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�
Abstract: Epigenetic changes play an important role in the pathophysiology of autoimmune diseases 
such as allergic asthma, multiple sclerosis, lung diseases, diabetes, cystic fibrosis, atherosclerosis, 
rheumatoid arthritis, and COVID-19. There are three main classes of epigenetic alterations: post-
translational modifications of histone proteins, control by non-coding RNA and DNA methylation. 
Since histone modifications can directly affect chromatin structure and accessibility, they can regulate 
gene expression levels. Abnormal expression and activity of histone deacetylases (HDACs) have been 
reported in immune mediated diseases. Increased acetylated levels of lysine residues have been sug-
gested to be related to the overexpression of inflammatory genes. This review focuses on the effect of 
HDAC modifications on histone and non–histone proteins in autoimmune diseases. Furthermore, we 
discuss the potential therapeutic effect of HDAC inhibitors (HDACi) used in these diseases.  
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1. INTRODUCTION 

 Post-translational modifications (PTMs) include methyl-
ation, glycosylation, ubiquitination, acetylation, phosphory-
lation and nitrosylation [1]. PTMs alter protein functions by 
regulating their stability and activity [2]. Epigenetic modifi-
cations involve many different cellular signalling pathways 
and contribute to various human diseases' pathogenesis [3]. 
Reversible lysine acetylation of histones is one of the im-
portant mechanisms for controlling gene expression, in-
flammation, cell development and differentiation [4]. Lysine 
acetylation levels are mediated by two enzyme groups: his-
tone deacetylases (HDACs) and histone acetyltransferases 
(HATs) (Fig. 1) [5]. Furthermore, HDACs and HATs also 
target many non-histone substrates. This suggests that ly-
sine-acetylation is also critical in the cell proteome and pro-
tein function beyond chromatin accessibility mediated gene 
regulation [6]. Accumulating evidence shows that abnormal 
activities of HDACs and HATs activities play a crucial role 
in inflammatory diseases [7]. HDAC catalysis removes ace-
tyl groups from lysine residues on histone protein tails. 
Mammalian HDACs family consists of 18 members, and 
they are divided into Class I (HDAC1, HDAC2, HDAC3 
and HDAC8), Class IIa (HDAC4, HDAC5, HDAC7 and 
HDAC9), Class IIb (HDAC6 and HDAC10), Class III 
(SIRT1-7) and Class IV (HDAC11) (Fig. 2) [8]. Classes I, II 
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and IV have highly conserved domains and their deacetyla-
tion activity is Zn2+ dependent, while Class III enzyme sub-
group deacetylase activity is NAD+ dependent [9]. HDACi 
can be used to inhibit HDAC activity in diseases such as 
cancer, immune diseases, neurodegenerative diseases, dia-
betes and cystic fibrosis [10]. HDAC inhibitors can be cate-
gorized according to their synthetic or natural composition, 
subclass-class specificity, and chemical types of structures. 
Generally, they are divided into two classes: HDAC-pan 
inhibitors and HDAC-specific inhibitors [11]. HDAC inhibi-
tors are grouped into four main subgroups based on their 
chemical composition: hydroxamates, benzamides, cyclic 
tetrapeptides and short-chain fatty acids. HDAC inhibitors 
are considered novel epigenetic drugs, and their therapeutic 
potential is widely tested in various disease models [12].   

2. CYSTIC FIBROSIS 

 Cystic fibrosis is a genetic disorder caused by mutations 
in the cystic fibrosis transmembrane conductance regulator 
(CFTR) gene [13]. CTFR protein is responsible for the 
transport of chloride and bicarbonate ions, and mutations 
that impair its function favor lung infection by opportunistic 
pathogens, Pseudomonas aeruginosa being the major one 
[14]. Excessive inflammatory response to P. aeruginosa 
plays a critical role in lung damage [15-17]. Hence, anti-
inflammatory agents are considered as a treatment option 
[18, 19]. HDAC inhibitors are among those agents with 
promising results for reducing the inflammation in cystic 
fibrosis. Suberoylanilide hydroxamic acid (SAHA), a pan-
HDAC inhibitor, was shown to modulate the inflammation
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Fig. (1). Histone acetylation and deacetylation regulation mechanism. Histone acetyl transferases (HATs) catalyze the transfer of acetyl 
groups, histone deacetylases (HDACs) remove the acetyl groups from the lysine residues. (Created with BioRender.com). (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (2). Classification of histone deacetylase (HDAC) family (Created with BioRender.com). (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

caused by P. aeruginosa lipopolysaccharide [20]. In this 
study, treatment of Cftr+/+ or Cftr−/− mice with SAHA 
resulted in changes in interleukin-6 (IL-6) levels, nuclear 
factor kappa B (NFκB)-mediated signaling and neutrophil 
chemotaxis/activation. In another study [21], the efficiency 
of HDAC6 inhibitor, which was identified by screening pa-
tents and research papers was evaluated in the mouse model 
of P. aeruginosa acute and chronic respiratory infection. It 
was shown that inhibition of HDAC activity resulted in the 
reduction of several inflammatory interleukins, chemokines, 
growth factors, and interferon gamma (IFN-γ). Another in-
teresting study revealed how the quorum sensing molecule 
2-aminoacetophenone secreted by P. aeruginosa could af-

fect HDAC1-dependent chromatin modification [22]. In this 
study, 2-aminoacetophenone was found to be responsible 
for HDAC1-mediated deacetylation of histone 3 at lysine 18 
(H3K18) at the promoter sites of the autophagy gene Be-
clin1 and the lipid biosynthesis gene Scd1, resulting in de-
creased expression of these genes. It was concluded that P. 
aeruginosa was able to reduce the macrophage activity by 
modulating membrane lipids and autophagy. In addition to 
their anti-inflammatory effects, HDAC inhibitors were also 
found to have repairing activity on loss-of-function CTFR 
mutants. The pan-HDAC inhibitor SAHA was shown to 
restore the surface channel activity of CTFR phenylalanine 
508 deletion (F508 del) variant [23]. In the same study, si-
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lencing of both HDAC1 and HDAC7 was found to enhance 
the stability of CTFR mutant. In particular, silencing of 
HDAC7 was found to be more effective in terms of restor-
ing channel activity. The authors proposed that HDAC in-
hibitors could exert their effect through altering the tran-
scriptional level of CFTR-related genes or by altering post-
translational acetylation levels of their non-histone sub-
strates. In a similar study [24], HDAC inhibitors were 
shown to restore the transport function of the F508del vari-
ant of CTFR. In addition, a similar effect on the other CTFR 
variants were observed, albeit with different degrees of re-
sponse to HDAC inhibitors. The authors concluded that 
HDAC inhibitors rescued CTRF trafficking through down-
regulation of HDAC7 and abrogation of the maladaptive 
stress response (MSR). In another study, depletion of 
HDAC6 in the cystic fibrosis mouse model was found to 
restore the aggressive inflammatory response back to to 
wild-type profiles [25].  

3. RHEUMATOID ARTHRITIS 

 Rheumatoid arthritis is a chronic autoimmune disease 
with both environmental and genetic basis [26]. Cytokines 
[27] and chemokines [28] are mainly responsible for in-
flammation, which results in joint damage. Previous studies 
showed [29] that the inflammation mechanism involves 
multiple signal transduction pathways regulated through 
epigenetic mechanisms. For instance, HDAC3 was shown to 
be involved in type-I interferon (IFN) production and regu-
lation of inflammatory gene expression [30]. Another study 
[31] showed that the overexpressed HDAC2 in rheumatoid 
arthritis synovial tissue regulated the signalling pathway of 
the inflammatory mediator chemokine CC motif ligand 7 
(CCL7). Similarly, HDAC6 was shown to be overexpressed 
in the synovium tissues of the mouse model and activated 
the nuclear factor-kappaB (NF-kappaB) signalling pathway 
by deacetylating its non-histone protein substrate myeloid 
differentiation primary response 88 (MyD88) [32]. Similar-
ly, another study revealed that non-histone proteins were 
among the substrates of HDAC6 [33]. It was shown that 
inhibition of HDAC6 resulted in hyperacetylation of cyto-
skeletal proteins tubulin and cortactin. In addition, it de-
creased the production of interleukin-6 (IL-6) and the matrix 
metalloproteinases MMP1 and MMP3, thereby suppressing 
inflammation. Those studies proposed HDAC inhibitors as 
anti-inflammatory agents for treating rheumatoid arthritis 
[34]. For instance, the selective HDAC6 inhibitor CKD-506 
was shown to prevent experimental arthritis in a murine 
model [35]. M-134, another HDAC6-selective inhibitor, was 
shown to reduce the level of chemokine (C-X-C motif) lig-
and 10 (IP-10), interleukin-17A (IL-17A), and tumour ne-
crosis factor-alpha (TNF-α) expression. Moreover, a combi-
nation of M-134 and the drug tofacitinib enhanced the ex-
pression of different cytokines, adhesion factors and chem-
okines involved in immune cell migration and chemoattrac-
tion [36]. The selective HDAC1-inhibitor TTA03-107 was 
shown to suppress the production of inflammatory cytokines 
and reduce the severity of autoimmune arthritis [37]. As 
reviewed elsewhere [38], a combination of HDAC, inosine 
monophosphate dehydrogenase (IMPDH), mammalian tar-
get of rapamycin (mTOR), and Janus kinase (JAK) inhibi-
tors could be promising to reduce the inflammation caused 

by increased cytokine levels. However, it should not be 
overlooked that inhibition of some HDAC isoenzymes may 
not yield the desired anti-inflammatory effects [39]. For 
instance, the inflammatory stimuli were shown to suppress 
HDAC5 expression. Moreover, the silencing of HDAC5 
increased the levels of different chemokines and cytokines 
[40].  

4. ATHEROSCLEROSIS  

 Atherosclerosis is a chronic inflammatory disease char-
acterized by plaque formation in the walls of arteries and 
leading to cardiovascular disease and stroke [41]. Several 
studies revealed the connection between inflammation and 
atherosclerosis [42-45]. The impact of epigenetic mecha-
nisms, such as DNA methylation, histone methylation, and 
acetylation of histone and non-histone proteins, on the po-
larization of macrophages was revealed [46]. HDAC isoen-
zymes are involved in endothelial dysfunction through dif-
ferent mechanisms [47]. In particular, inflammatory factors 
are activated by HDACs, via histone acetylation [48, 49]. A 
remarkable issue is that not all HDAC isoenzymes show 
disease-inducing effects [50]. For instance, HDAC7, associ-
ated with myocyte enhancer factor-2 (MEF2), was shown to 
protect endothelial integrity by downregulating matrix met-
alloproteinase MMP10 gene transcription [51]. In contrast, 
other isoenzymes such as HDAC3 [52], HDAC6 [53] and 
HDAC9 [54] were shown to contribute to the development 
of atherosclerosis. Hence, HDAC inhibitors were proven to 
be effective in reducing inflammation [55].  

5. COVID-19 

 Excessive inflammatory response and cytokine storm 
play critical roles in pathogenesis and severity of the coro-
navirus disease 2019 (COVID-19) [56-58]. Hence, the ef-
fectiveness of anti-inflammatory drugs was intensively in-
vestigated [59-62]. Considering the inflammatory roles and 
the link between COVID-19 and epigenetic mechanisms 
[63-66], HDACs and HDAC inhibitors were also under in-
vestigation. For instance, several HDAC6 inhibitors were 
tested on the in vitro models of immune and epithelial cells 
by mimicking the cellular status after viral infection [67]. 
The authors showed that pro-inflammatory cytokines and 
interferon pathway genes were downregulated. In addition, 
the HDAC6 selective inhibitor ITF3756 was capable of up-
regulating the genes responsible for T-cell memory pheno-
types. A screening study of the clinically approved HDAC 
inhibitors showed that romidepsin, panobinostat, givinostat 
hydrochloride monohydrate, CAY10603, and sirtinol were 
able to inhibit the cellular entry of COVID-19 [68]. A fur-
ther study showed that the HDAC inhibitor panobinostat 
suppressed the expression of angiotensin-converting enzyme 
2 (ACE2) receptor in the gastric adenocarcinoma cell line 
[69]. In another study, a similar result was obtained and 
valproic acid was shown to reduce the expression of angio-
tensin-converting enzyme 2 (ACE2) and neuropilin-1 
(NRP1) receptors [70]. HDAC inhibitors were also pro-
posed as neuroprotective agents against COVID-19 infec-
tion, mainly through downregulation of proinflammatory 
cytokines [71].  
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6. ASTHMA 

 Asthma is a chronic disease defined by airway inflam-
mation, hyperresponsiveness, increased mucus secretion and 
remodelling [72]. Asthmatic inflammation is classified into 
4 different groups; paucigranulacytic, eosinophilic, neutro-
philic and mixed granulocytic. Airway inflammation has 
similar symptoms, like breathlessness, cough, wheezing, 
chest tightness, and dyspnoea [73]. Numerous asthma cases 
have reported increased interleukin-4 (IL-4) and interleukin-
5 (IL-5 levels, eosinophils-mediated infiltration and activat-
ed mast cells. Glucocorticoids are used as the main therapy 
agent for asthma [74]. However, they cause undesired side 
effects. In addition, mixed granulocytic type of airway in-
flammation is unresponsive to standard/high-dose glucocor-
ticoid treatment [75]. Therefore, alternative treatment ap-
proaches are needed [76]. HDAC2 enzyme activity alters 
chromatin structure and regulates inflammatory, anti-
inflammatory gene expression in airway inflammation [77]. 
Various human asthma and murine models have been re-
ported to decrease HDAC2 expression and specific enzyme 
activity [78]. Decreased HDAC2 expression level is associ-
ated with activation of NFκB signalling. Bruton’s tyrosine 
kinase (BTK) is expressed in both innate and adaptive im-
mune cells such as neutrophils, B cells and macrophages. 
An earlier study showed that inhibition of BTK by Inrutinib 
was effective in mouse models of eosinophilic and neutro-
philic airway inflammation [79]. Another study combined 
dexamethasone (corticosteroid) therapy and BTK inhibitor 
ibrutinib to test their therapeutic effects in cockroach aller-
gen extract (CE)-induced mixed granulocytic inflammation 
mice model. Corticosteroids were found to downregulate the 
pulmonary inflammation-related gene expressions, such as 
tumour necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), 
granulocyte-macrophage colony-stimulating factor (GM-
CSF), inducible nitric oxide synthase (iNOS), interleukin-
1β(IL-1β) and monocyte chemoattractant protein 1 (MCP1). 
Decreased HDAC2 expression was related to increased in-
flammatory cytokines [80]. In this study, BTK inhibition by 
Ibrutinib reestablished HDAC2 expression level and re-
duced inflammatory cytokines and NFκB expression. This 
study suggested that regulation of HDAC2 expression level 
by BTK inhibition might be an alternative approach to ob-
taining sensitivity to corticosteroids in granulocytic asthma 
[81]. Numerous human health investigations have studied 
curcumin’s (CUR) biological potential. The studies showed 
that curcumin has anti-oxidant/inflammatory and anti-
allergic properties, and it functions as a natural HDAC-pan 
inhibitor [82]. Butyrate is an HDAC inhibitor, and it sup-
presses IL-8 expression. In another study, sodium butyrate 
(SoB) and CUR were used for modulating structural chang-
es in the mouse model of asthma. HDAC1 and HDAC3 
were extensively related to allergic-induced asthma [83]. 
The research authors concluded that SoB and CUR-
mediated inhibition could effectively restore structural 
changes in airways, also suppress HDAC1 and NF-kB. In 
conclusion, the therapeutic properties of HDACi have of-
fered alternative treatments for different human diseases. 
There is a need for new research for a better understanding 
of inhibitor/pathway relations [84]. 

7. NEUROINFLAMMATION 

 Recent findings indicate that neuroinflammation plays a 
crucial role in a range of neurological conditions, encom-
passing central nervous system (CNS) traumas, depression, 
and neurodegenerative illnesses such as Alzheimer's and 
Parkinson's diseases [85]. Neurological disorders' severity 
can be mitigated by inhibiting neuroinflammation [86]. 
HDACs play a pivotal role in modulating immune responses 
and inflammatory processes. HDACi have emerged as a 
prominent area of interest in investigating anti-inflammatory 
pharmaceuticals [87]. Earlier studies showed that in situa-
tions of brain injury and neurodegenerative disease, it is 
typical to observe an overexpression of HDAC1 and 
HDAC2 in microglia. The phenomenon induces polarization 
of microglia towards M1 macrophage. It results in the re-
lease of a considerable quantity of inflammatory mediators, 
which may ensue from the deacetylation of signal transduc-
er and activator of transcription (STAT1/3), thereby intensi-
fying the activation of the NF-κB signalling cascade [88]. 
The activation of the NF-κB signalling pathway ultimately 
results in the activation of microglia, thereby intensifying 
neuroinflammation and increasing neuronal damage. The 
same study has demonstrated that the application of HDAC 
inhibitor SAHA can impede the M1-polarization of micro-
glia, reduce neuroinflammation dependent on HDAC1/2, 
and protect neuronal cells [89]. In another study, pan-
inhibitory valproic acid (VPA) has been used to regulate 
STAT1/NF-κB and JAK2 (Janus Kinase 3)/STAT3 signal 
pathways to control microglial function and suppress spinal 
neuroinflammation in neuropathic pain [90]. HDACII inhib-
itory Tubastatin A has been used in cerebral ischemia; it has 
increased regulatory T cell (Treg) immunosuppressive abil-
ity and regulated interleukin-10 (IL-10) expression levels 
[87]. Histone deacetylases (HDACs) regulate gene expres-
sion by deacetylating histones and related proteins [86]. 
Additionally, HDACs have been found to directly deacety-
late molecules involved in inflammatory signalling path-
ways, regulate the activation of glial cells in the central 
nervous system, and promote neuronal survival [91]. Further 
clarification is needed regarding the precise mechanisms 
HDAC regulates neuroinflammation [92].      

8. CANCER 

 HDACs play several roles in cancer cell metabolism and 
they regulate cell cycle, apoptosis, DNA-damage response, 
metastasis, angiogenesis, autophagy [93-95]. Hence, 
dysregulation of HDACs results in cancer initiation and 
progression [96]. As reviewed elsewhere [97], HDAC8 is 
overexpressed in different types of cancers and the level of 
overexpression is correlated with the advanced stage of 
breast cancer and neuroblastoma. Similarly, HDAC2, 
HDAC3 and HDAC6 are overexpressed in lung cancer [97], 
human cholangiocarcinoma [98], and colon cancer [99], 
respectively. In addition, the overexpressed class I HDACs 
have been shown to promote drug resistance in glioma cells 
[100]. Because of the crucial roles of HDACs in cancer, 
HDAC inhibitors (Table 1) have been proposed as anti-
cancer agents [101-105]. For instance, the class I HDAC 
inhibitor valproic acid has been shown to enhance the effec-
tiveness of chemotherapy agents in human melanoma cells 
[106]. Similarly, the class I HDAC inhibitor domatinostat 
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has been shown to sensitize pancreatic cancer cells to chem-
otherapy by exerting its effect on the transcription factor 
FOXM1 [107]. Likewise, the potential of HDAC inhibitors 
to overcome immunotherapy resistance has been revealed 
[108]. There is also a growing interest in dual HDAC inhibi-
tors targeting both HDAC and another cancer target, such as 
phosphoinositide 3-kinases [109], microtubule polymeriza-
tion [110], bromodomain and extra-terminal [111]. As re-
viewed elsewhere [112], HDAC-based dual drugs have been 
proposed to be superior to single-targeted drugs in terms of 
therapeutic efficiency. Despite the great potential of HDAC 
inhibitors, it should not be overlooked that not all HDAC 
isozenzymes are related to cancer progression. A remarka-
ble study has shown that pan-HDAC inhibitor promotes 
breast cancer metastasis due to the inhibition of HDAC4 
[113]. Another study has revealed the tumor suppressive 
role of HDAC10 in cervical cancer [114].  
 
Table 1. HDACi classification. 

HDAC Inhibitors Types of HDAC Inhibitors 

MS-275 (Entinostat) Benzamide 

Apicidin 

Depsipeptide 

Trapoxin A 

Cyclic peptide 

Valproic acid 

Butyrate 
Short chain fatty acid 

Tubacin 

Belinostat 

Vorinostat (SAHA) 

Hydroxamate 

CONCLUSION 

 This mini-review summarized an overview of the latest 
literature on utilising HDAC inhibitors as pharmacological 
agents for the modulation of autoimmunity and inflamma-
tion. The summary of this review and outcomes from nu-
merous investigations on autoimmune and autoinflammato-
ry disorders clearly suggest that HDAC inhibitors have sig-
nificant therapeutic potential in controlling the symptoms of 
immune-mediated diseases. Developing isoform-specific 
HDAC inhibitors is essential for effectively treating auto-
immune disorders while overcoming adverse effects. In 
conclusion, a better understanding of the molecular conse-
quences of HDAC inhibition is required to develop alterna-
tive treatment strategies for autoimmune diseases. Core-
pressor complexes consist of a variety of proteins that play a 
role in the repression of transcription. These proteins in-
clude DNA-binding proteins, histone deacetylases 
(HDACs), and components involved in the structural organ-
ization of chromatin. The role of corepressor function is 
crucial in controlling an extensive range of biological pro-
cesses, including development, differentiation, and signal 
transduction. HDAC1, HDAC2, and HDAC3 generally 
function as a corepressor complex in transcriptional regula-

tion. HDACs acting on both histone and non-histone pro-
teins are attractive drug targets in a wide range of diseases. 
Hence, there is much interest in the discovery of HDAC 
inhibitors. However, the major limitation is that all of the 
FDA-approved drugs are pan-inibitors with no HDAC iso-
enzyme selectivity. Considering that each HDAC isoenzyme 
may have counter effects on the disease mechanism of inter-
est, the design of isoenzyme-specific inhibitors is critical to 
prevent off-target effects and toxicity. Another issue is that 
HDACs are not only effective on histone proteins but also 
non-histone proteins. Although the number of studies on 
distinct biological functions of HDACs increases by year, 
there are still unknowns about the non-histone substrates, as 
well as the interaction partners of HDAC isoezymes. As 
more structural and mechanistic information is gathered, the 
therapeutic potential of HDACs is expected to be increased 
in the future. The interest in combination therapy approach-
es, as well as in dual-inhbitor design is encouraging efforts 
for the field of HDAC inhibitor research.  

LIST OF ABBREVIATIONS 

ACE2 = Angiotensin-converting Enzyme 2 
BTK = Bruton’s Tyrosine Kinase 
CFTR = Cystic Fibrosis Transmembrane Conduct-

ance Regulator 
CNS = Central Nervous System 
COVID-19 = Coronavirus Disease 2019 
CUR = Curcumin’s 
GM-CSF = Granulocyte-macrophage Colony-stimula- 

ting factor 
HATs = Histone Acetyltransferases 
HDACi = HDAC Inhibitors 
HDACs = Histone Deacetylases 
IFN-γ = Interferon gamma 
IL-6 = Interleukin-6  
IMPDH = Inosine Monophosphate Dehydrogenase 
iNOS = inducible Nitric Oxide Synthase 
JAK = Janus kinase 
MCP1 = Monocyte Chemoattractant Protein 1 
MEF2 = Myocyte Enhancer Factor-2 
MSR = Maladaptive Stress Response 
mTOR = mammalian Target of Rapamycin 
NFκB = Nuclear Factor Kappa B 
NRP1 = Neuropilin-1 
PTMs = Post-translational Modifications 
SAHA = Suberoylanilide Hydroxamic Acid 
SoB = Sodium Butyrate 
TNF-α = Tumour Necrosis Factor-alpha 
VPA = Valproic Acid 
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