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ABSTRACT
Transient receptor potential melastatin-like 7 (TRPM7) is a key player in various physiological and 
pathological processes. TRPM7 channel activity is regulated by different factors. The effects of 
cleavage of different domains on channel activity remain unknown. Here, we constructed several 
TRPM7 clones and explored the effects of truncating the mouse TRPM7 at different locations on 
the ion channel activity in two cell lines. We compared the clones’ activity with the full-length 
TRPM7 and the native TRPM7 in transfected and untransfected cells. We also expressed fluores
cently tagged truncated clones to examine their protein stability and membrane targeting. We 
found that truncating the kinase domain induced reduction in TRPM7 channel activity. Further 
truncations beyond the kinase (serine/threonine rich domain and/or coiled-coil domain) did not 
result in further reductions in channel activity. Two truncated clones lacking the TRP domain or 
the melastatin homology domain had a completely nonfunctional channel apparently due to 
disruption of protein stability. We identified the shortest structure of TRPM7 with measurable 
channel activity. We found that the truncated TRPM7 containing only S5 and S6 domains retained 
some channel activity. Adding the TRP domain to the S5-S6 resulted in a significant increase in 
channel activity. Finally, our analysis showed that TRPM7 outward currents are more sensitive to 
truncations than inward currents. Our data provide insights on the effects of truncating TRPM7 at 
different locations on the channel functions, highlighting the importance of different domains in 
impacting channel activity, protein stability, and/or membrane targeting.
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Introduction

Transient receptor potential melastatin-like 7 
(TRPM7) is a chanzyme having an ion channel 
part with a kinase domain in its C-terminal [1,2]. 
TRPM7 contains a highly conserved N-terminal, 
six transmembrane helixes (S1-S6), a highly con
served TRP domain, a coiled-coil domain, 
a serine/threonine rich domain, and an α-kinase 
domain [3]. TRPM7 emerges as a key player in 
various physiological and pathological processes 
[4,5]. Studies suggest that TRPM7 might be trun
cated on the C-/N-terminals during certain phy
siological and/or pathological processes leaving 
behind a truncated ion channel on the cell mem
brane [6–9]. The activity of the ion channel after 
such truncations remains unknown.

TRPM7 channel activity is regulated by several 
factors including intracellular Mg2+, ATP [10–12], 

ATP-activated kinase domain [2], cAMP/PKA sig
naling pathway [13], acidic pH [14], and phospha
tidylinositol 4,5 bisphosphate (PIP2) [15]. 
Truncating TRPM7 at different locations also 
results in changes in the channel activity. For 
example, truncated human TRPM7 without the 
kinase domain (amino acids 1–1569) exhibits 
only one-tenth of the full-length channel activity 
when expressed in HEK cells [16]. Similarly, trun
cated mouse TRPM7 without the kinase domain 
show no significant channel activity in CHO cells 
(amino acids 1–1599) [17] and in embryonic stem 
cells (amino acids 1–1537) [18]. In contrast, mouse 
TRPM7 cleaved at D1510 (without the kinase 
domain and the serine/threonine rich domain) 
exhibited significantly high channel activity when 
expressed in CHO cells [6]. Two truncated zebra
fish TRPM7 (amino acids 1–1478 without kinase
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domain and 1–1258 without the kinase and the 
serine/threonine rich domain) have similar activity 
to that of wild-type TRPM7 in HEK T-REX cells 
[19]. Meanwhile, when the zebrafish TRPM7 is 
truncated at the coiled-coil domain (amino acids 
1–1178) the channel activity becomes even greater 
than that of the wild type [19]. Therefore, truncat
ing TRPM7 at different locations results in differ
ent effects on the channel activity. However, in 
these studies, experiments were performed using 
TRPM7 clones from different species, TRPM7 was 
expressed in different cell lines, and the recording 
conditions were not identical. It remains unclear 
whether the reported different activities stem from 
the location of truncation or due to other metho
dological reasons.

Here, we constructed a series of mouse TRPM7 
clones truncated at different locations, expressed 
these truncations in HEK and CHO cells, and 
examined the channel activity (inward and out
ward currents) of each truncation. Furthermore, 
we identified the shortest structure of TRPM7 that 
can retain ion channel activity.

Materials and methods

Molecular biology

For expression in mammalian cells, full-length 
TRPM7 and truncated TRPM7 were cloned into 
the pcDNA3.1 vector (Invitrogen, USA) and sub
sequently verified by double-strand DNA 

sequencing. Full-length TRPM7 and truncated 
TRPM7 (amino acids sequence: 1–1596, 1–1510, 
1–1299, 1–1160, 1–1100, 756–1863, 990–1863, 
990–1160, and 990–1100) clones were generated 
from mouse TRPM7 (Gene bank ID: 
NM_021450.2). Primers for constructing various 
clones of truncated TRPM7 are shown in Table 1.

Cell culture and transfection

Human embryonic kidney (HEK) cells were cul
tured in Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco, USA) containing 10% fetal bovine 
serum (FBS, Gibco, USA). Chinese hamster ovary 
(CHO) cells were grown in DMEM/F12 supple
mented with 10% FBS. Cells (~60% confluence, 25 
flasks) were transiently transfected by 3.6 µg 
cDNAs carrying either TRPM7 (or other truncated 
mutations of TRPM7) or 0.4 µg EGFP cDNAs 
using Lipofectamine 3000 reagent (Thermo 
Fisher Scientific, USA). All cells were kept in 
a humidified incubator with 5% CO2 at 37°C. 
Electrophysiological recordings were conducted 
18–24 h after transfection.

Electrophysiological techniques

Whole-cell patch-clamp recordings were per
formed at room temperature using EPC-10 
amplifier and Patch Master Software (HEKA, 
Germany). Currents were digitized at 10 kHz 
and low-pass filtered at 2.0 kHz. Pipettes with

Table 1. PCR primers of the full-length and truncated TRPM7 clones.
Gene Sequence Product, bp

mTRPM7 Forward 5’-cttggtaccgagctcggatccgccaccatgtcccagaaatcctggatag-3’ 5589
Reverse 5’-gttcgaatgggtgacctcgagctataacatcagacgaacagaatttgttgc-3’

1–1596 Forward 5’-cttggtaccgagctcggatccgccaccatgtcccagaaatcctggatag-3’ 4788
Reverse 5’-aacgggccctctagactcgagctagctgttattcagtatactgggag-3’

1–1510 Forward 5’-cttggtaccgagctcggatccgccaccatgtcccagaaatcctggatag-3’ 4530
Reverse 5’-aacgggccctctagactcgagctaatcgacttctggagagtcttc-3’

1–1299 Forward 5’-cttggtaccgagctcggatccgccaccatgtcccagaaatcctggatag-3’ 3897
Reverse 5’-gttcgaatgggtgacctcgagctaggaactcagtgtgtttacagcac-3’

1–1160 Forward 5’-cttggtaccgagctcggatccgccaccatgtcccagaaatcctggatag-3’ 3480
Reverse 5’-gttcgaatgggtgacctcgagctaaagttttggcccatcggaagtc-3’

1–1100 Forward 5’-cttggtaccgagctcggatccgccaccatgtcccagaaatcctggatag-3’ 3300
Reverse 5’-gttcgaatgggtgacctcgagctaatatacattattgaaaaatgcgataaggag-3’

756–1863 Forward 5’-cttggtaccgagctcggatccgccaccatgaattcctggtataaggtcatattaagc-3’ 3321
Reverse 5’-gttcgaatgggtgacctcgagctataacatcagacgaacagaatttgttgc-3’

990–1863 Forward 5’-cttggtaccgagctcggatccgccaccatggtaatgatgattggaaaaatggtggcc-3’ 2619
Reverse 5’-gttcgaatgggtgacctcgagctataacatcagacgaacagaatttgttgc-3’

990–1160 Forward 5’-cttggtaccgagctcggatccgccaccatggtaatgatgattggaaaaatggtggcc-3’ 510
Reverse 5’-gttcgaatgggtgacctcgagctaaagttttggcccatcggaagtc-3’

990–1100 Forward 5’-cttggtaccgagctcggatccgccaccatggtaatgatgattggaaaaatggtggcc-3’ 330
Reverse 5’-gttcgaatgggtgacctcgagctaatatacattattgaaaaatgcgataaggag-3’
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an electrode resistance between 2 and 4 MΩ 
were prepared from borosilicate glass capillaries 
(World Precision Instruments, USA). The Mg2+- 
free pipette solution contained (in mM): 145 
CsCl, 8 NaCl, 10 HEPES, and 10 EGTA (pH 
7.2 adjusted with CsOH). The bath solution 
contained (in mM): 140 NaCl, 5 KCl, 2 CaCl2, 
20 HEPES, and 10 glucose (pH 7.4 adjusted with 
NaOH). TRPM7 currents were recorded during 
repetitive injections of 300 ms voltage ramps 
from−100 to +100 mV repeated every 5 s at 
a holding potential of 0 mV. The presented 
TRPM7 channel currents at +100 and/or −100  
mV were obtained when the currents reached 
a steady state (it stops changing for at least 30 
ramps).

Immunocytochemistry

HEK cells transfected with full-length TRPM7- 
m-cherry and all truncations cDNAs were 
washed in PBS and fixed in PBS containing 4% 
paraformaldehyde for 30 min at room tempera
ture. The cells were permeabilized in 0.2% 
TritonX-100 in PBS for 10 min and then incu
bated in blocking solution (5% goat serum for 
120 min). Cells were incubated with Alexa Fluor™ 
647 phalloidin (1:50, #A22287, Invitrogen, USA) 
for 20 min at room temperature. After washing, 
the cells were sealed by using VECTASHIELD® 
Antifade Mounting Medium with DAPI 
(#H-1200, VECTOR, USA). Cells were imaged 
by using 60× NA 1.42 oil immersion lens at 
zooms 1 and 3 mounted on OLYMPUS 
FLUOVIEW FV3000 confocal microscope at 
image resolution of 1024 × 1024.

Drugs

NS8593 was obtained from Sigma-Aldrich 
(St. Louis, USA), dissolved in DMSO to prepare 
a 20 mM solution and was stored at−20°C until 
use. NS8593 (10 μM) was used to block and/or 
identify TRPM7 currents. The blocker was 
added when no changes in current at +100 mV 
were observed for up to 10 s (after two succes
sive ramps with similar currents). The concen
tration of DMSO in bath solution did not 
exceed 0.05%.

Data analysis

All patch clamp data were processed using 
Clampfit 11.1 (Molecular Device, USA) and then 
analyzed using GraphPad Prism 7 (GraphPad 
Software, USA). The minimum sample size was 
determined by using G*Power software 
(V3.1.9.4). We used the following parameters: α  
= 0.05, power = 0.8, and the effect size that is cal
culated by the mean and SD of the two groups of 
data. Sample number was matching or larger than 
the calculated minimum sample size. GraphPad 
Prism was used for normality, variance homoge
neity, and other statistical analyses. Shapiro–Wilk 
test was used to test for normality test. The current 
density (pA/pF) was measured from the ratio of 
peak current amplitude (pA) to the cell membrane 
(pF). The data were presented as means ± SEM 
and the significance estimated by using unpaired 
two-tailed Student’s t-tests (or Mann–Whitney 
test) or one-way ANOVA. P-value <0.05 was con
sidered significantly different.

Results

Effect of truncating the C-terminal at different 
locations on TRPM7 channel activity

Starting from N-terminal, TRPM7 chanzyme con
tains melastatin homology domain (MH domain), 
six transmembrane helixes (S1-S6), a highly con
served TRP domain, a coiled-coil domain, 
a serine/threonine rich domain, and an α-kinase 
domain (Figure 1(a)). TRPM7 produces promi
nent outward currents at positive potentials from 
+50 to +100 mV and small inward currents at 
negative potentials between−100 and −40 mV 
[20,21]. Under our experimental conditions, the 
outward current (at +100 mV) is carried by the 
major internal monovalent cation Cs+, while the 
inward current (at −100 mV) is carried exclusively 
by the permeable divalent ion Ca2+ [1,2,22]. We 
first recorded the endogenous TRPM7-like current 
in untransfected HEK and CHO cells. The current 
densities of endogenous TRPM7 were 4.85 ± 0.55  
pA/pF at +100 mV and−3.15 ± 0.34 pA/pF at −100  
mV in HEK cells (Figure 1(b)). The current den
sities of endogenous TRPM7 were 9.99 ± 1.95 pA/ 
pF (outward current we measured it at +100 mV) 
and−4.04 ± 0.34 pA/pF (inward current we
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Figure 1. Effect of truncating the C-terminal at different locations on TRPM7 channel activity. (a) Schematic structure of TRPM7 
channel. (b). Top panel: Schematic structure of full-length TRPM7. Left panel: Representative current-voltage relationships of 
untransfected HEK cells (black, n = 7) and full-length TRPM7 (red, n = 7) expressed in HEK cells. Right panel: Bar graphs of outward 
currents (+100 mV) and inward currents (−100 mV) gained from untransfected HEK cells (black) and full-length TRPM7 (red). (c). Left 
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measured it at −100 mV) in CHO cells 
(Figure 1(c)), which were similar to magnitudes 
reported by previous studies [2,23]. The recorded 
TRPM7-like currents can be blocked by NS8593 in 
untransfected HEK (Figure S1(a)) and CHO 
(Figure S1(b)) cells, indicating that the recorded 
currents are likely to be mediated by endogenous 
TRPM7 activity.

We then examined TRPM7 channel activity 
after we overexpressed the full-length TRPM7 in 
HEK and CHO cells. We found that overexpres
sion of full-length TRPM7 resulted in a significant 
increase in the outward current density by 48.37 ±  
6.07 folds (unpaired t test, t(12) = 7.800, p < 0.001) 
and in the inward current density by 2.86 ± 0.62 
folds (Unpaired t test, t(12) = 2.972, p = 0.012) in 
comparison with untransfected HEK cells 
(Figure 1(b)). In CHO cells, following the over
expression of full-length TRPM7, the outward cur
rent density was significantly increased by 27.86 ±  
6.15 folds (Unpaired t test, t(14) = 5.771, p < 0.001); 
the inward current was increased by 2.23 ± 0.32 
folds (Unpaired t test, t(14) = 4.640, p < 0.001) in 
comparison with untransfected cells (Figure 1(c)). 
The recorded currents of the cells transfected with 
full-length TRPM7 can be blocked by NS8593, 
indicating that the recorded currents were 
mediated by TRPM7 activity (Figure S1(c)).

We then examined the effect of truncating dif
ferent domains on the C-terminal side on the 
channel activity of TRPM7. A truncated TRPM7 
lacking the kinase domain (amino acids 1–1596) 
exhibited outward current density of 51.64 ± 5.13  
pA/pF (10.65 ± 1.10 folds compared with untrans
fected cells, unpaired t test, t(19) = 6.351, p <  
0.001). The inward current density was−6.48 ±  
0.71 pA/pF (2.05 ± 0.22 folds compared with 
untransfected cells, Mann–Whitney test, U = 5, p  
< 0.001) in HEK cells (Figure 1(d)). In CHO cells, 
we found that the outward current density was 
82.07 ± 18.93 pA/pF (8.21 ± 1.89 folds compared 

with untransfected cells, Mann–Whitney test, U  
= 0, p < 0.001) and the inward current was−8.47 ±  
1.36 pA/pF (2.10 ± 0.34 folds compared with 
untransfected cells, unpaired t test, t(17) = 3.324, 
p = 0.004, Figure 1(e)). A shorter TRPM7 clone 
truncated within the serine/threonine rich 
domain (amino acids 1–1510) exhibited outward 
current density up to 48.97 ± 3.53 pA/pF (10.10 ±  
0.76 folds compared with untransfected cells, 
unpaired t test, t(18) = 9.108, p < 0.001) and inward 
current density of−6.86 ± 0.65 pA/pF (2.17 ± 0.21 
folds compared with untransfected cells, unpaired 
t test, t(18) = 4.119, p < 0.001) in HEK cells 
(Figure 1(f)). In CHO cells, the current densities 
of the 1–1510 truncated TRPM7 were 119.64 ±  
25.91 pA/pF (11.97 ± 2.59 folds compared with 
untransfected cells, unpaired t test, t(17) = 4.459, 
p < 0.001) and−9.43 ± 1.24 pA/pF (2.33 ± 0.31 
folds compared with untransfected cells, 
Unpaired t test, t(17) = 4.405, p < 0.001, 
Figure 1(g)). A truncated TRPM7 clone with 
complete loss of the kinase and the serine/threo
nine rich domains (amino acids 1–1299) had out
ward current density of 31.25 ± 6.27 pA/pF (6.44  
± 1.29 folds compared with untransfected cells, 
unpaired t test, t(14) = 3.678, p = 0.003) and inward 
current density of−3.58 ± 0.51 pA/pF (1.13 ± 0.16 
folds compared with untransfected cells, Mann– 
Whitney test, U = 27, p = 0.681) in HEK cells 
(Figure 1(h)). The truncated TRPM7 1–1299 in 
CHO cells also exhibited high outward current 
(74.63 ± 15.84 pA/pF, 7.49 ± 1.59 folds compared 
with untransfected cells, unpaired t test, t(13) =  
5.809, p < 0.001) and inward current (−7.17 ±  
1.33 pA/pF, 1.78 ± 0.33 folds compared with 
untransfected cells, unpaired t test, t(13) = 3.038, 
p < 0.010, Figure 1(i)). TRPM7 truncated at the 
coiled-coil domain (amino acids 1–1160) had out
ward current density of 37.43 ± 3.82 pA/pF (7.72  
± 0.79 folds compared with untransfected cells, 
unpaired t test, t(13) = 7.871, p < 0.001) and inward

panel: Representative current-voltage relationships of untransfected CHO cells (black, n = 10) and full-length TRPM7 (red, n = 6) 
expressed in CHO cells. Right panel: Bar graphs of outward currents (+100 mV) and inward currents (−100 mV) gained from 
untransfected CHO cells (black) and full-length TRPM7 (red). Detection of truncated clones 1–1596 (d, n = 14), 1–1510 (f, n = 13), 1– 
1299 (h, n = 9), 1–1160 (j, n = 8), and 1–1100 (l, n = 7) were performed and analyzed similarly to (b) in HEK cells. Detection of 
truncated clones 1–1596 (e, n = 14), 1–1510 (g, n = 9), 1–1299 (i, n = 5), 1–1160 (k, n = 5), and 1–1100 (m, n = 9) were performed and 
analyzed similarly to (c) in CHO cells. Data are analyzed by two-tailed unpaired Student’s t-tests or Mann–Whitney test and 
presented as mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001.
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current density of−5.35 ± 0.51 pA/pF (1.70 ± 0.35 
folds compared with untransfected cells, unpaired 
t test, t(13) = 1.180, p = 0.093) in HEK cells 
(Figure 1(j)). In CHO cells, the current densities 
were 21.79 ± 2.85 pA/pF (2.18 ± 0.29 folds com
pared with untransfected cells, unpaired t test, 
t(13) = 3.454, p = 0.004) and−5.52 ± 1.04 pA/pF 
(1.37 ± 0.26 folds compared with untransfected 
cells, unpaired t test, t(13) = 1.719, p = 0.109, 
Figure 1(k)).

Therefore, loss of the kinase domain (1–1596), 
partial (1–1510) or complete (1–1299) loss of the 
serine/threonine rich domain, and/or complete 
loss of the coiled-coil domain (1–1160) did not 
completely abolish the channel activity as over
expression of these truncations induced TRPM7 
currents that were significantly higher than that 
in untransfected HEK or CHO cells. However, all 
truncations (1–1596, 1–1510, 1–1299, and 1–1160) 
resulted in significant reductions in outward cur
rents: 0.22 ± 0.02 folds (one way ANOVA: F(5, 52)  
= 54.620, p < 0.001), 0.21 ± 0.02 folds (one way 
ANOVA: F(5, 52) = 54.620, p < 0.001), 0.13 ± 0.03 
folds (one way ANOVA: F(5, 52) = 54.620, p <  
0.001), and 0.16 ± 0.02 folds (one way ANOVA: 
F(5, 52) = 54.620, p < 0.001; respectively) in compar
ison with full-length TRPM7 in HEK cells 
(Figure 2(a)). Similar results were obtained in 
CHO cells (1–1596: 0.29 ± 0.07 folds, one way 
ANOVA: F(5, 37) = 11.890, p < 0.001; 1–1510: 0.43  
± 0.10 folds, one way ANOVA: F(5, 37) = 11.890, p  
< 0.001; 1–1299: 0.27 ± 0.06 folds, one way 
ANOVA: F(5, 37) = 11.890, p < 0.001; and 1–1160: 
0.08 ± 0.01 folds, one way ANOVA: F(5, 37) =  
11.890, p < 0.001) (Figure 2(b)). Meanwhile, the 
inward current appeared to be resistant to these 
truncations. The inward currents of all truncations 
remained comparable to that observed in the full- 
length channel in both cell lines except for the 1– 
1299 truncated channel, which showed significant 
reductions in inward currents only in HEK cells 
(0.40 ± 0.06 folds, one way ANOVA: F(5, 52) =  
4.075, p = 0.002, Figure 2(a)). Expression of full- 
length or truncated clones of TRPM7 labeled 
with m-cherry in HEK cells revealed that the 
observed reductions in currents were likely to be 
mediated by reductions in channel activity, but not 
due to disruption of protein stability or cell mem
brane targeting (Figure 2(c)).

HEK cells transfected with TRPM7 clone trun
cated at the TRP domain (amino acids 1–1100) 
exhibited very low, if any, channel activity as its 
outward current density was 6.84 ± 2.07 pA/pF 
(1.41 ± 0.43 folds compared with untransfected 
cells, unpaired t test, t(12) = 0.929, p = 0.371) and 
inward current density−3.86 ± 0.84 pA/pF (1.22 ±  
0.27 folds compared with untransfected cells, 
unpaired t test, t(12) = 0.774, p = 0.454, 
Figure 1(l)). In CHO cells, the current densities 
also did not differ between transfected and 
untransfected cells (outward: 5.53 ± 1.05 pA/pF, 
0.55 ± 0.11 folds, unpaired t test, t(17) = 1.948, p =  
0.068; inward: −4.02 ± 0.50 pA/pF, 0.99 ± 0.12 
folds, unpaired t test, t(17) = 0.042, p = 0.967, 
Figure 1(m)). The channel activity of clone 1– 
1100 was significantly lower than that of full- 
length TRPM7 in HEK (outward current: 0.03 ±  
0.01 folds, one way ANOVA: F(5, 52) = 54.620, p <  
0.001; inward current: 0.43 ± 0.09 folds, one way 
ANOVA: F(5, 52) = 4.075, p = 0.006, Figure 2(a)) 
and CHO (outward current: 0.02 ± 0.01 folds, one 
way ANOVA: F(5, 37) = 11.890, p < 0.001; inward 
current: 0.45 ± 0.06 folds, one way ANOVA: 
F(5, 37) = 3.701, p = 0.020, Figure 2(b)) cells. 
Results suggested that the TRP domain is pivotal 
for TRPM7 channel activity. However, immuno
cytochemical analysis of the m-cherry tagged clone 
failed to detect fluorescent signal of the 1–1100 
clone (Figure 2(c)) indicating that the loss of activ
ity was most likely due to loss of protein stability, 
but not due to disruption of TRPM7 channel 
activity. Therefore, the TRP domain is pivotal for 
TRPM7 protein stability/expression.

Effect of truncating the N-terminal at different 
locations on TRPM7 channel activity

Next, we examined the channel activity after trun
cating TRPM7 on the N-terminal side. Truncation 
of the MH domain (amino acids 756–1863) 
resulted in complete loss of channel activity in 
HEK (outward current: 5.80 ± 1.28 pA/pF, 1.20 ±  
0.26 folds compared with untransfected cells, 
unpaired t test, t(15) = 0.593, p = 0.562; inward cur
rent: −3.22 ± 0.51 pA/pF, 1.02 ± 0.16 folds com
pared with untransfected cells, unpaired t test, 
t(15) = 0.095, p = 0.926, Figure 3(a)) and CHO (out
ward current: 7.65 ± 1.19 pA/pF, 0.83 ± 0.13 folds
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compared with untransfected cells, unpaired t test, 
t(15) = 0.920, p = 0.372; inward current: −5.46 ±  
0.85 pA/pF, 1.35 ± 0.21 folds compared with 
untransfected cells, unpaired t test, t(15) = 1.744, p  

= 0.102, Figure 3(b)) cells. The channel activity of 
clone 756–1863 was significantly lower than that 
of full-length TRPM7 in HEK (outward current: 
0.02 ± 0.01 folds, one way ANOVA: F(4, 31) =

Figure 2. The outward and inward currents, and the expression pattern of different C-terminal truncations in comparison with full- 
length TRPM7. (a, b). Outward (top) and inward (bottom) current density of full-length TRPM7 (black) and truncations (1–1596, 1– 
1510, 1–1299, 1–1160, and 1–1100, red) in HEK (a) and CHO (b) cells. (c). Representative fluorescent images of HEK cells expressing 
full-length and the truncated TRPM7 clones labeled with m-cherry. The untransfected HEK cells were used as negative control. The 
TRPM7 clones labeled with m-cherry were in red. DAPI stained nuclei in blue. F-actin (Phalloidin staining, green) was used to indicate 
cell shape. Data are analyzed by one-way ANOVA and presented as mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001.
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52.100, p < 0.001; inward current: 0.36 ± 0.06 
folds, one way ANOVA: F(4, 31) = 2.864, p = 0.014, 
Figure 4(a)) and CHO (outward current: 0.03 ±  
0.01 folds, one way ANOVA: F(4, 26) = 17.720, p <  
0.001, Figure 4(b)) cells. Results suggested that the 
MH domain is pivotal for TRPM7 channel activity. 
However, immunocytochemical analysis of 
the m-cherry tagged clone failed to detect 

fluorescent signal of the 756–1863 clone 
(Figure 4(c)) indicating that the loss of activity 
was most likely due to loss of protein stability, 
but not due to disruption of TRPM7 channel 
activity. Therefore, the MH domain is pivotal for 
TRPM7 protein stability/expression.

In contrast, cells transfected with a shorter trun
cated TRPM7 without the MH domain and the

Figure 3. Effect of truncating the N-terminal at different locations on TRPM7 channel activity, and the smallest structure with 
channel activity. (a). Top panel: Schematic structure of truncated clone 756–1893. Left panel: Representative current-voltage 
relationships of untransfected HEK cells (black, n = 7) and truncated clone 756–1863 (red, n = 10) expressed in HEK cells. Right 
panel: Bar graphs of outward currents (+100 mV) and inward currents (−100 mV) gained from untransfected HEK cells (black) and 
truncated clone 756–1863 (red). (b). Left panel: Representative current-voltage relationships of untransfected CHO cells (black, n =  
10) and truncated clone 756–1863 (red, n = 7) expressed in CHO cells. Right panel: Bar graphs of outward currents (+100 mV) and 
inward currents (−100 mV) gained from untransfected CHO cells (black) and truncated clone 756–1863 (red). Detection of truncated 
clones 990–1863 (c, n = 8), 990–1100 (e, n = 6), and 990–1160 (g, n = 5) were performed and analyzed similarly to (a) in HEK cells. 
Detection of truncated clones 990–1863 (d, n = 6), 990–1100 (f, n = 7), and 990–1160 (h, n = 5) were performed and analyzed 
similarly to (b) in CHO cells. Data are analyzed by two-tailed unpaired Student’s t-tests or Mann–Whitney test and presented as 
mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4. The outward and inward currents, and the expression pattern of different N-terminal truncations in comparison with full- 
length TRPM7. (a, b). Outward (top) and inward (bottom) current density of full-length TRPM7 (black) and truncations (756–1863, 
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transmembrane S1-S4 domains (amino acids 990– 
1863) exhibited higher currents than that in 
untransfected cells in HEK (outward current: 
31.64 ± 3.61 pA/pF, 6.53 ± 0.74 folds, unpaired 
t test, t(13) = 6.854, p < 0.001; inward current: 
−4.73 ± 1.70 pA/pF, 1.50 ± 0.54 folds, Mann– 
Whitney test, U = 27, p = 0.955, Figure 3(c)) and 
CHO (outward current: 43.69 ± 8.11 pA/pF, 4.37 ±  
0.81 folds, unpaired t test, t(14) = 5.071, p < 0.001; 
inward current: −8.45 ± 1.12 pA/pF, 2.09 ± 0.28 
folds, unpaired t test, t(14) = 4.608, p < 0.001, 
Figure 3(d)) cell lines. The channel activity of 
clone 990–1863 was significantly lower than that 
of full-length TRPM7 in HEK (outward current: 
0.13 ± 0.02 folds, one way ANOVA: F(4, 31) =  
52.100, p < 0.001, Figure 4(a)) and CHO (outward 
current: 0.16 ± 0.03 folds, one way ANOVA: 
F(4, 26) = 17.720, p < 0.001, Figure 4(b)) cells. 
However, examinations of m-cherry tagged clone 
by immunocytochemistry revealed that the clone 
was expressed but was not fully on the cell mem
brane (Figure 4(c)) suggesting that the observed 
reduction in activity was likely due to reductions 
in cell membrane targeting. Results also demon
strated that truncating the transmembrane 
domains S1-S4 recovered the inward current in 
comparison with the full-length TRPM7 
(Figure 4(a, b)). Thus, truncating the S1-S4 
reduced outward channel activity and impaired 
membrane targeting.

The shortest TRPM7 clone with channel activity

Finally, we explored the shortest structure of 
TRPM7 that is capable of exhibiting channel activ
ity. The transmembrane domains S5 and S6 of the 
channel form the ion-permeable channel pore 
[24]. We constructed a truncated clone that only 
includes the pore forming domains (S5 to S6, 
amino acids 990–1100) and tested whether it is 
capable of exhibiting channel activity. We found 
that the outward current density was 28.47 ± 3.82  
pA/pF (5.87 ± 0.79 folds compared with untrans
fected cells, unpaired t test, t(11) = 6.630, p < 0.001) 

and the inward current density was−5.31 ± 0.67  
pA/PF (1.68 ± 0.21 folds compared with untrans
fected cells, unpaired t test, t(11) = 3.002, p = 0.012) 
in HEK cells (Figure 3(e)). In CHO cells, the out
ward current density was 19.60 ± 2.89 pA/pF (1.99  
± 0.29 folds compared with untransfected cells, 
unpaired t test, t(15) = 2.956, p < 0.001) and the 
inward current density was−8.67 ± 1.04 pA/pF 
(2.15 ± 0.26 folds compared with untransfected 
cells, unpaired t test, t(15) = 4.867, p < 0.001, 
Figure 3(f)). Clone 990–1100 exhibited signifi
cantly lower channel activity in comparison with 
that of full-length TRPM7 in HEK (outward cur
rent: 0.12 ± 0.02 folds, one way ANOVA: F(4, 31) =  
52.100, p < 0.001, Figure 4(a)) and CHO (outward 
current: 0.07 ± 0.01 folds, one way ANOVA: 
F(4, 26) = 17.720, p < 0.001, Figure 4(b)) cells. 
Results also demonstrated that inward current of 
990–1100 was similar to that of full-length TRPM7 
(Figure 4(a, b)).

We tested if inserting the TRP domain could 
help in enhancing the channel activity of the S5-S6 
truncated TRPM7. We found that the TRP- 
containing short TRPM7 clone (amino acids 
990–1160) exhibited significant channel activity. 
In HEK cells, the outward current density was 
44.93 ± 3.42 pA/pF (9.27 ± 0.71 folds compared 
with untransfected cells, unpaired t test, t(10) =  
13.760, p < 0.001) and inward current density was 
−7.19 ± 1.85 pA/pF (2.28 ± 0.59 folds compared 
with untransfected cells, unpaired t test, t(10) =  
2.540, p = 0.029, Figure 3(g)). In CHO cells, the 
outward current density was 33.29 ± 3.19 pA/pF 
(3.33 ± 0.32 folds compared with untransfected 
cells, unpaired t test, t(13) = 6.560, p < 0.001) and 
inward current density was−8.06 ± 1.26 pA/pF 
(2.00 ± 0.31 folds compared with untransfected 
cells, unpaired t test, t(13) = 4.060, p = 0.001, 
Figure 3(h)). The clone 990–1160 had significantly 
lower channel activity in comparison with that of 
full-length TRPM7 in HEK (outward current: 0.19  
± 0.01 folds, one way ANOVA: F(4, 31) = 52.100, p  
< 0.001, Figure 4(a)) and CHO (outward current: 
0.12 ± 0.01 folds, one way ANOVA: F(4, 26) =

990–1863, 990–1100, and 990–1160, red) in HEK (a) and CHO (b) cells. (c). Representative fluorescent images of HEK cells expressing 
full-length and the truncated TRPM7 clones labeled with m-cherry. The HEK cells transfected with full-length TRPM7 were used as 
control. The TRPM7 clones labeled with m-cherry were in red. DAPI stained nuclei in blue. F-actin (Phalloidin staining, green) was 
used to indicate cell shape. Data are analyzed by one-way ANOVA and presented as mean ± SEM, *p < 0.05, ***p < 0.001.
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17.720, p < 0.001, Figure 4(b)) cells. Examinations 
of m-cherry tagged clones by immunocytochemis
try revealed that these two clones were expressed 
and targeted on cell membrane in similar pattern 
to that of full-length TRPM7 (Figure 4(c)) suggest
ing that these truncations directly affect the chan
nel activity.

Importantly, the 990–1160 clone displayed sig
nificantly higher outward current amplitude than 
that of the 990–1100 truncated channel in HEK 
(outward current: 1.58 ± 0.12 folds, unpaired t test, 
t(9) = 3.143, p = 0.012; inward current: 1.35 ± 0.35 
folds, unpaired t test, t(9) = 1.029, p = 0.331, Figure 
S1(e)) and CHO (outward current: 1.67 ± 0.16 
folds, unpaired t test, t(10) = 3.073, p = 0.012; 
inward current: 0.93 ± 0.15 folds, unpaired t test, 
t(10) = 0.373, p = 0.717, Figure S1(f)). Finally, this 
short and active truncated TRPM7 clone (990– 
1160) still can be blocked by the TRPM7 blocker 
NS8593 (Figure S1(d)). Thus, 990–1100 and 990– 
1160 clones could represent the shortest truncated 
TRPM7 structures with the strongest TRPM7 
channel activity.

Discussion

In the current study, we found that truncating 
TRPM7 at different locations resulted in different 
effects on the ion channel activity. We also found 
that the TRP domain on the C-terminal side and 
the MH domain on the N-terminal side are pivotal 
for protein stability/expression not for the channel 
activity per se. Meanwhile, clone 990–1863 trun
cated after the S1-S4 domains, appeared to exhibit 
both impairment of channel activity and disrup
tion of membrane targeting. Finally, we identified 
the truncated channel 990–1160 as the shortest 
structure of TRPM7 that retained relatively high 
ion channel activity and still can be inhibited by 
a classical TRPM7 blocker.

In the current study, cutting the kinase domain 
resulted in a reduction in TRPM7 channel activity, 
which is in line with previous studies [6,16,17]. 
The kinase domain was shown to regulate the 
ion channel activity by autophosphorylation 
[2,16,17]. Furthermore, nucleotides such as ATP 
bind to the kinase domain (their binding site is on 
the C-terminal of the kinase domain) resulting in 
activation of the kinase domain and regulation of 

the ion channel activity [2]. Therefore, loss of the 
autophosphorylation as well as the magnesium- 
nucleotide binding site by truncating the kinase 
domain might explain the reductions in ion chan
nel activity. Further truncations beyond the kinase 
(up to amino acid 1160) did not result in further 
reductions in channel activity. The serine/threo
nine rich domain and coiled-coil domain are 
known as the autophosphorylation sites that reg
ulate the channel activity [25]. Apparently, loss of 
the autophosphorylation mechanism due to the 
absence of the kinase resulted in this lack of effects 
of truncating the serine/threonine rich domain 
and/or the coiled-coil domain on the channel 
activity.

The TRP domain, a highly conserved region 
among many TRP channels, is critical for sub
unit tetramerization and allosteric gating of the 
ion channel [26]. Mutations on TRP domain 
result in nonfunctional TRP ion channels [27]. 
The TRP domain might modulate ion channel 
activity by physically interacting with the S4-S5 
linker of TRPV1 and TRPM7 [28–30] or the S6 
domain of TRPM8 [31]. In some TRP channels 
such as TRPM6, TRPM7, TRPM5, and TRPM8, 
the TRP domain regulates their activity by bind
ing to PIP2 [27,32]. Our results demonstrate that 
truncating TRPM7 at the TRP domain resulted 
in loss of protein stability and hence the channel 
activity was not detected. On the other hand, the 
MH domain is known to be critical for channel 
trafficking and assembly [33]. Deletion of the 
MH domain in TRPM4 or TRPM6 results in 
reductions in channel activity [34,35]. 
Furthermore, structural studies showed that the 
TRP domain interacts with the MH domain to 
regulate TRP channel activity including TRPM7 
[36]. Structural analysis of TRPM7 suggests that 
the C-terminal helix stretches forward to reach 
to the MH domain on the N-terminal bringing 
it closer to the TRP domain, resulting in signal 
transmission from the MH to the S6 domain 
which might control pore gating [30]. In line 
with the above-mentioned studies, our results 
support the notion that TRP and MH domains 
are pivotal for ion channel activity. Truncating 
one of these two domains was sufficient to gen
erate a nonfunctional channel. However, our 
results suggest that the complete loss of the
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channel activity might stem from loss of protein 
stability. Further experiments are required to 
elucidate how MH and/or TRP domains regulate 
the stability of TRPM7 protein, and how loss of 
S1-S4 might protect protein stability but disrupt 
membrane targeting.

Interestingly, the truncated TRPM7 clone lack
ing the TRP and MH domains (containing only S5 
and S6, 990–1100 clone) showed relatively stable 
protein expression and high channel activity. 
Adding the TRP domain (990–1160 clone) resulted 
in further increases in the channel activity. 
Therefore, the 990–1100 and 990–1160 clones can 
be considered as the shortest structures of TRPM7 
with relatively high and detectable channel activity.

In conclusion, physiological and/or pathological 
processes that might cleave TRPM7 at different 
domains will likely result in regulations of channel 
activity (namely outward current), protein stabi
lity, and cell membrane targeting.
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