the 
RAM, but rather in the differentiation zone. The cells at these 
sites have thus exited the mitotic cycle, but under proper stimu-
lation they reenter the cell division cycle to carry out periclinal 
divisions, form LR primordia, and then break through the 
epidermis to form LRs.152 Once the LR primordium is formed, 
depending on the LR primordium meristem, it can develop into 
a mature LR. Therefore, the initiation of LRs is very critical 
(Figure 2).

Figure 1. LR regulatory network in each developmental stage. Regulatory network of LR growth and development. Solid lines indicate positive (pointed arrows) or 
negative (flat-headed arrows) regulation.
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The formation of LRs is a complex developmental process 
that is tightly regulated to facilitate nutrient and water uptake 
from the soil. For most plants, LR formation takes place after 
embryo development. The Arabidopsis middle root originates 
from pericycle cells 36 in the root elongation region near the 
pole of the protoxylem. After regaining totipotency, these 
pericycle cells undergo a series of divisions to form LR primor-
dia. Each primordium then protrudes through the primary 
root epidermis and becomes a mitotic meristem from which 
the new LR will develop. The mechanisms behind the location 
(longitudinal positioning) and spatial distribution of LR pri-
mordia are not clear.153 Cell division was first observed at 
about 1.4 mm from the tip of the primary root for the first 
emerging LR.19 This length of growth corresponds to a time 
frame of 14 hours from when the central column pericycle cells 
of the protoxylem poles left the RAM.19 The LR provides 
a physical anchor for the plant and enables water and nutrient 
absorption, such that the development of more LRs increases 
the uptake capacity and surface area of the root system. Roots 
undergo a series of phenotypic changes under stress, including 
inhibition of primary root growth, development of more lateral 
and adventitious roots, and development of more root hairs.154 

The above phenotypic changes are the result of plant adapta-
tion to stress, for which LR initiation and development offers 
a good model system. Therefore, the study of the genes and 
regulation involved in LR development has important theore-
tical and practical significance for agricultural production.155

LRs are also of great significance to the normal growth 
of plants. In terms of regulatory mechanisms, a variety of 
regulatory factors, including various hormones, have been 

shown to participate. Despite these advances, several chal-
lenges remain, such as developing a comprehensive and 
accurate understanding of the regulatory network of LR 
development, which has yet to be constructed. In addition, 
to realize the full yield potential of crops, it will be neces-
sary to further explain the interactions between LR devel-
opment and the changing environment. To solve these 
problems, researchers need to further analyze and study 
the regulatory factors and mechanisms of LR development 
from a variety of research perspectives and by various 
technical means.

With the progress of technology, live-cell imaging 156 now 
enables us to track multiple molecular markers at the same 
time over long periods and observe the dynamic changes of 
molecules. Computational modeling 157 in biology can also 
help us simulate and predict the interaction between hormones 
that regulate LRs. RNA single-cell sequencing 158,159 and gene 
editing technology 160 can enable us to better decipher the 
mechanism of hormones regulating LR development.
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