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ABSTRACT
Preclinical evidence suggests that voltage gradients can act as a kind of top-down master regulator 
during embryogenesis and orchestrate downstream molecular-genetic pathways during organ regen
eration or repair. Moreover, electrical stimulation shifts response to injury toward regeneration instead of 
healing or scarring. Cancer and embryogenesis not only share common phenotypical features but also 
commonly upregulated molecular pathways. Voltage-gated ion channel activity is directly or indirectly 
linked to the pathogenesis of cancer hallmarks, while experimental and clinical studies suggest that their 
modulation, e.g., by anesthetic agents, may exert antitumor effects. A large recent clinical trial served as 
a proof-of-principle for the benefit of preoperative use of topical sodium channel blockade as a potential 
anticancer strategy against early human breast cancers. Regardless of whether ion channel aberrations 
are primary or secondary cancer drivers, understanding the functional consequences of these events 
may guide us toward the development of novel therapeutic approaches.
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Introduction

Although genetic information is responsible for the 
synthesis of proteins during human and animal 
embryogenesis, it remains uncertain whether the 
instructions for protein–protein interactions during 
embryogenesis are also “hidden” in the genetic code. 
State-of-the-art research suggests that experimental 
modulation of voltage gradients induced by ion chan
nels and pumps can orchestrate downstream molecu
lar-genetic pathways of organ regeneration or repair, 
acting as a kind of top-down master regulator [1–3].

Bioelectrical signals drive embryogenesis and 
regeneration

In experiments conducted in planaria worms, Levin 
et al. were able to show that a bioelectrical layer, rather 
than genetic information, was orchestrating the regen
erative patterns in the worms after amputation of large 
portions of their body [1]. Scientists were able to grow 
two different heads instead of a head and a tail, simply 
by using appropriate bioelectrical signals [1]. Other 
studies also showcased that electrical stimulation shifts 

the response to injury toward regeneration instead of 
healing or scarring. Herrera-Rincon et al. reported 
that the use of a bioreactor device at amputated sites 
in adult African aquatic clawed frogs (Xenopus laevis) 
triggered a degree of regenerative response that is 
normally not seen [1–3].

Transcriptome analysis and RNA sequencing 
revealed that the bioelectrical signals altered gene 
expression patterns in cells at the amputation site. 
Genes involved in scar-tissue formation signaling 
and immune response were downregulated, while 
genes associated with oxidative stress, white blood 
cell activity, or serotonergic signaling were upregu
lated. Compared to control frogs, the ones with the 
device developed thicker bones, with more prominent 
vascularization and innervation, while their swim
ming patterns were closer to that of the non- 
amputated frogs [3].

It has also been suggested that ectopic organ 
formation can be triggered via an appropriate 
manipulation of voltage gradients [4]. Moreover, 
experiments showed that a multi-component sleeve 
assembly that encompassed the amputated site was 
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effective in supporting the early stages in murine 
fingertip regeneration, when combined with electri
cal stimulation [5]. Several cell types exhibit galva
notaxis, while in early vertebrate embryos, electric 
fields not only regulate cell polarization but can also 
provide important cues during cellular movement 
and pattern formation [6]. Experiments in zebrafish 
suggested that a mutation in potassium channels 
that affects pore formation can alter the migration 
of melanosomes. Altering bioelectrical events dur
ing early embryogenesis in Xaenopus tadpoles may 
also cause melanocytes to inappropriately colonize 
organs or tissues [6].

In vitro studies have shown that electrical 
stimulation can induce cell migration, while 
in vivo studies suggest that osteogenesis, vascu
logenesis, extracellular matrix deposition, and 
cell proliferation can all be increased by appro
priate electric stimulation [4]. These results add 
to the growing body of evidence suggesting that 
tiny bioelectrical signals can surge among and 
through the cells and regulate gene expression to 
promote organogenesis and tissue or organ 
regeneration. These bioelectrical signals are the 
results of ion channel-induced cell polarity and 
voltage gradient changes [4].

Ion channels are not only involved in cellular 
electrogenesis and excitability but they can also 
form macromolecular complexes and interact with 
signaling molecules or adhesion proteins. In addi
tion, they regulate cellular proliferation, differentia
tion, apoptosis, as well as cellular metabolism. 
Changes in the ion composition inside the cells 
affect several cellular events and molecular path
ways. One notable example is cell movement 
which requires an ion channel-orchestrated 
sequence of cellular protrusions and retractions [7].

Effects on cancer

Cancer is characterized by uncontrolled cellular 
proliferation, along with increased and inap
propriate migration, apoptosis evasion, and 
abnormal neo-angiogenesis. Cancer and embryo
genesis not only share common phenotypical fea
tures but also commonly upregulated molecular 
pathways (Table 1) [8–18]. Given the similarities, 
it is reasonable to hypothesize that constantly 
altered or defective bioelectrical signaling trig
gered by ion channel aberrations may be a key 
driver in cancer development and progression. 
Genomic defects usually associated with cancer, 
sometimes do not accurately predict tumor 
aggressiveness, pointing toward the existence of 
additional drivers [19]. There is a growing body of 
evidence in the literature suggesting a pro- 
tumorigenic effect of various ion channel aberra
tions [7]. Mutations or expression losses in vol
tage-gated ion channel genes, as well as abnormal 
expression/function are linked to several tumor 
types. Table 2 provides a summary of the roles 
that voltage-gated ion channels play in the devel
opment of cancer (Table 2) [20–34]. In breast, 
prostate, cervical, and ovarian cancers, preclinical 
evidence suggests that voltage-gated sodium chan
nel alterations directly affect cell cycle regulation, 
tumor cell movement, metastasis, and calcium 
levels within cells [21–25]. Voltage-gated potas
sium channels have been implicated in apoptosis 
induction, cell movement, and cell growth regula
tion in tumors such as melanoma, glioblastoma, 
breast, and prostate cancer [21,25–29]. 
Overwhelming evidence also supports the critical 
role of voltage-gated calcium channels in various 
stages of development and progression of prostate 
cancer, melanoma, glioblastoma, and adrenal 

Table 1. Common pathways that play a role in embryogenesis and cancer [8–18]. CNS=central nervous system, SCLC=small-cell lung 
cancer, ALL=acute lymphoblastic leukemia.

Pathway Role in Embryogenesis Role in Cancer

Wnt Involved in myogenesis, CNS, tooth development and limb 
patterning

Wnt alterations affect beta-catenin signaling and 
Cyclin D1 activity

Hedgehog Involved in development of CNS, lung, gut, face, limbs, blood, 
testis, etc

Aberrations involved in pathogenesis of 
medulloblastoma, SCLC

Notch Controls embryonic and postnatal tissue differentiation, cell fate 
specification and stem cell maintenance

Aberrations involved in neuroblastomas, SCLC, T-cell 
ALL, prostate, skin, and cervical cancer

Protease activated 
receptors

Anterior-posterior cell patterning, separation of eye fields Potentially linked with colon, lung, laryngeal, renal 
and breast cancer

Bone morphogenetic 
peptide/TGF beta

Affects right-left symmetry, mesoderm formation, distal limb 
morphogenesis, endochondral bone formation

Implicated in colon, lung cancer, specific lymphomas. 
Likely plays a role in bone metastasis formation
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adenomas. They are known to regulate tumor cell 
growth rate, apoptosis induction, and metastasis 
in bone tissue [21,30–32]. Voltage-gated chloride 
channels impact prostate cancer and gliomas by 
regulating parameters such as tumor cell growth 
rate, cell movement, volume level maintenance, 
and calcium homeostasis inside the cells [33,34]. 
These findings emphasize the role played by var
ious voltage-gated ion channels in several types of 
cancers.

Ion channel activity is directly or indirectly 
involved in the pathogenesis of all cancer hall
marks, while several experimental and clinical stu
dies suggest that their modulation may exert 
antitumor effects [35]. A notable example is the 
positive association between anesthetic drug use 
and increased overall survival in cancer patients. 
Potential mechanisms have been proposed, includ
ing innate and adaptive immune system modula
tion, or a direct effect on ion channel signaling 
[36]. Interestingly, local anesthetics continue to 
inhibit the activity and function of voltage-gated 
sodium channels (VGSCs) beyond the intraopera
tive period [37]. In a study using SW620 cell line 
(metastatic colon cancer), ropivacaine was found 
to act as a potent inhibitor of metastatic cancer cell 
invasion [38]. Ropivacaine was also shown to play 
a role in reducing prostate cancer metastatic 
potential, by altering intracellular ion concentra
tion and cellular homeostasis [7]. Lidocaine and 
bupivacaine are other VGSC blockers which dis
played antitumor effects in experimental models 
[7,39,40].

Non-anesthetic VGSC inhibitors, such as rano
lazine or phenytoin, have also been shown to exert 
antitumor effects in preclinical models of breast 
cancer [41,42]. A recent retrospective study inves
tigated the association between the use of VGSC 
inhibitors and cancer-specific mortality in patients 
with breast, prostate, and colorectal cancer [43]. 

Despite the limitations of retrospective design and 
the fact that additional confounding factors may 
underlie the associations, it was shown that VGSC- 
inhibiting antiarrhythmic exposure, but not antic
onvulsant, was associated with improved cancer- 
specific mortality.

Accumulative evidence suggests that VGSC are 
aberrantly expressed in non-excitable cancer cells 
from different origins but not in cognate normal 
tissues. Some diseases with mutations in VGSC 
genes might predispose to tumorigenesis, which 
further suggests a causal association. Several 
tumors display abnormally high intracellular con
centrations of sodium ions. Many critical cellular 
activities that are highly upregulated in cancer 
(including glutamine and glucose import) are 
dependent on the electrochemical Na+ gradient 
maintenance across the plasma membrane. 
Moreover, altered pH regulation and membrane 
potential depolarization have been proposed to 
play important roles during cancer metastasis. 
VGSCs also act as cell adhesion molecules [43– 
47]. Overall, these findings lead scientists to pro
pose that abnormal expression of VGSCs may 
result in the re-expression of a fetal phenotype in 
a group of pathological cells.

On the other hand, the heterogeneous family of 
potassium channels constitute arguably the largest 
group of ion channels. Abnormal voltage-gated 
potassium channel expression is documented in 
numerous cancer types, while they constitute well- 
known molecular targets for the development of 
novel cancer therapies [48]. It has been suggested 
that their expression can modify multiple cancer 
progression mechanisms, including cell cycle con
trol, proliferation, cell migration, invasion, and 
apoptosis [49]. For example, voltage-gated K+ chan
nels Kv10.1 are restrictively expressed in the brain, 
but are also overexpressed in 70% of solid tumors of 
various origins [50]. In vitro and in vivo studies 

Table 2. The role of ion channels and P-class pumps in malignancy [20–34].
Ion channel Malignancies implicated Effect

Voltage-gated sodium 
channels

Breast, prostate, cervical, ovarian Cell cycle arrest, regulates tumor cell migration, metastasis, regulates 
intracellular calcium levels

Voltage-gated potassium 
channels

Melanoma, glioblastoma, prostate, 
breast cancer

Apoptosis induction, migration, mobility, regulates cell proliferation

Voltage-gated calcium 
channels

Prostate, melanoma, glioblastoma, 
adrenal adenomas

Regulates tumor cell proliferation, apoptosis, migration, bone metastasis

Voltage-gated chloride 
channels

Prostate, gliomas Regulates tumor cell proliferation, migration, cell-volume regulation, 
intracellular calcium homeostasis
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showed that Kv10.1 suppression via known Kv10.1 
inhibitors, targeted monoclonal antibodies or using 
siRNA generated apoptosis and decreased cell pro
liferation and migration, while also sensitized tumor 
cells to antimetabolic agents [50–53].

Kv11.1 (or HERG) is another extensively studied 
voltage-gated K+ channel which is overexpressed in 
various cancer cell lines. It is physiologically 
expressed in cardiac myocytes, smooth muscles, 
neurons, and neuroendocrine cells. It has been sug
gested that its aberrant expression in cancer regu
lates proliferation, invasiveness, and migration. 
Although Kv11.1 blockers have shown antineoplas
tic effects in vivo, it comes with a caveat of QT 
prolongation and torsadogenesis that could lead to 
fatal arrhythmia. Thus, current studies and clinical 
trials focus on non-torsadogenic Kv11.1 blockers 
[54,55]. On the other hand, experiments suggested 
that HERG1 hyperstimulation may result in 
a senescence-induced irreversible breast cancer cell 
proliferation inhibition [56]. Although the findings 
regarding Kv11.1 channels are conflicting, they sug
gest an important role in cancer biology that needs 
to be further elucidated.

The role of voltage-gated calcium channels in the 
pathogenesis of different cancers has also been 
increasingly recognized. Extensive research is cur
rently focused on their use as therapeutic targets or 
predictive markers against several tumor types. 
Calcium ion homeostasis disruption is a well-known 
phenomenon in cancer. There are several classes of 
calcium channels via which extracellular Ca2+ enter 
cells [7,57,58]. Intracellular Ca2+ influx is usually the 
result of calcium repletion in the endoplasmic reticu
lum, which subsequently repletes the stores and acti
vates several downstream signaling pathways. 
Although not a requirement for cancer initiation by 
itself, the consequences of aberrant intracellular cal
cium concentration, calcium oscillations, and cal
cium-regulated signaling can be significant and 
contribute to cancer initiation and progression 
[7,57,58]. However, the association between calcium 
channel blocker use and prevalence of various cancers 
in retrospective studies have shown mixed results [58].

Voltage-gated chloride channels are transmem
brane proteins that regulate chloride ion homeostasis 
in different cells. They play a role in a variety of 
physiological roles, such as volume homeostasis, reg
ulation of excitable cells, cell cycle regulation, pH 

regulation, transepithelial transport, and organic 
solute transport. Cell volume alterations are pivotal 
for cellular proliferation and apoptosis [7,59–61]. 
Aberrations in cell volume regulation can predispose 
to apoptosis, while strengthening the regulatory 
response to volume decrease may confer resistance 
to apoptosis. Accumulative evidence suggests that 
upregulation of various voltage-gated chloride chan
nels might be associated with the pathogenesis of 
different tumor types, hence they are currently being 
studied as promising antineoplastic targets [7,59–61].

Evidence from clinical studies

A recent large prospective clinical study by Badwe 
et al. investigated the impact on survival of preopera
tive, peritumoral infiltration of lidocaine in patients 
with early breast cancer [62,63]. Early disease was 
defined as operable cancer with clinically negative or 
limited nodal disease and no evidence of distant 
metastasis. In this open-label, multicenter randomized 
study, 1583 patients who were not assigned to receive 
neoadjuvant chemotherapy received peritumoral 
injection of 0.5% lidocaine followed by surgery (786 
patients) or surgery alone (797 patients). All patients 
received standard adjuvant postoperative treatments. 
After a median follow-up of 68 months, topical lido
caine increased 5-year disease-free survival (DFS) 
(hazard ratio [HR]: 0.74; 95% CI: 0.58 to 0.95; p-value  
= 0.017) and 5-year overall survival (OS) rates (HR: 
0.71; 95% CI: 0.53 to 0.94; p-value = 0.019). Patients 
who received lidocaine had an almost 4% improve
ment in overall survival, which is comparable to the 
benefit received by other current standard-of-care 
adjuvant interventions. The effect of topical lidocaine 
was similar in all the examined subgroups defined by 
menopausal status, tumor size, nodal infiltration sta
tus, hormone receptor status, or human epidermal 
growth factor receptor 2 status. Moreover, the benefit 
was present regardless of whether the patients under
went mastectomy or removal of only the tumor and 
surrounding tissue. Interestingly, no adverse events 
accompanied lidocaine injection [62]. Limitations of 
the study include the single-nation nature, the lack of 
placebo control, and the fact that investigators were 
unblinded to the study's intervention. Despite the 
limitations, these results are remarkable, given the 
lack of toxicity, the ease and low cost of intervention, 
and the large sample size of the trial [62].
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In addition, surgical resection of a tumor and the 
surgical stress response may predispose to metastasis 
[63]. Surgical excision can potentially modify 
immune function, activate neural and proinflamma
tory signaling, and may even induce dissemination 
of circulating tumor cells and increase prometastatic 
pathways [63]. The use of local anesthetic drugs 
exerts effects that can theoretically pose anticancer 
activity. For example, pain alleviation may decrease 
surgical stress response. Other studies have also 
linked lidocaine with the alteration of pathways cri
tical for tumor cell proliferation, invasion, angiogen
esis, and apoptosis evasion [63]. The study by Badwe 
et al. serves as a proof-of-principle for the role of 
voltage-gated sodium channel blockade as 
a potential anticancer strategy against human breast 
cancers. Apart from the obvious importance as 
a local treatment strategy, it calls for the planning 
of further carefully designed clinical trials to expand 
on the concept of voltage-gated ion channels as 
tumor drivers. Although local lidocaine may act 
more through affecting the microenvironment, 
a direct and long-lasting effect on tumor cells is 
also highly likely. This is of particular importance 
because we should always consider the possibility 
that cancer cells have already escaped to the systemic 
circulation at the time of surgery.

Discussion

Voltage-gated ion channel activity is responsible for 
the production and transmission of signals that 
orchestrate critical steps in human and animal 
embryogenesis. Cancer-promoting aberrations in 
these channels may result in excessive activation of 
signals that favor cell proliferation, apoptosis eva
sion, cell migration, or neovascularization. It may 
also suppress growth-inhibitory signals [21]. 
Frequently, tissue and organ homeostasis is achieved 
via a cross-talk between activating and inhibitory 
signals. Defects in normal cellular cross-talk impairs 
tissue homeostasis, increasing the risk for abnormal 
events, such as the formation of a tumor. The latter is 
composed of a group of cells, which lack the ability 
to interact with the surrounding stroma in a way that 
promotes healthy homeostasis [64]. Abnormal bioe
lectrical signals might result in events with a degree 
of similarity to embryogenesis and development. 
However, embryogenesis is programmed to occur 

in the growing organism, under circumstances that 
are not present anymore in the adult organism. This 
provides a useful theoretical framework that is able 
to explain how simple changes in voltage-gated ion 
channel activity can contribute to tumorigenesis. 
Regardless if these aberrations are the true primary 
cancer drivers or the result of other drivers, under
standing the functional consequences of these events 
may guide us toward the development of novel ther
apeutic approaches.

Conclusion

There is a growing body of evidence suggesting 
that voltage-gated ion channels may act as tumor 
drivers in several cancer types. Given their impor
tance in human physiology, the efforts to under
stand bioelectric signals and ion channel blockers 
should intensify.

Highlights

● Cancer and embryogenesis not only share 
common phenotypical features but also com
monly upregulated molecular pathways.

● Elegant experiments showed that bioelectrical 
signals act as a top-down master regulator 
during embryogenesis, while electrical signals 
shift response to injury toward regeneration 
instead of healing or scarring.

● Voltage-gated ion channel activity is directly 
or indirectly linked to the pathogenesis of all 
cancer hallmarks, while experimental and 
clinical studies suggest that their modulation 
may exert antitumor effects.

● A large recent clinical study showed that pre
operative administration of local anesthetics 
in patients with early breast cancer can 
improve survival.

● The efforts to understand and therapeutically 
exploit bioelectric signals in cancer should 
intensify.
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