Skip to main content
. 2023 Dec 20;13:1289050. doi: 10.3389/fonc.2023.1289050

Table 3.

Meta-analysis results of sensitivity and specificity of machine learning in predicting lymph node metastasis in EC patients.

Variables Model type Training set Validation set
n Sen(95%CI) Spe(95%CI) n Sen(95%CI) Spe(95%CI)
Radiomics Features
Logistic regression 10 0.83(0.75~0.88) 0.79(0.76~0.82) 7 0.77(0.60~0.88) 0.86(0.75~0.93)
Artificial neural network 2 0.77~0.86 0.66~0.94 1 0.89 0.75
Support vector machine 2 0.75~0.81 0.75~0.87 1 0.71 0.72
Ridge regression 1 0.7 0.86
HoeffdingTree 1 0.81 0.87
Convolutional neural network 2 0.80~0.83 0.90~0.91
Overall 18 0.82(0.79~0.85) 0.83(0.79~0.87) 9 0.77(0.64~0.87) 0.84(0.74~0.91)
Radiomics+Clinical Features
Logistic regression 7 0.90(0.84~0.94) 0.80(0.72~0.86) 6 0.78(0.62~0.88) 0.87(0.78~0.93)
Artificial neural network 1 0.92 0.84 2 0.85~0.89 0.75~0.83
Ridge regression 1 0.71 0.73
Convolutional neural network 1 0.83 0.91
Overall 10 0.88(0.84~0.92) 0.81(0.75~0.86) 6 0.81(0.70~0.89) 0.84(0.76~0.89)
Clinical Features
Logistic regression 31 0.81(0.78~0.84) 0.75(0.71~0.79) 13 0.74(0.66~0.80) 0.79(0.75~0.82)
Random forest 1 0.67 0.78 1 0.48 0.87
Bayesian network 2 0.87~0.94 0.68~0.70
Overall 32 0.81(0.77~0.84) 0.75(0.71~0.79) 16 0.75(0.67~0.82) 0.78(0.74~0.82)
Mayo 7 0.81(0.66~0.90) 0.59(0.38~0.77)