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Abstract
Polypropylene (PP) is a versatile polymer with numerous applications that has undergone substantial changes in recent 
years, focusing on the demand for next-generation polymers. This article provides a comprehensive review of recent 
research in PP and its advanced functional applications. The chronological development and fundamentals of PP are 
mentioned. Notably, the incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparti-
cles, etc., with PP for advanced applications has been tabulated with their key features and challenges. The article also 
conducts a detailed analysis of advancements and research gaps within three key forms of PP: fiber, membrane, and 
matrix. The versatile applications of PP across sectors like biomedical, automotive, aerospace, and air/water filtration are 
highlighted. However, challenges such as limited UV resistance, bonding issues, and flammability are noted. The study 
emphasizes the promising potential of PP while addressing unresolved concerns, with the goal of guiding future research 
and promoting innovation in polymer applications.
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1  Introduction

In recent decades, PP has emerged as one of the most widely used thermoplastic polymers due to its exceptional prop-
erties, cost-effectiveness, and ease of processing [1]. Over the years, significant progress has been made in developing 
and utilizing PP, leading to its widespread applications across various industries [2]. This article aims to highlight a com-
prehensive overview of the most recent advancements in PP research and its versatile applications while exploring the 
future outlook for it [3].

The versatility of PP originates from its unique molecular arrangement, which consists of propylene monomers joined 
together in an unbent chain. This linear configuration proposes several benefits, including increased crystallinity, supe-
rior chemical resistance, inferior density, and satisfactory mechanical strength [4]. These features make PP eligible for 
various applications, from packaging materials and customer products to automotive elements and medical devices [5].

In current years, investigators have focused on improving the properties of PP through various techniques such as 
copolymerization, modification with additives, and nanocomposite formation [4, 6]. For instance, Green et al. revealed 
insulation of PP and propylene-ethylene by using a copolymerization approach [7]. Mastalygina and his colleagues 
improved the properties of PP by modifying it with low-density PP and powdered cellulose [8]. W Liu et al. reported 
an overview of the electrical properties of PP-based nanocomposite [9]. The improved thermal stability, improved 
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impact resistance, outstanding barrier properties, and enriched electrical conductivity have been observed by using 
the above-mentioned techniques.

PP is a flexible material with a wide range of uses. It enhances filtration and antifouling properties in membrane 
technology. PP composites reinforced with carbon nanotube (CNT) or jute fibers improve mechanical strength and 
electromagnetic shielding. Scaffolds made of PP have potential for use in biomedical applications [10]. PP is fre-
quently used in textiles, and it strengthens concrete. PP is applicable across industries because of its adaptability 
and versatility [11].

Applications have been categorized in the form of PP, including membrane, composite, and fiber. They will encom-
pass a broad spectrum of applications of PP, including but not limited to water filtration, air filtration, biomedical, 
packaging, apparel, automotive, aerospace, construction, and recycled materials [12, 13]. Each application category 
will be discussed in detail, highlighting the key advancements, challenges, and potential future directions.

The incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparticles, etc. paid a 
good attention over the years. Gawish et al. [1] produced a PP hybrid composite with graphene nanoplates in the 
yield. The tensile strength showed a greater change of approximately 16 MPa to 33 MPa, while the flexural strength 
and impact energy enhanced by 16% and 12%, respectively. To produce medical orthopedic devices with PP and 
CaCO3 nanoparticles that could be used instead of natural bone, and it could also be used as a thermal insulation 
material [14]. Many such researches have reported in this article.

Moreover, the applications of PP have increased over the decade; however, a comprehensive review of the appli-
cations of PP has been found limited. Maddah reported a PP review focusing on plastic materials [15]. Himma et al. 
reported preparation, modification, and applications as only membrane form [16]. Siracusa focused on bio-based 
polymers, including PP [17]. Chung and his team’s review aims only at energy storage applications [18].

Thus, this review article aims to provide a thorough overview of the most recent developments in PP research 
and their numerous applications. It will be invaluable for researchers, engineers, and business professionals work-
ing with PP because it examines recent developments, difficulties, potential outcomes and new ideas. This article is 
anticipated to encourage additional innovation, advance sustainable utilization, and support the continued success 
of PP across a range of industrial sectors.

2 � Fundamental and chronological development of PP

PP is a robust, stiff, and crystalline thermoplastic. It is generated from the monomer propene (or propylene). PP was 
discovered by scientists Paul Hogan and Robert Banks by accident while working at the Phillips Petroleum Company 
in 1951. After that, Phillips Petroleum Company began the first commercial PP manufacturing in 1954. The material 
was first sold as PP, then as "Marlex. In 1957, the stereospecific catalysts were introduced by Karl Ziegler and Giulio 
Natta’s research results in creating stereospecific catalysts, allowing the synthesis of isotactic PP with better charac-
teristics. Then, PP acquired popularity in the 1960s because of its outstanding mechanical and chemical qualities. 
Its use is quickly expanding in various sectors, including packaging, textiles, automotive, and consumer products. 
After that, the development of copolymerization processes enables the production of random copolymers and 
block copolymers of PP, allowing for more control over characteristics and application-specific tailoring in the 1970s. 
Improvements in processing methods have been observed since 1980s, such as injection moulding, extrusion, and 
blow moulding, making PP more versatile, allowing for the manufacture of complicated forms and structures. Then, 
when recycling capacities increased in the 1990s, PP’s recyclability became a critical attribute in its widespread use. 
Recycled PP maintains its properties, making it a viable option for ecologically responsible applications. Polymer 
science advancements in the 2000s and continuous polymer science research and innovation resulted in the inven-
tion of new grades and formulations of PP, increasing its range of characteristics and applications. Finally, at present 
days, the PP is one of the most often used polymers on a worldwide scale. Its adaptability and ongoing innovation 
keep it at the forefront of contemporary production and everyday living. PP has witnessed constant developments 
and broad acceptance throughout its history, making it a standard in various sectors owing to its cost-effectiveness, 
adaptability, and excellent performance in a wide range of applications. Chronological development of PP is shown 
in Fig. 1.
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3 � Advancement of incorporation of nanomaterial with PP

PP has versatile uses in nanotechnology, and it is engaging in new fields day by day. PP could be used as a home appliance 
to spacecraft to create a better future and a more sustainable world. Researchers have been given greater attention over 
the last few decades and are trying to improve the performance of PP by mixing or blending with other nanomaterials.

To know the different properties of PP, some recent researches are analyzed below the table, and their preparation 
methods, application, characterization, processing challenges, as well as future aspects are also discussed. The Table 1 
clearly shows that PPs are used with different nanoparticles, such as Gawish et al. [1] produced a PP hybrid compos-
ite with graphene nanoplates in the yield. The tensile strength showed a greater change of approximately 16 MPa to 
33 MPa, while the flexural strength and impact energy enhanced by 16% and 12%, respectively. Since conventional PP 
has transformed into a hybrid composite, the application sector has changed to high-impact consumption. To produce 
medical orthopedic devices with PP and CaCO3 nanoparticles that could be used instead of natural bone, and it could 
also be used as a thermal insulation material [14]. Y. Shi et al. produce wearable electronics and energy storage devices, 
Mxene nanoparticles are used with PP, which is a revolutionary change for the modern biomedical sector as well as 
smart textile production [19]. This MXene-base composite material incredibly increases tensile modulus and ductility. 

Fig. 1   Chronological development of the PP over the decades
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H. Palza as wearing clothes for humans, antimicrobial properties are essential. Copper nanoparticle (NPCu)-based PP-
coated textiles showed higher antimicrobial properties; only 5% volume of PP/NPCu can remove 99.8% of S. aureus 
germs within 60 min [20].

N. Saba Oil palm nanofiller PP hybrid composites are versatile structural components; they could be used as wind 
turbine blades, car panels, and different types of complex structural designs [21]. The interesting matter is that with only 
3% of oil palm nanofiller, tensile strength increased by 60.8% and impact strength was enhanced by 27.6%. To produce 
different types of PPs nanoproducts, researchers faced lots of challenges, including the incorporation of nanoparticles, 
different parameter control, durability, large-scale production, and recycling processes. In spite of so many challenges, 
there is a lot of possibility for future work on PP, such as borophene nanomaterial, which could be used to produce 
high-load bearing materials. It could be used with graphene and carbon-base advanced materials. Since PP is a non-
biodegradable material, it could react with biodegradable co-polymerization to be used as a biological transplanting 
and self-healing material.

4 � Advanced functional application areas

There are numerous cutting-edge functional applications for PP in multiple industries. It is suited for a wide range of 
specialized applications thanks to its exceptional combination of qualities, including excellent chemical resistance, low 
density, outstanding fatigue resistance, and superior electrical insulation [22]. Table 2 summarizes the features, applica-
tions, and fabrication of advanced PP-based membranes.

5 � PP membrane

PP is one of the most popular polymers for making membranes, which has excellent thermal stability, chemical resist-
ance, mechanical strength, and affordability. PP electrospun membrane is widely used in water filtration, air filtration, 
biomedical fields and many more due to its micro-sized and nano-sized fiber, high specific surface, and ease of spinning 
[23]. Numerous studies have documented the use of PP membranes in water filtration. However, developmentsthis 
fieldsection this section will highlight the recent development in the scientific arena regarding these fields.

5.1 � Water filter

PP-based filter membrane for water treatment, especially waste water; sea water desalination and so on, has gained much 
attention over the years. A schematic diagram of the PP-based water filtration mechanism is shown in Fig. 2.

Electrospinning technology is widely used to prepare the filtration nano-membrane. A based nano filter membrane for 
the treatment of waste water derived from textiles was disclosed by Zakaria and colleagues. They have created nanofibers 
with 228 nm on average in diameter. By contrasting their filter with a commercial PP membrane that has more mechanical 
strength, they indicated that their filter is promising [27]. However, limitations have been observed in terms of degrada-
tion in contact with chemicals (strong acid, base, organic solvents). Another article was published where they claim that 
developed membrane is capable of removal of microplastics from urban waste water [24]. However, susceptibility to 
fouling is still a limitation that must be overcome.

Besides, oil-form-water separation is emerging significant for its economic value, and many research articles have been 
published in recent years [25–28]. For example, PP based nano-membrane for oil–water mixture separation is reported 
by Wang et al. [29]. Sea water desalination has paid interest for the water crisis over the years. Promising research is going 
on to advance this steam. Marek Gryta applied plasma treated PP-based nano-membrane for desalination [30]. In another 
study, the PP/chitosan membrane is prepared and characterized [31]. Similarly, many studies carried out regarding the 
PP-based membrane for removing salt from seawater [32–34]. Future scope available to work on the membrane’s filter-
ing rate incrassation, improving the quality of the membrane, reducing cost, and so on.

5.2 � Air filter

Various polymers have been used for air filtration over the years [35]. PP and other polymers is surging massive attention 
in many diversified applications, including air filtrations, as illustrated in Fig. 3. Many research works are progressing on 
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this topic around the world. For instance, Deng and colleagues reported Janus microsphere filter media, which omit 
the existing limitations of commercial facemasks like limited moisture, vapor permeability, and lower microorganism 
inhibition [36]. In addition, metal nanoparticle incorporated PP membrane shows 91.68% efficiency for air filtering by 
Cheng et al. et al. [37]. Oher’s techniques, including melt blowing, are also used to prepare PP membranes. For example, 
Deng et al. prepared a PP-based air filter, which shows 99.87% filtration efficiency. Getting homogeneous fiber structure 
is still challenging, and we should focus on decreasing the standard deviation to prepare fiber diameter [38]. Therefore, 
the researcher has the potential to enhance this field of study.

5.3 � Biomedical field

The use of PP polymer in the biomedical fields is less widespread than PVA and others owing to its non-biocompatibility 
and non-biodegradability features [39]. However, the addition chitosan, collagen, and other medicinal substance-based 
mat has become popular over the years. Ahmet and team studied PP/chitosan-based mat as a scaffold the area for 
biomedicals [40]. Ganjalinia et al. reported PP with a Lactic acid-based mat for use as a scaffold in the body [41]. Also, a 

Fig. 2   Schematic diagram of the PP-based water filtration mechanism

Fig. 3   Schematic diagram 
of the PP-based air filtration 
mechanism



Vol.:(0123456789)

Discover Nano            (2024) 19:2  | https://doi.org/10.1186/s11671-023-03952-z	 Review

1 3

mesh with PP, after modifying its surface, has been prepared for the preparation of biomedical devices [42]. PP/CNT and 
hydroxyapatite nanocomposite in human subchondral bone are produced by Khan et al. [43].

PP/cellulosic fiber-based bio-composite has been prepared for artificial organs and tissue engineering. They have not 
done any in vivo or in-vitro analysis, just reported mechanical properties. Experimental results do not fully support that 
their bio-nano-composite is promising for biomedical applications [44]. Table 3 provides an overview of PP-based materi-
als, including fabrication techniques, characteristics, and notable applications and Fig. 4 shows a schematic illustration 
of the PP-based scaffolds for biomedical application.

6 � PP composite

The use of PP in the composite as is performing a significant role in the thermoplastic type composite. Different man-
made, natural and high-performance fiber has been used as reinforcement over the century [45]. The preparation tech-
niques for wood plastic composite (WPC), injection-molded composite, fiber-reinforced composite, and sheet molded 
composite are shown in Fig. 5a–d, respectively.

PP is frequently used as a matrix material in composite structures, where it functions as the continuous phase that 
binds the reinforcing material together. The following are essential applications of PP as a matrix in composite materials:

6.1 � Fiber‑reinforced composite

PP is commonly used as the matrix material in fiber-reinforced composite, blending with carbon, glass, or natural fibers. 
Due to their low weight, high strength, and corrosion resistance, these composites are utilized in numerous industries, 
including the automotive, aerospace, and construction industries. Shen et al. investigated the jute fiber-reinforced PP 
composite to determined mechanical and acoustic properties. The mechanical properties improved by up to 50% of the 
fiber content of jute afterwards decreased [46]. On the other hand, the best acoustic insolation performance is found 
in the 50% fiber content. Anandjiwala and his colleagues study about flax fiber reinforce PP composite and its chemical 
modification [47]. The composites were made with zein-treated nonwovens flax fiber. These composites were tested 
for tensile, flexural, impact, and reinforcing characteristics. Chemically treated flax fibers increased mechanical parts in 
composites. Maurya et al. examine a sisal fiber base PP hybrid composite which produced by chemically activated fly 
ash. The results found that tensile and flexural properties increased 30.54% and 48%, respectively and the maximum 
impact strength was found to be 0.80 kJ/m2 [48].

6.2 � Wood‑plastic composite (WPC)

PP is used as the matrix in wood-plastic composite when combined with wood or natural fibers. WPC have the aesthetic 
appeal of wood in addition to moisture resistance and low maintenance, making them ideal for outdoor decking, fenc-
ing, and furniture [49].

Jubinville et al. developed a highly loaded PP based WPC; it was found that PP may be recycled six times without los-
ing most of its material qualities. It also found that chain scission caused by thermo-mechanical processing dominated 
PP alterations after re-processing. The high viscosity of virgin PP limited WF loading to 60 wt.%, and recycled PP allowed 
up to 70 wt.% WF loading [50]. Lin et al. examine how the three components of biomass and plastics interact during the 
pyrolysis of the WPC. Compared to their estimated yields, the experimentally obtained char yields with C-PP and H-PP 
rose, but the woody residue yield from L-PP barely reduced. The global output of WPC has grown and is still rising [51]. 
Kuka et al. examine the environmental characteristics of WPC made of PP and heat-treated wood. The results showed 
excellent performance of composite against UV light [49]

6.3 � Thermoplastic composite

PP is frequently used as a matrix material in thermoplastic composite, in which it may be repeatedly melted and reformed. 
These composites are utilized in vehicle components, consumer goods, and industrial equipment due to their ease of 
production and recyclability. Sultana et al. investigated the theoretical stiffness of short jute reinforcement PP thermo-
plastic composite. In the results short fiber preform composite provide extreme stiffness [52]. Arju et al. developed dif-
ferent woven and knitted structural jute fabric base PP thermoplastic composite and the result was found that the twill 
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structure height value of tensile strength (48 MP) at twill structure was 134% higher than other plain fabric structures 
[53]. Kaewkuk and his coworker analyzes sisal fiber/PP thermoplastic composite where cellulose decomposition increases 
due to an increase of PP temperature. When fiber content was increased then decrease the pollution of cellulose [54]. In 
addition, PP is using as insulation cables and has good features in the industrial scale. For instance, Adnan and his team 
reported PP based nanocomposite for the use in insulation cables [55].

6.4 � Injection moulded composite

PP is frequently blended with short fibers or fillers in injection-moulded composite products to enhance its mechanical 
properties. PP composites are introduced and formed into home appliances, electrical enclosures, and car interior parts. 
Panthapulakkal & Sain developed a short hemp/glass reinforced hybrid PP composite in the inject moulding; it found that 
the mechanical properties of the hybrid composite increased with increased glass fiber content, and it was determined 
that 15% wt.% of short glass fiber content maximum amount of flexural strength and modulus [56]. Billah et al. examined 
continuous and discontinuous rattan fiber reinforced PP injected moulded composite where the tensile properties of 
discontinuous fiber enhanced up to 30%. On the other hand, the tensile properties of continuous fiber enhanced up to 
59%[57]. Nuez et al. developed flax shives reinforced inject moulded PP composite, whereas the tensile strength and 
Young modulus tremendously increased due to good bonding with fiber and PP matrix [58].

6.5 � Sheet moulding composite (SMC)

As the matrix material, PP is utilized in the fabrication of SMCs, which are utilized to produce large, complex objects 
with high strength-to-weight ratios. SMCs are used for vehicle body panels, truck parts, and infrastructure components. 
Chatterjee et al. investigated the thermal behavior and mechanical properties of jute fiber PP composite; it was founded 
a strong bond between jute fiber and PP. Jute fibers and PP in the composites exhibited high tensile strength increased 
by 10% at 2-ply fiber loading. Due to polymer degradation caused by repeated processing, the mechanical properties 
of four-ply composites are diminished [59]. Gabr et al. found that the thermal and mechanical improved using a carbon 
fiber/PP composite by sheet moulding process [60].

6.6 � Thermoset composite

When combined with thermosetting resins such as polyester or epoxy, PP can function as a matrix material in ther-
moset composites. These composites in aerospace, maritime, and high-performance applications feature exceptional 
mechanical properties. Y. Li et al. study of carbon/PP and epoxy/PP thermoset composites revealed that the PP/epoxy 
and PP/epoxy/CB composites significantly reduced chain folding energy while increasing the rate of crystallization of 
the composites [61]. Abd El-baky et al. developed a PP glass thermoset composite to analyze the flexural strength and 
probability of failure of hybrid composites. In the results, the strength is increased by the hybridization of glass fiber with 
PP, and the static as well as flexural properties of the PFRP, GFRP, and P-G composites with hybridization are the follow-
ing: 82.37, 88.4, and roughly 84.9%[62]. M. Li et al. produced a PP base thermoset composite and successfully improved 

Fig. 4   Schematic illustration 
of the PP-based scaffold for 
biomedical application
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mechanical properties because of the crosslink structure of epoxy resin [63]. PP has extensive use in the medical field for 
various applications like medical devices, diagnostic equipment, surgical instruments, and packaging and so on,due to 
its versatility, cost-effectiveness, and compliance with regulatory requirements in the healthcare industry [64].

7 � PP fiber

In fiber form, the PP is used in apparel (sportswear, cold clothing gear, underwear’s and so on), garments accessories, 
diaper top cover, non-woven facemask, PPE, and many diverse applications [65]. Also, PP fiber-reinforced concrete 
composites paid attention enormous have great attention, and huge scholarly articles have been published over 

Fig. 5   Preparation techniques 
of a wood plastics com-
posite, b injection molded 
composite, c fiber reinforced 
composite, d sheet molded 
composite
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the decade. For instance, concrete with PP fiber reinforcement and its use in the design of public interiors has been 
reported by Blazy et al. [66]. Yoan et al. report on reinforced concrete’s mechanical characteristics and microstructure 
with glass and PP fibers [67]. Investigation of the mechanical and durability characteristics of concrete reinforced with 
glass and PP fibers have reported by Liu et al. [68]. On the other hand, PP fiber is also used for composite preparation. 
PP fiber reinforced composite with organic materials like gypsum prepared by Nguyen et al. [69]. Admittedly, Fig. 6 
represents the various application of the PP in the form of fiber. Due to their advantageous qualities, PP fibers have 
a wide range of uses in several sectors. Among the most critical applications for PP fibers are textiles and clothing, 
geotextiles; automobiles, nonwoven; ropes and twines.

7.1 � Textiles and clothing

In the textile industry, PP fibers are widely used to manufacture a variety of fabrics and garments [65]. Due to their 
lightweight, suppleness, and capacity to wick away moisture, these fibers are ideal for athletic wear, activewear, and 
undergarments.

Uddin et al. analyzed personal protective clothing that was made from PP. this PPE was used worldwide to pro-
tect humans from Covid-19 [70]. In addition, Shahid et al. reported that PCM incorporated fabric for medical textiles 
applications [71]. Lee & Obendorf created a liquid protective textile utilizing electrospun PP web; this (EPWs) and 
laminates showed a combination of solid protection efficacy and an acceptable amount of air/vapor transport quali-
ties [72]. Wang et al. investigated the possibility of using remaining PP fabric from carpet backing as edge trim to keep 
a polyethylene (PE) matrix. A single piece of used PP fabric that had been cleaned was placed between four layers of 
0.1 mm thick PE film. Following that, they were moulded at a temperature of 150 °C and a pressure of 290 kPa. Com-
paring the resultant PE/PP composite’s tensile strength and flexural modulus to those of pure PE, it was discovered 
that the composite, which included a 25% PP volume percentage, had increased three times and 60%[73].

Fig. 6   Schematic illustration 
of various applications for PP 
fibers
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7.2 � Geotextile

As geotextiles, PP fibers are widely used in civil engineering and building applications. As seen in the Fig. 6, PP geotextiles 
offer soil stabilization, erosion management, and drainage solutions. They are utilized in the construction of roadways, 
berms, and landfills. Valentin et al. investigations to pinpoint potential durability issues resulting from UV light exposure 
to geotextiles, using both macro- and micro-scale methods. The tested commercial PP geotextile deteriorated after 500 
and 1000 h of UV exposure. The tensile tests revealed that following exposure to UV light, the material stiffness increased, 
along with the tensile strength and ultimate load elongation [74]. Rawal & Saraswat’s research on needle-punched 
nonwoven geotextiles was made using different weight ratios of PP/viscose and polyester/viscose fibers. In the newly 
developed nonwoven geotextiles, the porosity decreases were calculated at predetermined atmospheric pressures of 
2, 20, and 200 kPa. The 20/80 volume fraction of PET/viscose and 20/80 volume fraction of PP/ viscose materials showed 
the least amount of porosity decrease. However, at high normal pressures (200 kPa), PP/viscose and PET/viscose with 
400 g/m2 of mass per unit area have produced the least porosity reduction [75].

7.3 � Automobile sector

In the automobile business, PP fibers are utilized for automotive carpets, seat covers, and interior trims. PP fibers 
are good for automotive interiors due to their durability, abrasion resistance, and ease of upkeep. Agarwal et al. 
analysis about ecofriendly lightweight PP polymer composite automobile used for racing car, window, board panel 
door opener because of low cost and reduced automobile weight [76]. Lyu & Choi analysis of the different types of 
bio composite showing PP base composites are highly used in the automobile industry due to their low cost, good 
chemical resistance and rapid solidity behaviors. In addition, this composite is frequently used in the door trim, 
bumpers, side panel, crash panel, wheel housing, guide channels and other parts [77]. Akampumuza et al. reported 
in this study due to environmental awareness most of the automotive industry is applying bio composites. To pro-
duce lightweight automotive parts, PP base bio composite were used since fuel consumption is directly related to 
the weight of the automobile. This study also reveals that a 25/15 weight fraction of hemp and glass PP reinforced 
composite provided extreme mechanical and thermal properties comparatively hemp reinforced composites; it could 
apply for better structural and high stiffness and thermal insulation [78].

7.4 � Nonwoven

Nonwoven fabrics used in various applications, including hygiene products (diapers, sanitary napkins), medical tex-
tiles (surgical gowns, masks), and filtering media, are frequently fabricated using PP fibers. Lou et al. studied recycled 
PP and polyester nonwoven selvages to make Acoustic composites with excellent noise absorption performance. 
High-frequency sound waves, most notably over 2000 Hz, were absorbed well by permeable composites. Enhancing 
composite depth improves middle and small frequency absorption of sounds. It decreases when composite density 
increases [79]. Kumeeva & Prorokova investigate whether Fluorinating nonwoven PP improves sorption. Oxygen-
fluorination effectively improves material characteristics. Oxygen-containing molecules make the nonwoven a little 
hydrophobic. This material is promising for sanitary product manufacture since its water sorption capacity improves 
by 3–4. Due to the creation of low-energy fluorinated molecules on the PP fiber’s surface as well as an increased the 
degree of roughness volatile fluorine and nitrogen processing boosts wasted oil capacity for absorption. Hydrophobic 
nonwoven PP polymers may be better for disposable health care cloth than typical materials [80].

7.5 � Ropes and twines

Ropes and cords are manufactured from PP fibers for a variety of industrial and commercial applications. PP ropes are 
desirable due to their high ratio of strength-to-weight, UV resistance, and buoyancy. Morais and his team reported 
the mechanical properties of PET and PP-based rope for multifunctional applications [81]. Also, Foster and his col-
leagues studied the fiber rope’s advantages over the wire-based ropes [82].
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7.6 � Packaging

Packaging products such as woven sacks, bulk bags, and flexible intermediate bulk containers incorporate PP fibers. 
PP is suitable for heavy-duty packaging applications because of its high tensile strength and resistance to ripping. 
Allahvaisi and his team summarized the prospect of the PP polymer use in food packaging applications [82]. Also, 
Khalaj et al. reported the PP was modified with nano-clay for the packing applications. It is found to be a great pros-
pect and has world has abundant market for this product worldwide [83]. Moreover, Phase change material integrated 
PP fabric can be use as food packing by using molding machine [84].

8 � Challenges and future scope

(a)	 Despite many benefits, PP with natural and synthetic polymers-based composite has some challenges, including 
high manufacturing time, long preparation time, low demand, sensitivity to moisture contact and many more. 
Attention should be paid to overcoming these challenges.

(b)	 PP-based electrospun mat is promising for filtration applications due to its structure, mechanical properties, and 
chemical properties. Biomedical, has many limitations, and the main one is lack of biocompatibility and biodegrada-
bility. To improve this collagen, chitosan, other medicinal using is observed. So, colossal research scope is available 
to work with those limitations and advance this field.

(c)	 In solution electrospinning, a complex getting effective solvent for the PP is difficult and hazardous for the environ-
ment. On the other hand, due to its thermoplastic properties, it is suitable for melt electrospinning. Still, it consumes 
a huge amount of energy and a long process in the heating chamber may cause the degrade polymer. Therefore, 
prospective researchers can find the research gap from this.

(d)	 PP fiber has been commercially used for a long time and applies in various apparel, home furnishings, and acces-
sories despite its weak in UV radiation, poor bonding, high flammability, and so on. Therefore, attention should be 
given to improving UV degradation, flammability, bonding characteristics, and other features.

(e)	 Nano-materials integrated PP have huge prospects in the next generation nano-based products along with some 
obvious challenges like low production rate of electrospinning machines, occasional bead formations, limitations 
use of polymer, and many more. Future research can be directed to overcome those challenges.

9 � Conclusion

This comprehensive research has examined PP’s most recent advances, incorporations with nanomaterials, and 
advanced applications. Since PP has versatile uses in nanotechnology, it is engaging in new fields day by day. It could 
be used as a home appliance to spacecraft to create a better future. Researchers have been given greater atten-
tion over the last few decades and are trying to improve the performance of PP by mixing or blending with other 
nanomaterials. There are several limitations on utilization in the domains of aerospace, automobiles, filtrations, and 
other applications that have been mentioned by carefully evaluating various fabrication techniques. In addition, 
promising research is going on to overcome those limitations and advance this field. Also, there is a research gap 
in working on it. The summarized latest applications in a table and mechanisms presented through figures would 
be easy for prospective readers to understand. There have been solutions for issues such as lengthy manufactur-
ing time, lengthy preparation times, low demand, susceptibility to moisture contact, and many others. The future 
research roadmap is presented at the end of this paper. Moreover, it is crucial to work on the existing limitations or 
challenges of PP-based products to meet the customers’ demands. It is expected that this review can use a credible 
source for the researcher and industrialist.
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