Table 3.
Meta-analysis results of sensitivity and specificity of machine learning in predicting lymph node metastasis in EC patients.
| Variables | Model type | Training set | Validation set | ||||
|---|---|---|---|---|---|---|---|
| n | Sen(95%CI) | Spe(95%CI) | n | Sen(95%CI) | Spe(95%CI) | ||
| Radiomics Features | |||||||
| Logistic regression | 10 | 0.83(0.75~0.88) | 0.79(0.76~0.82) | 7 | 0.77(0.60~0.88) | 0.86(0.75~0.93) | |
| Artificial neural network | 2 | 0.77~0.86 | 0.66~0.94 | 1 | 0.89 | 0.75 | |
| Support vector machine | 2 | 0.75~0.81 | 0.75~0.87 | 1 | 0.71 | 0.72 | |
| Ridge regression | 1 | 0.7 | 0.86 | ||||
| HoeffdingTree | 1 | 0.81 | 0.87 | ||||
| Convolutional neural network | 2 | 0.80~0.83 | 0.90~0.91 | ||||
| Overall | 18 | 0.82(0.79~0.85) | 0.83(0.79~0.87) | 9 | 0.77(0.64~0.87) | 0.84(0.74~0.91) | |
| Radiomics+Clinical Features | |||||||
| Logistic regression | 7 | 0.90(0.84~0.94) | 0.80(0.72~0.86) | 6 | 0.78(0.62~0.88) | 0.87(0.78~0.93) | |
| Artificial neural network | 1 | 0.92 | 0.84 | 2 | 0.85~0.89 | 0.75~0.83 | |
| Ridge regression | 1 | 0.71 | 0.73 | ||||
| Convolutional neural network | 1 | 0.83 | 0.91 | ||||
| Overall | 10 | 0.88(0.84~0.92) | 0.81(0.75~0.86) | 6 | 0.81(0.70~0.89) | 0.84(0.76~0.89) | |
| Clinical Features | |||||||
| Logistic regression | 31 | 0.81(0.78~0.84) | 0.75(0.71~0.79) | 13 | 0.74(0.66~0.80) | 0.79(0.75~0.82) | |
| Random forest | 1 | 0.67 | 0.78 | 1 | 0.48 | 0.87 | |
| Bayesian network | 2 | 0.87~0.94 | 0.68~0.70 | ||||
| Overall | 32 | 0.81(0.77~0.84) | 0.75(0.71~0.79) | 16 | 0.75(0.67~0.82) | 0.78(0.74~0.82) | |
| Mayo | 7 | 0.81(0.66~0.90) | 0.59(0.38~0.77) | ||||