Skip to main content
. 2024 Jan 2;8:2. doi: 10.1186/s41747-023-00396-z

Table 3.

Performance of different module settings on differentiating EGFR 19Del, 21L858R, and WT EGFR in two wises

Lesion-wise Patient-wise
Methods 19Del 21L858R WT Overall accuracy (95%CI) 19Del 21L858R WT Overall accuracy (95%CI)
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC
GCN Classifier 0.556 ± 0.047 0.555 ± 0.054 0.561 ± 0.046 0.552 ± 0.056 0.691 ± 0.044 0.606 ± 0.061 0.404 ± 0.045 0.634 ± 0.080 0.615 ± 0.103 0.525 ± 0.088 0.516 ± 0.112 0.702 ± 0.080 0.665 ± 0.107 0.441 ± 0.088
Feat. Stand. + GCN Classifier 0.784 ± 0.036 0.919 ± 0.027 0.902 ± 0.029 0.972 ± 0.014 0.719 ± 0.040 0.999 ± 0.001 0.703 ± 0.042 0.798 ± 0.067 0.940 ± 0.046 0.945 ± 0.038 0.986 ± 0.014 0.765± 0.076 1.000 ± 0.000 0.756 ± 0.076
Feat. Stand. + Feat. Fuse + GCN Classifier 0.877 ± 0.029 0.996 ± 0.004 0.901 ± 0.028 0.971 ± 0.013 0.859 ± 0.031 1.000 ± 0.000 0.818 ± 0.035 0.899 ± 0.050 1.000 ± 0.000 0.941 ± 0.042 0.991 ± 0.009 0.908± 0.504 1.000 ± 0.000 0.874 ± 0.059

Data are given as point estimation ± halfwidth of the 95% confidence interval. 19Del 19 deletion, 21L858R 21-point mutation, AUC Area under the curve, CI Confidence interval, EGFR Epidermal growth factor receptor, GCN Graph convolutional network, Feat. Stand. Feature standardization, Feat. Fuse Feature fusion, WT Wild-type