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ABSTRACT
Secondary immunoglobulin diversification by somatic hypermutation and class switch recombi-
nation in B cells is instrumental for an adequate adaptive humoral immune response. These 
genetic events may, however, also introduce aberrations into other cellular genes and thereby 
cause B cell malignancies. While the basic mechanism of somatic hypermutation and class switch 
recombination is now well understood, their regulation and in particular the mechanism of their 
specific targeting to immunoglobulin genes is still rather mysterious. In this review, we summarize 
the current knowledge on the mechanism and regulation of secondary immunoglobulin diversi-
fication and discuss known mechanisms of physiological targeting to immunoglobulin genes and 
mistargeting to other cellular genes. We summarize open questions in the field and provide an 
outlook on future research.
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Our immune system deals daily with dangerous 
events, such as infection or tissue damage. While 
innate immunity provides a quick and effective 
response, the adaptive immune system responds 
more slowly, but generates a memory of the 
adverse events which may be kept for a lifetime 
[1]. T and B cells are the effector cells of adaptive 
immunity in jawed vertebrates. They carry specific 
antigen receptors formed by V(D)J recombination 
during development of their precursor cells 
(Figure 1) [2], which may specifically recognize 
a wide variety of pathogens and other foreign 
agents. While T cells do not further change their 
antigen receptors when they are activated during 
an immune response, B cells do respond not only 
by cellular activation but also by further diversify-
ing the genes coding for their B cell receptor/anti-
body, i.e. the immunoglobulin (Ig) genes. 
Diversification via somatic hypermutation alters 
the variable portion of Ig genes for affinity 
maturation, and class switch recombination alters 
the constant region for a change in antibody effec-
tor functions (Figure 1) [3].

While class switch recombination may occur 
upon B cell activation even outside of follicles 
[4], affinity maturation via somatic hypermutation 

is generally thought to require a follicular germinal 
center reaction (Figure 2) [5–7], although pre- 
germinal center diversification of marginal zone 
B cells has been suggested [8]. For germinal center 
formation, activated B cells proliferate massively in 
secondary lymphoid organs, and form a finally 
bipartite morphological structure within the folli-
cle consisting of a dark and a light zone [9]. In the 
dark zone of germinal centers, proliferation of the 
B cells and somatic hypermutation of the Ig vari-
able genes occurs, while in the light zone, B cells 
with variant antigen receptors are selected based 
on antigen-binding affinity. By taking up an anti-
gen presented by follicular dendritic cells and pro-
cessing it for presentation to antigen-specific 
T cells, B cells that recognize the cognate antigen 
with relatively higher affinity are positively 
selected as they receive survival signals from the 
T cells via CD40 ligation [10]. Class switch recom-
bination was long thought to also occur in the 
germinal center light zone, but recent evidence 
suggests that it is a rare event in these structures 
[11] and rather occurs before B cells enter the 
germinal center reaction. B cells that have success-
fully undergone somatic hypermutation and selec-
tion in the germinal center may differentiate into 
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either long-lived plasma cells to produce large 
amounts of high affinity antibodies, or memory 
B cells which carry the memory of the respective 
pathogenic insult throughout lifetime [12].

Both somatic hypermutation and class switch 
recombination are initiated by the same enzyme, 
activation-induced cytidine deaminase (AID) 
[13,14], although low-level class switch recombina-
tion can occur in the absence of AID due to 
intrinsic properties of the switch regions [15]. 
AID deaminates cytosines leading to uracils in 
transcribed DNA [16,17]. The lesions are then 
processed by error-prone repair pathways, leading 
to either point mutation introduction during 
somatic hypermutation, or recombination of new 
constant regions during class switch 

recombination [18]. In some farm animals like 
chicken and rabbits, but not in humans and 
mice, a related process called Ig gene conversion 
is based on processing of AID-induced lesions by 
homologous recombination with upstream pseu-
dogenes (Figure 1) [19,20]. All three processes are 
focused largely, but not entirely, on the Ig genes by 
multiple regulatory processes. Their deregulation 
may lead to mutations or recombination in other 
genes and hence to genetic instability and lym-
phoma development [21]. In fact, most human 
B cell lymphoma entities are derived from B cells 
that have undergone a germinal center reaction 
[22]. It is therefore imperative to understand 
mechanisms of normal targeting of somatic hyper-
mutation and class switch recombination to the Ig 
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Figure 1. Ig diversification processes V(D)J recombination recombines one V, one D, and one J segment of the Ig genes to a V(D)J 
joint that codes for the variable region of the antibody. Somatic hypermutation is based on the introduction of AID-induced lesions 
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genes, to better identify mechanisms of deregula-
tion of these processes during lymphomagenesis. It 
has been shown that adequate targeting of somatic 
hypermutation is based, on the one hand, on tar-
geting of AID, and, on the other hand, on target-
ing of locus-specific error-prone repair processes 
[23]. We will therefore discuss these two regula-
tory branches separately here.

Regulation of AID

AID is a dangerous mutator, and is thus regulated 
at multiple levels, including regulation of mRNA 
expression, regulation of protein localization and 
stability, and regulation of its targeting to Ig genes. 
Regulation of AID mRNA expression. AID expres-
sion is largely confined to activated and germinal 
center B cells, which is due to regulation of its 
mRNA expression by a multitude of transcription 
factors (Figure 3A). There are four conserved reg-
ulatory regions in the AID gene, on which binding 
sites for 19 transcription factors cluster [24]. 
Among them are B cell-specific transcription fac-
tors such as Pax-5 and E2A [25,26], as well as 
factors specific for B cell activation, such as NF- 

kappaB, HoxC4 and Stat6 [27–29]. Also, the PI3 
kinase pathway and MAP kinase signaling impinge 
upon AID expression [30,31]. The key germinal 
center transcription factor Bcl-6 increases AID 
gene expression indirectly by repressing the 
plasma cell-specific transcription factor Blimp-1, 
which in turn represses the activating factor Pax- 
5 [32,33]. Also, AID mRNA is regulated by 
miRNAs, such as the inhibitory miRNA155 
which is repressed by Bcl-6 [34–36].

Regulation of AID protein localization and sta-
bility. The AID protein needs to act in the nucleus 
but is largely confined to the cytoplasm in normal 
cells by interactions with eEF1A (Figure 3B) [37– 
39]. Nuclear translocation of AID involves 
a N-terminal structural nuclear localization 
sequence recognized by importins, and 
CTNNBL1, SRSF1–3 and GANP aid AID nuclear 
translocation [40–44]. A C-terminal nuclear 
export sequence regulates export of AID by 
CRM-1 [45–48]. Also, the nuclear-to-cytoplasmic 
ratio of AID is determined by a differential regula-
tion of its half-life within the two compartments. 
While cytoplasmic AID is relatively stable with 
a half-life of 18–20 hours, due to interactions 
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with HSP40 and HSP90 [49,50], the nuclear half- 
life of AID is about 2.5 hours [51–53], showing 
that AID is subject to rapid proteasomal degrada-
tion mediated by the E3 ubiquitin ligase CUL7 or 
REG-γ when it enters the nucleus [52,53]. It has 
been shown that AID interacts with the transcrip-
tion factor YY1 to increase its nuclear stabi-
lity [54].

The cellular localization and stability of the AID 
protein is also regulated by the cell cycle. Even 
though the AID protein was found to be expressed 

throughout the cell cycle [51], the fluorescence of 
an AID-YFP fusion protein was detected in the 
nucleus of chicken B cells mainly in G1-phase 
cells [55]. A later study showed via time-lapse 
imaging of AID-EGFP-expressing primary mouse 
B cells that AID accumulates in the nucleus exclu-
sively in the early G1 phase, and this has been 
shown to correlate with the activity of AID being 
restricted to this phase of the cell cycle [56]. In 
S/G2, nuclear AID has been proposed to undergo 
faster degradation than in G1 [57], and this 
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observation, together with the yet unexplored pos-
sibility of increased active export to the cytoplasm, 
may explain the reduced AID nuclear levels in 
S/G2.

Regulation of AID targeting to Ig loci. A lot of 
effort has been made to clarify mechanisms of AID 
targeting to the Ig locus (Figure 3C). AID detects 
and deaminates single-stranded DNA by interact-
ing with RPA [58]. A role of Ig transcription in 
opening up the double-stranded DNA was 
detected early by several studies, and a specific 
role for Ig enhancers has been shown convincingly 
[59,60]. In particular, the 3’ regulatory region 
enhancer (3’RR) has been shown to boost second-
ary Ig diversification by increasing accessibility of 
the region for AID as well as regulating locus 
contraction and loop extrusion during CSR 
[61–64].

A more focused role of transcription in direct-
ing AID targeting emerged when it was shown that 
AID localizes to promotor-proximal stalled tran-
scription complexes via interaction with Spt-5 
[65–68]. Transcriptional stalling shortly after 
initiation is a feature of paused genes [69] and 
affects less genes than transcription as such; this 
mechanism may also explain why only the 5’ por-
tion of the gene rather than the entire transcrip-
tion unit is targeted by AID. Also, a role of super- 
enhancer-induced convergent transcription and 
the resultant non-coding RNA in directing AID 
targeting to its on- (Ig genes) and off-targets has 
been observed [70–73]. A particular example is 
provided by the non-coding germline transcript 
produced in switch regions, which promotes the 
formation of R-loops and quadruplexes, thereby 
facilitating access of AID to the single-stranded 
DNA [74,75]. This may explain why processing 
of the switch transcript by splicing is required for 
class switch recombination to occur [76,77].

Also, AID interaction factors are involved in 
bringing AID to the correct locus. The splicing 
regulator PTBP2 is required for AID binding to 
switch regions, likely via binding of PTBP2 to 
switch transcripts [78]. GANP helps to bring 
AID to the Ig variable region by modulating chro-
matin assembly via its histone acetyltransferase 
domain [79]. The RNA PolII associated PAF com-
plex apparently serves as a binding platform for 
AID at the switch and variable regions [80]. 14-3-3 

adapter proteins bring AID to the switch regions 
by binding to their repetitive 5’-AGCT-3’ motifs 
and to the AID C-terminus [81]. The association 
of 14-3-3 with the switch region is also facilitated 
by the combinatorial H3K9acS10ph mark that 
selectively labels donor and acceptor switch 
regions [82]. AID interaction with KAP-1 and 
HP-1 tethers AID to the donor switch region by 
specific binding of HP-1 to H3K9me3 marks [83]. 
Other epigenetic marks are also associated with Ig 
diversification, but whether they affect AID 
recruitment or other processes is unclear [84]. 
Once bound to the locus, a licensing step activates 
AID for deamination by a thus far undefined 
mechanism [85]. AID’s access to both coding and 
non-coding strand of the transcribed DNA is 
mediated by the exosome that degrades prema-
turely terminated transcripts near enhancers and 
promoters [86]. Finally, certain sequence motifs 
within the Ig genes have evolved to focus AID 
activity to its AGCT hotspots [87,88].

An apparent locus-specific event is the regula-
tion of AID by phosphorylation (Figure 3D). 
Early work indicated a role of protein kinase 
A (PKA), which phosphorylates serine 38 of 
AID and thereby contributes to efficient somatic 
hypermutation, class switch recombination, and 
Ig gene conversion [89–95]. In B cells, PKA has 
been shown to localize specifically to the Ig genes 
[96], but how this occurs and how PKA activity is 
induced was not clear. Apparently, AID-induced 
DNA breaks induce PKA-mediated AID phos-
phorylation via ATM activation [97], leading to 
a positive feedback loop for locus-specific AID 
activity during class switch recombination. 
During somatic hypermutation, a potential locus- 
specific regulation by a negative feedback loop 
occurs, involving the DNA break-associated acti-
vation of PARP-1 and inhibition of AID activity 
by binding of AID to the poly(ADP-ribose) 
chains synthesized by PARP1 [98]. While gen-
ome-wide induction of AID-PARP-1 binding 
may be mediated by treatment of cells with gen-
otoxic agents [99], under physiological circum-
stances, the process is likely rather specific for 
certain genomic locations as PARP-1 activation 
requires either an (AID-induced) DNA break or 
PARP-1 targeting to certain genes by transcrip-
tion factors [100]. Interestingly, the Bcl-6 locus 
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has been described to be regulated by PARP-1 
activity [101], so one of the most prominent non- 
Ig genes subject to hypermutation in the germinal 
center [102] may be regulated by such 
a mechanism.

In summary, multiple processes regulate specific 
AID activity at the target loci. It appears possible 
that most of them are now identified, and dereg-
ulation of either process has the potential to cause 
unrestrained mutagenesis [103]. Interestingly, 
though, AID has been shown to associate with 
thousands of genes in B cells [104] and to induce 
lesions in hundreds of them [23,72,73,105], but 
not all of these genes eventually hypermutate 
[23,105,106]. Thus, DNA repair processes must 
be (de)regulated in a locus-specific manner as well.

Regulation of DNA repair processes

Deamination of cytosine by AID leads to uracil in 
the DNA [16,17]. Multiple DNA repair pathways 
process these lesions in Ig genes (Figure 4). First 
and foremost, the base excision repair pathway is 
responsible for error-free processing of such 
lesions in all cells of our body. This pathway 
includes the removal of the uracil by Uracil- 
N-Glycosylase (UNG), followed by the nicking of 
the resultant abasic site by apurinic endonuclease 
(APE). The resultant break then serves as substrate 
for Polymerase ß (in concert with XRCC1) to fill 
the gap and insert the original nucleotide. Error- 
free base excision repair also processes AID- 
induced lesions in the Ig genes, as Ig diversifica-
tion is increased in B cells haploinsufficient for 
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XRCC1 or deficient for Polβ [107,108]. However, 
base excision repair must be at least somewhat 
perturbed during Ig diversification, as the inter-
mediates of this pathway serve as substrates for 
error-prone processing by other pathways. The 
uracil may be simply replicated over, leading to 
transition mutations at the respective C:G position 
(phase 1A of somatic hypermutation). Also, the 
abasic site formed upon uracil excision may be 
bypassed by specialized translesion polymerases 
such as Rev1, which insert random nucleotides 
opposite of the uninstructive lesion leading to 
transition and transversion mutations at C:G 
(phase 1B) [109]. As an alternative to base excision 
repair, mismatch repair factors may recognize the 
U:G mismatch and catalyze the removal of nucleo-
tides from one strand of DNA in the attempt to 
repair the damage. The process generates a single- 
stranded gap which is subsequently refilled mainly 
by polymerase ηupon PCNA monoubiquitination 
by Rad6/Rad18 [110–115]. This results in muta-
tions specifically at A:T base pairs (phase 2). Also, 
the strand breaks introduced by APE may com-
bine to form DNA double strand breaks, which are 
a substrate for non-homologous end joining dur-
ing class switch recombination [116]. Mismatch 
recognition and uracil removal have been shown 
to be complementary pathways for A:T mutagen-
esis and class switch recombination [117], so some 
residual switching occurs in UNG deficient cells, 
while some A:T mutagenesis can still be found in 
mismatch repair deficient cells. Finally, the single- 
or double-strand breaks may serve as substrates 
for homologous recombination, leading to Ig 
gene conversion or an alternative pathway of 
error-free repair of the AID-induced lesions 
[118,119].

There is an interesting relationship between 
somatic hypermutation, class switch recombina-
tion, and homologous recombination. When 
homologous recombination is inactivated in the 
chicken DT40 cell line, the cells stop diversifying 
their Ig locus via Ig gene conversion and instead 
switch to human/murine-like somatic hypermuta-
tion [120]. This indicates that homologous recom-
bination could counteract the error-prone 
processing of AID-induced lesions via translesion 
polymerases, suggesting that homologous 

recombination potentially needs to be downregu-
lated in the human/murine Ig locus to enable 
somatic hypermutation in the first place. 
However, mouse studies have later demonstrated 
that homologous recombination in S/G2 repairs 
AID-induced DNA double-strand breaks in off- 
target genes but also in the switch regions if class 
switch recombination was not accomplished, 
thereby protecting the B cell genome from chro-
mosomal aberrations [119,121]. By analyzing the 
hypermutating variable region, our lab has then 
shown that homologous recombination is indeed 
active in the Ig locus but prevents only a fraction 
of C:G transversion mutations and is rather 
needed to support survival of highly mutating 
B cells [122]. During class switch recombination, 
the decision of repair of the resultant DNA double 
strand breaks via classical non-homologous end 
joining rather than alternative repair pathways is 
mediated by the p53bp1/Rif1 module with the help 
of other factors such as Shieldin and hnRNPU 
[123–125].

Accordingly, several mutagenic DNA repair 
pathways contribute to somatic hypermutation, 
while error-prone recombination forms the basis 
of class switch recombination and Ig gene conver-
sion. As mentioned before, this error-prone pro-
cessing of DNA lesions in the Ig genes is locus- 
specific, as AID-induced lesions in other cellular 
genes are largely, but not entirely, repaired in an 
error-free fashion by the same repair pathways 
mediating Ig diversification [23]. In principle, 
one may envision four potential ways of how this 
may occur: 1) each repair pathway is separately 
deregulated (globally in B cells undergoing Ig 
diversification, or in a locus-specific manner) by 
a pathway-specific process; 2) AID itself affects 
DNA repair in the genes it targets; 3) an upstream 
regulator of all associated repair pathways, such as 
checkpoint signaling, is deregulated in a locus- 
specific fashion or 4) repair is error-prone in the 
Ig genes as it occurs in the wrong cell cycle phase. 
The truth likely lies within a combination of these 
possibilities, as explained next.

Global downmodulation of base excision repair 
in cells undergoing Ig diversification. As men-
tioned above, base excision repair must be at 
least somewhat perturbed in cells undergoing 
Ig diversification, as its intermediates (uracils, 
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abasic sites and strand breaks) serve as starting 
points for other mutagenic repair pathways in 
these cells. Within the last years, four studies 
have revealed that base excision repair is appar-
ently globally impaired by several mechanisms 
in cells undergoing Ig diversification. 
Concerning the uracil, two groups reported the 
upregulation of Fam72A in activated and germ-
inal center B cells, which binds to UNG2 and 
triggers its degradation [126,127]. Thereby, ura-
cils may remain in the DNA and serve as tem-
plates for error-prone replication or recognition 
by the mismatch repair pathway for A:T muta-
genesis. Concerning the abasic site, the down-
regulation of APE1 in germinal centers and 
replacement by the less proficient APE2 has 
been shown [128]. This likely results in abasic 
sites lingering in the DNA until translesion 
synthesis converts them to mutations. Finally, 
concerning the strand break, Pol has been 
shown to be downregulated in the germinal cen-
ter, likely leading to unprocessed strand breaks 
that may serve as starting points for A:T muta-
genesis or class switch recombination [129]. It 
will be interesting to investigate the molecular 

mechanism of up- and downmodulation of these 
proteins in the germinal center.

Modulation of DNA repair by AID. The 
C-terminus of AID is required for class switch 
recombination but not for somatic hypermutation 
[130]. It has been shown that this C-terminus 
recruits repair factors to the switch region, thereby 
likely affecting repair capacity [131,132]. Also, the 
above-described positive feedback loop leads to 
phosphorylation-dependent recruitment of APE1 
to the switch regions by AID [97]. However, this 
likely helps rather than prevents error-free repair. 
Therefore, any potential contribution of AID to 
error-prone repair in Ig genes still needs to be 
investigated.

Regulation of Ig diversification by checkpoint 
signaling. Checkpoint responses involve the 
kinases ATM, which recognizes DNA double- 
strand breaks, and ATR, which recognizes exposed 
single-stranded regions (Figure 5) [133]. ATM 
phosphorylates Chk2 and p53, which is addition-
ally phosphorylated by Chk2 itself. ATR phos-
phorylates Chk1 and p53, which is also 
a substrate for Chk1 kinase activity. p53 stabiliza-
tion upon phosphorylation as well as 
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phosphorylation of Cdc25 proteins lead to 
a checkpoint response mediating a blockade of 
the cell cycle [134].

Early work on checkpoint signaling in the reg-
ulation of secondary Ig diversification has 
employed memory B cells from human patients 
with defects in ATM and ATR. It was found that 
ATM-deficient patients showed no defect in 
somatic hypermutation frequency or pattern 
[135], while ATR-deficient B cells showed an 
altered pattern of hypermutation [136]. While 
these results implied that the ATR axis is involved 
in the regulation of hypermutation, studies on the 
absolute efficacy of hypermutation could not be 
performed in this system, as selection had already 
occurred for these memory B cells.

Interestingly, other studies revealed a striking 
regulation of checkpoint signaling in the germinal 
center reaction (Figure 5). Recognition of DNA 
damage by ATM leads to phosphorylation and 
degradation of Bcl-6, thus terminating the germ-
inal center program [137]. Also, ATM activation 

contributes to termination of the germinal center 
program through LKB1 and CRTC2 [138]. 
Conversely, members of the ATR axis, namely 
ATR itself, Chk1, p53 and its target gene p21 are 
all downregulated in the germinal center by Bcl-6 
activity [139–142]. Moreover, the generation of 
chromosomal translocations during class switch 
recombination is repressed by checkpoint signal-
ing [143,144]. Accordingly, it was interesting to 
investigate the impact of the ATM and ATR sig-
naling axis on secondary Ig diversification.

We have therefore studied the role of Chk1 as 
well as Chk2 in the regulation of somatic hypermu-
tation, class switch recombination, and Ig gene 
conversion in vitro. Interestingly, we found an 
inverse behavior upon inactivation of each of 
these two proteins. Chk1 downregulation led to 
increased hypermutation and decreased Ig gene 
conversion, likely due to reduced Chk1-dependent 
facilitation of homologous recombination, while 
class switch recombination was found to be barely 
affected [145]. Chk2-deficient cells showed lower 
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rates of somatic hypermutation and class switch 
recombination but higher Ig gene conversion, likely 
upon higher activity of Chk1 in Chk2-deficient cells 
[146]. Investigation of the role of Chk1 in vivo also 
revealed an interesting phenotype: a decreased 
activity of Chk1 influences the mutational pattern 
during somatic hypermutation by facilitating A:T 
over C:G mutagenesis. We suggest that the reduced 
activation of Chk1 signaling in response to the 
single-stranded DNA stretches generated in the 
course of repair via mismatch repair facilitates gap 
refilling via Polη [147]. Moreover, we found that 
p53 regulates translesion synthesis-mediated muta-
genesis at the switch regions during class switch 
recombination, while it does not affect somatic 
hypermutation of the Ig variable region in vivo 
[148]. The question still stands of whether the 
attenuation of the checkpoint signaling pathways 
in B cells undergoing Ig diversification is a global 
rather than a local phenomenon induced specifi-
cally at the Ig locus, as it may be presumed that the 
same outcome would be achieved in terms of Ig 
diversification. Interestingly, though, AID-induced 
DNA double-strand breaks, unlike radiation- 
induced breaks, do not strongly activate the G1/S 
checkpoint [121]. Also, PARP-1 activity regulates 
Chk1 at stalled replication forks [149], so local 
perturbations in PARP-1 activity might not only 
allow for higher AID function but also trigger 
more error-prone repair.

Regulation of DNA repair by the cell cycle. An 
increasing amount of evidence has shed light on 
the role of the cell cycle in regulating not only AID 
activity, but also the downstream mechanisms of 
error-prone repair at the Ig loci (Figure 6). 
Double-strand breaks formed during class switch 
recombination are generated in the G1 phase 
[150]. Accordingly, our recent study shows that 
AID activity in G1 is indispensable for class switch 
recombination to occur [151]. Interestingly, how-
ever, breaks generated at off-target genes were 
shown to preferentially persist till the S phase 
and to be repaired in an error-free fashion by 
homologous recombination [121,152]. The detec-
tion of uracils at the switch regions of in vitro- 
cultured primary mouse B cells revealed that ura-
cils are processed quickly after generation in G1 at 
the Ig loci, as a scarce amount of those was 

detected in S/G2 [56]. UNG is known to be active 
mainly in the S phase where it removes uracils 
which have been misincorporated during replica-
tion. Nevertheless, the inhibition of UNG activity 
in G1 but not in S/G2 was shown to impair Ig 
diversification in vitro, indicating that UNG is 
highly active in G1 in B cells [153]. The G1 phase 
is also the predominant window for the activity of 
the A:T mutator during somatic hypermutation, as 
previously suggested and recently proved 
[151,154]. Concerning the pathways involved in 
C/G mutagenesis, we and others have shown that 
they are active throughout the cell cycle, even 
though the findings of our recent study point to 
an increased activity of UNG/translesion synthesis 
pathways in G1 [151,155].

Therefore, in at least two cases DNA repair at 
the Ig genes is indeed mainly error-prone because 
of occurring in the wrong cell cycle phase. In case 
of A:T mutagenesis, PCNA monoubiquitination 
and translesion synthesis by Polη is performed in 
an error-prone manner in G1, representing non- 
canonical mismatch repair which has been shown 
to occur also in G1 cells [156]. In this instance, the 
error-free alternative via PCNA polyubiquitination 
and a template switch to the sister chromatid [157] 
would only be available in S/G2, and thus the 
pathway responsible for the A:T mutator is error- 
prone in G1. For the C:G mutator, a less pro-
nounced but similar effect may be seen: Uracils 
persisting in S/G2 are more likely to generate tran-
sition mutations while transversions are generated 
more efficiently in the G1 phase by translesion 
synthesis via Rev1, which may act in a PCNA 
ubiquitination-independent manner [158]. 
Likewise, during class switch recombination, the 
ligation of the AID-induced breaks by error-prone 
non-homologous end joining occurs only at 
lesions induced in G1, while the alternative error- 
free process of homologous recombination takes 
care of the breaks in non-Ig genes during S/G2 

[121]. While these notions are highly intriguing, 
they of course now pose the question of why 
lesions in Ig genes would be repaired in G1 to 
achieve class switch recombination and A:T (+ 
some C:G) mutagenesis, while lesions in other 
genes are preferentially processed in S/G2. Also, 
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it remains to be identified why the C:G mutator is 
error-prone both in G1 as well as in S/G2. 
Potentially, though, mutagenesis needs to occur 
mainly in G1 as it would be too deleterious in 
replicating cells. All these topics will need to be 
investigated in future studies.

Deregulation of secondary Ig diversification 
during lymphomagenesis

Human lymphomas often resemble certain stages 
of normal B cells in marker expression and beha-
vior, a finding which has led to the concept that 
B cell lymphomas are trapped at the state of their 
cell of origin [22]. Several molecules or signaling 
pathways that are constitutively active in lympho-
mas have been identified, such as c-Myc overex-
pression in Burkitt’s lymphoma, Bcl-2 
overexpression in follicular lymphoma, or Bcl-6 
deregulation in diffuse large B cell lymphoma 
(DLBCL) [21]. In these cases, chromosomal trans-
locations of the respective genes into the Ig locus 
occur, which may be due to aberrant processing of 
AID-induced lesions [159]. Alternatively, somatic 
hypermutation-like mutagenesis in the 5’ region of 
certain genes may impinge on their expression 
[102,160]. Accordingly, it has been shown in 
mouse models that AID is required for germinal 
center derived lymphomagenesis [161,162].

While Bcl-6 is a master transcription factor of the 
germinal center program [163,164], and thus 
a germinal center appearance of DLBCL is not unex-
pected, the contribution of Bcl-2 and c-Myc to the 
germinal center phenotype of the respective lym-
phoma cells is less clear. We have shown that 
c-Myc deregulation leads to a germinal center phe-
notype and constitutive somatic hypermutation in 
Burkitt’s lymphoma, but other pathways must con-
tribute as well, as mere c-Myc overexpression in 
B cells does not trigger constitutive hypermutation 
[165]. Genetic mouse models are being used to clar-
ify such remaining questions [166].

In general, though, Burkitt’s lymphoma is char-
acterized by ongoing somatic hypermutation 
[167,168], as is follicular lymphoma [169,170]. 
DLBCL is characterized by aberrant hypermuta-
tion [171], i.e. the appearance of mutations in 
genes that are not hypermutation targets in nor-
mal germinal center B cells. The molecular 

pathways leading to such constitutive or aberrant 
hypermutation still need to be identified, as mere 
AID overexpression is not always sufficient to 
trigger somatic hypermutation [172,173].

Future perspectives

Intensive research in the last two decades since the 
discovery of AID has provided us with a thorough 
understanding of the basic mechanism of second-
ary immunoglobulin diversification. At first 
glance, one may even get the impression that the 
key questions of the field are answered, but in fact 
several completely mysterious topics remain.

Concerning the basic mechanism of Ig diversi-
fication, the pathways of deregulation of DNA 
repair at the Ig locus deserve further study. This 
includes the G1 restriction of the A:T mutator and 
class switch recombination, as well as the error- 
prone processing of AID-induced lesions by the C: 
G mutator at Ig loci, while other loci in the cell are 
repaired by the same repair pathways in an error- 
free manner. This understanding is crucial to solve 
the main puzzle of secondary Ig diversification: 
specific targeting to Ig loci.

Concerning deregulated Ig diversification, the 
main pathways leading to constitutive hypermuta-
tion as well as aberrant hypermutation in B cell 
lymphoma still need to be identified. While for 
Burkitt lymphoma adequate cell lines to study 
this do exist [165,167,174], clarification of the 
molecular mechanism of constitutive or aberrant 
hypermutation in follicular lymphoma as well as 
DLBCL will require the establishment of adequate 
cellular models.

Accordingly, research in the field will still pros-
per and make major contributions to our under-
standing of major pathways of normal and 
deregulated immunity.
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