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Deep learning-driven fragment ion series
classification enables highly precise and
sensitive de novo peptide sequencing

Daniela Klaproth-Andrade1,2, Johannes Hingerl 1, Yanik Bruns1,
Nicholas H. Smith1, Jakob Träuble1, Mathias Wilhelm 2,3 &
Julien Gagneur 1,2,4,5

Unlike for DNA and RNA, accurate and high-throughput sequencing methods
for proteins are lacking, hindering the utility of proteomics in applications
where the sequences are unknown including variant calling, neoepitope
identification, and metaproteomics. We introduce Spectralis, a de novo pep-
tide sequencing method for tandem mass spectrometry. Spectralis leverages
several innovations including a convolutional neural network layer connecting
peaks in spectra spaced by amino acid masses, proposing fragment ion series
classification as a pivotal task for de novo peptide sequencing, and a peptide-
spectrum confidence score. On spectra for which database search provided a
ground truth, Spectralis surpassed 40% sensitivity at 90% precision, nearly
doubling state-of-the-art sensitivity. Application to unidentified spectra con-
firmed its superiority and showcased its applicability to variant calling. Alto-
gether, these algorithmic innovations and the substantial sensitivity increase
in the high-precision range constitute an important step toward broadly
applicable peptide sequencing.

Liquid chromatography tandem mass spectrometry is the method of
choice for identifying proteins at high throughput1. To this end, proteins
are first digested into peptides whose mass-to-charge (m/z) ratios are
determined in a first mass spectrum. Next, selected peptides are frag-
mented along their backbone bonds to generate series of peptide
fragments whose m/z ratios can be identified in a second mass
spectrum2. In principle, this spectrum allows the reconstruction of the
peptide sequence by reading out the m/z differences between con-
secutive peaks of the same ion series3,4. In practice, this task is very hard
due to missing peaks, contamination peaks, and because the ion series
of the peaks are not known a priori. Peptide identification is greatly
facilitated when the experimental spectrum is compared to expected
spectra from a limited set of possible peptides, typically the in-silico
digested proteome of an organism under study5. This strategy, which

requires a precomputed database of possible peptides, is called data-
base search6–8. The vast majority of proteomics studies rely on database
search, even though, by design, database search does not allow the
identification of novel or unexpected peptides. This prevents pro-
teomics from being efficiently used in applications where the peptide
sequences are not known a priori. This concerns neoepitope
identification9, antibody sequencing10, pathogen surveillance11, microbial
community studies12, and paleontology13. Therefore, efficient de novo
peptide sequencing algorithms, which aim to identify peptides directly
from spectra without relying on any database, are highly needed.

Most de novo peptide sequencing algorithms implement a com-
binatorial optimization approach inwhich the peptide that bestfits the
spectra is searched for. Various peptide-spectrummatch (PSM) scores,
i.e. scores that assess how well a candidate peptide corresponds to a
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given spectrum, combined with combinatorial optimization techni-
ques including dynamic programming14–18 and genetic algorithms19,20

have been used to identify best-fitting peptides. Nevertheless, missing
and contamination peaks have strongly limited the accuracy of those
algorithms. Parallel to this work, we and others have leveraged deep
learning to make major progress on the forward problem, i.e., pre-
dicting a spectrum given a peptide sequence21–23. While these algo-
rithms do not predict contamination peaks, they can predict the peak
intensities and missing peaks of a given peptide. Hence, their predic-
tions can be leveraged to develop more discriminative PSM scoring
functions for de novo peptide sequencing algorithms as in the algo-
rithm pNovo324. Complementary to these algorithms based on com-
binatorial optimization, neural networks that directly predict the
sequence of a peptide from the spectrum have recently been pro-
posed. This includes DeepNovo25, PointNovo26, and Casanovo27. How-
ever, despite these efforts, the performance of existing de novo
peptide sequencing methods remains limited, notably with a poor
sensitivity in the high-precision range27. Further methodological
improvements are needed to increase the number of highly confident
peptide sequence identifications in tandem mass spectrometry
experiments.

Here, we present Spectralis, a method that combines several
algorithmic innovations for de novo peptide sequencing. Spectralis
builds on established concepts in the field, such as spectrum graphs3

and PSM scoring functions based on fragmentation patterns15,16,18, and
leverages our deep learning model for spectrum prediction Prosit22.
Thereby, Spectralis substantially increases recall at very high precision
compared to state-of-the-art and thus makes de novo peptide
sequencing more amenable for routine application.

Results
Overview of spectralis
At its core, Spectralis consists of a supervised learning task that we
call bin reclassification (Fig. 1a).We reasoned that if the complete set of
m/z values of either the singly charged b-ion series or y-ion series were
known, including at positions where no peak is present in the

spectrum, thepeptide sequencecouldbe recoveredby readingout the
m/z differences of either series. In practice, Spectralis operates on
discrete bins of 1 Dalton (Da), i.e. at themass resolution of one proton.
We denote the task of predicting whether one such 1-Da bin contains a
peak of a particular ion series as bin classification. To make this
supervised learning problem efficiently amenable to neural networks,
we introduce the amino acid-gapped (AA-gapped) convolutional layer,
in which filters have gaps corresponding to the mass of amino acids.
The advantage is that a single AA-gapped convolutional layer connects
bins of potentially successive ions of one singly charged ion series,
which canbe separated by asmuch as 186 1-Da bins (tryptophanmass).
In contrast to the idea of stacking inputs shifted by the amount of
mass9, our AA-gapped convolutions connect positions spaced by
amino acid masses throughout all layers and not only for the input
layer. Bin classification can leverage existing de novo peptide
sequencingmethods by encoding their candidate peptides in the input
and learning how to mend their incorrect bin classes, termed bin
reclassification. While our bin reclassification models still leave too
many ambiguities in an entire spectrum to reliably yield the full correct
peptide, they turned out to be instrumental: First, we showed that
incorporating the bin class predictions yielded an improved PSM
score, which we named Spectralis-score. We demonstrated that
applying Spectralis-score to rank peptides predicted by existing
methods boosts recall at high precision. Second, we showed that new,
more likely to-be correct candidate peptides can be constructed by
generating peptide sequences that connect the most probable bins of
an ion series. An evolutionary algorithm, Spectralis-EA, combines these
two ideas, where Spectralis-score serves as fitness function and
mutated peptides are obtained by drawing paths among the most
likely bins (guided mutations, Fig. 1b).

We trained and evaluated the proposed methods using a dataset
consisting of 7,902,759 spectra from 302,054 peptides identified with
MaxQuant28 at 1% false discovery rate (FDR) in 30 different healthy
human samples29. The dataset was split into a train, validation, and test
set such that no correct peptide and no experimental spectrum is
shared between sets. Moreover, all methods were trained and

a b

Fig. 1 | Bin reclassification and overview of Spectralis. a The deep learning
architecture for bin reclassification consisting of AA-gapped convolutions for
correcting erroneous bin classes (red box) of an input candidate peptide.
Input for the model are the binned experimental intensities, the initial bin
class labels for y-ions and b-ions, and the binned Prosit-predicted intensities
for the input peptide sequence. The model outputs the probabilities for each
bin to contain a peak labeled as a y-ion and as a b-ion. b Spectralis-EA is an
evolutionary algorithm. Peptide sequences from a generation k are selected

based on their fitness to define the next generation k + 1. The fitness, or
Spectralis-score, is an estimate of the Levenshtein distance from the input
peptide (orange) to the correct peptide (gray). It is obtained with a random
forest taking features computed from the experimental and Prosit-predicted
spectra and from the output of the bin reclassification model (left inset) as
input. The peptides selected for the next generation are mutated by per-
forming random walks along the spectrum graph favoring nodes stemming
from bins with high probabilities (right inset).
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evaluated on the same splits (Methods). For the sake of consistency
and clarity, we often present results for the heart sample, since the
performance on this sample is similar to the median performance
across samples. Furthermore, we provide performance plots of the
best-performing and worst-performing samples in the Supplementary
Material. We benchmarked our methods against the tool Novor16,
which outperforms the widely used commercial software PEAKS17, and
the recent method Casanovo27.

Bin reclassification improves ion series labeling
We first evaluated the performance of the bin reclassificationmodel by
comparing the initial bin class labels of singly charged b-ions and
y-ions proposed by Novor and Casanovo to the bin classes predicted
by our model. Experimental peak intensities, bin classes of the initial
peptide, and peak intensities of the candidate peptide predicted by
Prosit22 served as input to the model. Figure 2a shows an example of a
successful bin reclassification of a peptide sequence proposed by
Casanovo: Our model correctly predicted all four bin changes that
were needed to successfully transform the incorrect sequence into the
correct one with a probability above 0.5.

Overall, our model achieved an area under the precision-recall
curve of 0.69 for b-ions and 0.82 for y-ions after reclassifying Casa-
novo’s initial bin classes of peptide sequences (Fig. 2b). The bin class
labels proposed by our model improved upon the initial precision and
recall given by Casanovo’s initial bin classes for both b-ions and y-ions.
At Casanovo’s initial recall, the precision improved by 35% (from 0.62
to0.84) for b-ions and by 25% (from0.72 to0.90) for y-ions.Moreover,
at Casanovo’s initial precision, the recall improved by 8% (from0.62 to
0.67) for b-ions and by 14% (from 0.72 to 0.82) for y-ions. This indi-
cated that the bin reclassification model could be used to correct
predictions of Casanovo. To evaluate the performance of suggesting
changes of the initial bin labels, we next evaluated the model with
change precision-recall curves (Methods), which quantify model per-
formance at accurately identifying bins that are initially incorrectly
labeled and for which our model needs to predict a change. On the
heart sample, we obtained an area under the change precision-recall
curve of 0.57 for b-ions and 0.62 for y-ions. For y-ions, our model
achieved a change recall of 0.66 at a change precision of 0.5 (Fig. 2c).
At a change recall of 0.5, the model achieved a change precision of
0.78. Our model also improved bin class predictions of peptides pro-
posed by Novor (Supplementary Fig. 1).

Similar improvements held across all samples for both Novor and
Casanovo (Fig. 2d, Supplementary Fig. 2). We observed a median
relative improvement in recall of 8% and 11% and precision of 16% and
28% for Novor and Casanovo, respectively (Fig. 2e). Our model
achieved higher improvement in precision and recall for peptide
sequences proposedbyCasanovo in comparison to the ones proposed
by Novor, even though Casanovo outperforms Novor when consider-
ing their performance at peptide level.We attribute this to the fact that
incorrect sequences by Casanovo are generally longer than incorrect
sequences by Novor, leading to a higher amount of incorrect initial bin
classes, which our model is able to correct.

We investigated alternative models for bin reclassification based
on convolutional neural networks with and without regular dilations,
as well as hybrid approaches combining AA-gapped convolutions with
regular convolutional layers and found that these underperformed the
final approach consisting solely of AA-gapped convolutions (Supple-
mentary Fig. 3). Altogether, these results showed that the final model
for bin reclassification using AA-gapped convolutions could help cor-
rect initially incorrect candidate peptides.

Bin reclassification allows generating improved candidate
peptides
We leverage the bin reclassification model to modify peptides into
additional, more promising, candidate peptides. To this end, our

algorithm considers all bins predicted with a probability greater than a
certain cutoff to contain a singly charged b-ion or y-ion. Next, it con-
structs a graph that connects highly probable bins that are spaced by a
single amino acid mass. We observed that determining the peptide
sequence from the path with the highest cumulated bin probabilities
did not lead to an improvement in peptide recall (Supplementary
Fig. 4). Therefore, we considered generating multiple additional pep-
tides by performing weighted random walks on the graph, weighting
more likely bins higher (Methods). The optimal bin probability
threshold of 0.35 was determined by hyper-parameter search (Meth-
ods, Supplementary Fig. 5)

We used candidates from Casanovo as initial peptides and
replaced them with candidates from Novor when the Casanovo pep-
tide mass did not match the precursor mass, similar to the Casanovo
author’s suggestion27. Figure 3a shows an example in which, starting
from an incorrect candidate peptide, the correct peptide was themost
frequently generated peptide, comprising 32% of all 1024 generated
candidates. Generally, the minimal Levenshtein distance among 1024
generated candidates was smaller than the Levenshtein distance of the
corresponding initial peptide (Fig. 3b). Moreover, starting from can-
didate peptides with Levenshtein distances between 2 and 7, each
randomwalk generated the correctpeptidewith a probability between
1% and 10% in median (Fig. 3c). The procedure was not able to correct
sequences with a Levenshtein distance larger than 13 to the correct
peptide sequence. However, considering the mean peptide length of
19.32 in the dataset, this would have corresponded to a substitution of
a large part of the sequence.

Our procedure generated the correct peptide sequence for
approximately half of the initial sequences when the initial sequences
had a Levenshtein distance of two to the correct peptide sequence
(Fig. 3d). This percentage decreased for initial sequences with larger
Levenshtein distances. Collectively, these results indicate that this
generation process could be used to iteratively improve candidate
peptides, as well as to generate a population containing peptides
closer to, when not yet equal to, the correct peptide in a single shot.
We called this procedure, which allows evolving a candidate peptide
into an improved one, guided mutation.

Levenshtein distance estimate improves PSM scoring
Having established a promising algorithm that generates additional
candidate peptides based on bin reclassification, we additionally
considered using bin reclassification to estimate the correctness of any
PSM, either generated by our algorithm or by existing de novo peptide
sequencing tools.We and others have previously shown that rescoring
PSMs using additional information, e.g., fragment intensity-based
scores can be used effectively to separate incorrect from correct
matches21,22,30–32. However, rather than estimating the confidence of a
PSM (i.e. a peptide sequence mapping correct or incorrect to a spec-
trum), we here considered estimating the Levenshtein distance, i.e.,
the minimal number of elementary sequence edits separating two
sequences33, of a candidate peptide to the correct peptide of a given
spectrum. Here and elsewhere, we considered a candidate peptide to
be correct if it exactly matched the peptide identified by MaxQuant at
1% FDR up to isoleucine-leucine substitution. We reasoned that the
Levenshtein estimates would yield a quantitative notion of how far a
peptide sequence is from the correct one in sequence space, making it
a valuable loss function for combinatorial optimization algorithms.

We trained a random forest to predict the Levenshtein distance of
a candidate peptide to the correct peptide given 114 features including
the number of predicted bin class changes by the bin reclassification
model and the similarity between experimental and Prosit-predicted
spectra (Methods, Supplementary Table 1). Overall, the method pro-
vided good estimates of the Levenshtein distance for peptides pre-
dicted by both Casanovo and Novor (Fig. 4a). No improved
performance was achieved when fitting an XGBoost34 model instead
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(Supplementary Fig. 6). We, therefore, continued with the random
forest. A notable deviation was seen for sequences with a Levenshtein
distance of 1, which typically had amass differing from themass of the
correct peptide by more than 20 ppm, possibly because our training
dataset did not include these instances and because the computed
spectral angles, Pearson and Spearman correlation coefficients were
generally lower than the ones for sequences with close Levenshtein

distances (Supplementary Fig. 7). Importantly, the predicted distance
for the correct peptides was smaller than 1 for the vast majority of
correct peptides, indicating that our scoring function is able to sepa-
rate correct from incorrect peptide sequences. Consistent with this
observation, the estimated Levenshtein distance was smaller for the
correct peptide than for corresponding incorrect candidates on
around 93% of the evaluated spectra for both Novor and Casanovo
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(Fig. 4b). The good discriminability indicated that our Levenshtein
distance prediction could be used as a cost function in a combinatorial
optimization-based de novo peptide sequencing algorithm.

We named our Levenshtein distance estimator Spectralis-score.
Rescoring PSMs using Spectralis-score instead of original scores by
Novor and Casanovo consistently improved recall at all precisions,
notably at high-precision ranges. For instance, the peptide recall at
90% precision increased by 76% (from0.25 to 0.44) when compared to
the initial ranking by Casanovo on the heart sample (Fig. 4c). Notably,
the relative performance improvements in recall at 90%precisionwere

larger for longer peptides, reflecting the increase difficulties of de
novo tools to perfectly sequence longpeptides (Supplementary Fig. 8).
Moreover, Spectralis-score outperformed the ranking given by the
spectral angles between experimental and Prosit-predicted spectra,
which is a feature of the model, or using PredFull-predicted35 spectra
(Supplementary Fig. 9). Further integrating the spectral angles with
PredFull-predicted spectra into a combined score did not lead to any
improvement (Supplementary Fig. 9, Methods). This shows that the
bin reclassification model provides complementary information to
mere spectrum predictions. Since the mass of the peptides proposed

Fig. 2 | Bin reclassification performance. a An example of a bin reclassification:
(I) Prosit-predicted spectrum (top) and experimental spectrum (bottom) for an
incorrect peptide sequence IEAAQDIVK proposed by Casanovo. Singly charged
y-ions (y + ) are colored in red. Bin class change probabilities for y-ions are marked
with blue dots (secondary y-axis, cropped at 0.5 to not clutter the plot). (II) Prosit-
predicted spectrum (top) and experimental spectrum (bottom) for the correct
peptide sequence IEANEAIVK identified by MaxQuant at 1% FDR. The region where
ion series label predictions differ between (I) and (II) is delimited with boxes.
Incorrect residues are marked in orange. The residues differing in the correct
sequence are marked in green. The spectral angle (SA) between the experimental
andProsit-predicted spectrum is indicated forbothpeptide sequences.bPrecision-
recall curves for bin reclassification of b-ions and y-ions after relabeling initial bin

classes proposed by Casanovo on the test set of the heart sample compared to the
precision and recall computed at bin level for the initial bin class labeling. The
average precision-recall is denoted asAUPRC. cAs in (b) for change-precision-recall
curves. d Precision (left) and recall (right) after bin reclassification against before
when using Novor (yellow) or Casanovo (blue) for the initial peptide. Data on test
sets across all n = 30 samples (different tissues). e Distribution of relative
improvement of precision and recall after bin reclassification on the test sets of all
n = 30 samples (different tissues) over Novor and Casanovo for b-ions and y-ions.
The data in (e) are represented as boxplots in which the middle line indicates the
median, the bounds of thebox indicate thefirst and thirdquartiles and thewhiskers
indicate ±1.5 × IQR (interquartile range) from the third and first quartile, respec-
tively. Source data are provided as a Source Data file.

a b

dc

Fig. 3 | Guided mutation performance. a Proportion of times that a peptide
sequence is generated based on the initial sequence IIGYVGKAK proposed by
Casanovo out of n = 1024 generated candidate peptides with guided mutations.
The green bar shows the proportion of times that the correct sequence IIGYVVER
wasgenerated. The blue bar shows theproportionof times that the initial sequence
wasgenerated. Errorbars represent 95%confidence intervals of theperformed two-
sidedbinomial test.bDistributionof the smallest Levenshteindistance among 1024
guided mutations as a function of the Levenshtein distance of the initial peptides
on the heart sample. c Distribution of the probability to generate the correct

peptide sequence among 1024 draws against Levenshtein distances of the initial
peptide sequences on the heart sample. d Proportion of initial peptides for which
the correct peptide sequence is generated at least once among 1024 draws as a
function of the Levenshtein distances of the initial peptide sequences. The data in
(b) and (c) are represented as boxplots in which the middle line indicates the
median, the bounds of thebox indicate thefirst and thirdquartiles and thewhiskers
indicate ±1.5 × interquartile range from the third and first quartile. Outlying data
points are shown as dots. Source data are provided as a Source Data file.
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by Casanovo did not match the precursor mass in approximately half
of the spectra (44% in the heart sample), we replaced these peptides
with Novor peptides, similarly to the suggestion by the authors of
Casanovo, anddenoted this combination of peptidesCasanovo-Novor.
We applied Spectralis-score to this combination and achieved higher
recall at all precision ranges (Fig. 4c). A similar performance increase
was observed for all other human samples (Fig. 4d, Supplemen-
tary Fig. 10).

The performance improvement of Spectralis-score held con-
sistently after stratifying by precursor charge state and peptide length
(Supplementary Figs. 11, 12). Furthermore, applying Spectralis-score to
peptides proposed by the de novo sequencing tools DeepNovo25 and
PointNovo26 on the heart sample also improved recall at all precision
ranges when compared to the original scores at peptide level (Sup-
plementary Fig. 13).

Finally, we assessed the generalization of Spectralis-score trained
on human peptides to a dataset spanning nine different species and
different experimental configurations (Methods)25. Without retraining,
Spectralis-score improved the average precision (AUPRC) on all but
one species and the recall at 90% precision on seven of nine species
(Supplementary Figs. 14, 16–17). Rescoring peptides identified by

PointNovo improved the AUPRC on all but one species (Supplemen-
tary Figs. 15–17) and the recall at 90% precision on seven of nine spe-
cies. The improvements have modest amplitude. Nonetheless, these
results indicate the robustness of Spectralis-score as it was neither
trained using DeepNovo and PointNovo candidate peptides nor on the
nine-species dataset.

An evolutionary algorithm increases the sensitivity of de novo
peptide sequencing
Next, we designed an evolutionary algorithm, Spectralis-EA, that
integrates guided mutations and Spectralis-score. For a given spec-
trum, the evolutionary algorithm starts from an initial population of
candidate peptides derived from Casanovo-Novor candidates. At each
iteration, a subset of the peptides is randomly selected for the next
generation, whereby the peptides with smaller predicted Levenshtein
distances are more likely to be selected. Moreover, selected peptides
are mutated using the guided mutation procedure. The evolutionary
algorithm is run for five generations and the best-scoring peptide is
reported. The optimal population size was determined by hyper-
parameter search (Methods, Supplementary Fig. 5). The performance
of the Levenshtein distance estimator remained stable across

Fig. 4 | Levenshtein distance estimator performance. a Estimated against actual
Levenshtein distances of incorrect peptide identifications by Novor and Casanovo
to the correct peptide sequence by MaxQuant across all 30 human samples.
b Estimated Levenshtein distances of incorrect peptides against the estimated
Levenshtein distances of the corresponding correct peptide sequences for a given
spectrum across all 30 samples. The percentage of points above or on the diagonal
line and below the diagonal line is labeled. c Precision-recall curves at peptide level
before and after rescoring peptide identifications by Novor and Casanovo on the
heart sample with Spectralis-score, our Levenshtein distance estimator, including

the precision and recall for peptides from Casanovo with Novor substitutes for
peptides with wrongmass (Casanovo-Novor). d Recall at 90% precision before and
after rescoring peptides from Novor, Casanovo, as well as the combination of
Casanovo and Novor sequences (Casanovo-Novor) across all n = 30 samples (dif-
ferent tissues). Statistical significance from a two-sided paired Wilcoxon test. The
data in (a) and (d) are represented as boxplots inwhich themiddle line indicates the
median, the bounds of thebox indicate thefirst and thirdquartiles and thewhiskers
indicate ±1.5 × IQR (interquartile range) from the third and first quartile, respec-
tively. Source data are provided as a Source Data file.
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generations (Supplementary Fig. 18). This was important as it could
otherwise mislead the optimization algorithm. Investigations showed
that the evolutionary algorithm could not optimize initial peptides
with large predicted Levenshtein distances. Furthermore, it tended to
generate incorrect peptides with better scores than initially correct
peptides for candidate peptides with small estimated Levenshtein
distances. Therefore, we opted to apply the evolutionary algorithm
only to initial peptides with an estimated Levenshtein distance
between 1 and 7 and to report initial peptides otherwise.

Figure 5a shows a successful example of optimizing an initially
incorrect peptide sequence. Remarkably, when applied to the heart
sample, Spectralis-EA improved candidate peptides, i.e., returned a
candidate peptide with a smaller Levenshtein distance, for 31.6% of
initially incorrect peptides with Levenshtein distances smaller than 10
(Fig. 5b). However, the evolutionary algorithm typically failed to
improve initial candidates with larger Levenshtein distances (11% of all
spectra).

Overall, Spectralis-EA substantially increased the recall over the
entireprecision range againstCasanovo andNovor (Fig. 5c).Moreover,

only 3% of initially correct peptides were corrupted after the evolu-
tionary algorithm. Spectralis-EA reached a slightly lower recall at 90%
precision than the rescoring of Casanovo-Novor candidates with
Spectralis-score (40% vs. 43% median recall across samples, Fig. 5d).
However, it significantly increased the overall recall consistently across
samples (58% vs. 55% median recall across samples, Fig. 5e, Supple-
mentary Fig. 19). Hence, the evolutionary algorithm led to minor
improvements compared to rescoring Casanovo-Novor candidates.
When investigating the Spectralis-EA limitations, we noticed that very
few initial peptides with actual Levenshtein distance 2 could be
improved (Fig. 5b). For these incorrect peptides, the Spectralis-score is
very close to the Spectralis-score of their corresponding correct pep-
tides (Supplementary Fig. 20). We reasoned that these peptides are
difficult to discern by their experimental spectrum. In particular, dis-
tinguishing two peptides differing by a single permutation of two
adjacent residues (thus at a Levenshtein distance of 2 from each other)
is hard when the discriminative peak is missing. One advantage of the
evolutionary algorithm is the ability to report an entire population of
candidate peptides. Considering the twomost highly scored predicted

P = 
P = 

P = 

P = 
P = 

P = 

a b

c d e

Fig. 5 | Spectralis-EA performance. a Example of a successful optimization of the
initially incorrect peptide sequence ETGRTKIEETDCYR predicted by Novor after 5
generations of the evolutionary algorithm. For each generation, the estimated
Levenshtein distances are provided for the best peptide (i.e., most highly scored
peptide), and the lineage peptide (i.e. the candidate peptide leading to the correct
peptide sequence). b Levenshtein distances of input peptide sequences against
Levenshtein distances of peptide sequences returned by Spectralis-EA. c Precision-
recall curves of identifications at peptide level for Novor, Casanovo, and Spectralis-
EA, as well as Spectralis-score on the combination of Casanovo and Novor
sequences (Casanovo-Novor) on the test set of the heart sample. d Recall at 90%

precision for Novor, Casanovo, Spectralis-score on the combination of Casanovo
and Novor (Casanovo-Novor) and Spectralis-EA on the test sets of all 30 samples.
e Overall recall for Novor, Casanovo, Spectralis-score on Casanovo-Novor, and
Spectralis-EA on the test sets of all n = 30 samples (different tissues). Statistical
significance for (d) and (e) from a two-sided paired Wilcoxon test. The data in (b),
(d) and (e) are represented as boxplots in which the middle line indicates the
median, the bounds of thebox indicate thefirst and thirdquartiles and thewhiskers
indicate ±1.5 × IQR (interquartile range) from the third and first quartile, respec-
tively. Source data are provided as a Source Data file.
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peptides per spectrum, Spectralis-EA further increased the overall
recall from56 to 58% (median across samples)while lowering the recall
at 90% precision from 40% down to 36% (median across samples,
Supplementary Figs. 21–22). Altogether, these results indicate that
Spectralis-EA allows the generation of several plausible candidates, a
feature of particular interest when dealing with ambiguous spectra.
However, for high-precision use cases, applying Spectralis-score on
Casanovo-Novor candidates should be favored.

Robustness of Spectralis on non-identified spectra and its
applicability to variant calling
All Spectralis components were trained on a ground truth dataset of
peptides identified by the database search algorithm MaxQuant.
However, spectra confidently identified by MaxQuant tend to be of
higher quality than other spectra, for instance, because they have
fewer missing peaks36,37. Hence, it is important to assess whether
Spectralis remains reliable on other spectra. To this end, we applied
Spectralis to 1,167,029 spectra that were unidentified by MaxQuant
and compared its performance to that on the 36,312 MaxQuant-
identified spectra from the test set of the heart sample.

Assessing the performance on unidentified spectra is difficult
due to the lack of ground truth. As a proxy, we considered the per-
centage of predicted peptides that perfectly align on the human
proteome while giving no penalty to isoleucine-leucine mismatches
(Methods). As expected, peptides identified by MaxQuant almost
exclusively (99.9%) resulted in perfect alignments (Supplementary
Fig. 23). On spectra not identified by MaxQuant, Spectralis con-
sistently achieved a higher proportion of perfect alignments with a
mass consistent with the precursor m/z compared to Casanovo and
Novor, especially in the top-ranking predictions (Fig. 6a, Supple-
mentary Fig. 23), where Spectralis-score applied to Casanovo-Novor
candidates outperformed Spectralis-EA. Moreover, the percentage of
perfect alignments remained high with 80% of perfect alignments at
an estimated precision of 95%, and 72% at an estimated precision of
90% for Spectralis-score on Casanovo-Novor candidates (Methods).
Similar patterns and performances were found for both spectra
identified and not identified by MaxQuant in the brain sample
(Supplementary Fig. 24).

A large percentage of Casanovo-Novor peptides ranked by
Spectralis-score at a 90%precision estimate hadamass consistentwith
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Fig. 6 | Application to unidentified spectra and variant calling. a Percentage of
perfect alignments withmass consistent with the precursorm/z queried onpeptide
sequences by Novor, Casanovo, Spectralis-score on Casanovo-Novor and
Spectralis-EA against a set of known and predicted gene translations using blastp
on spectra not identified by MaxQuant of the heart sample, showing only the top
150,000 ranked candidate peptides of each method (out of 1,167,029). For clarity,
the first 100 peptides are omitted. b Number of PSMs with perfect alignments,
alignments with one mismatch, alignments with multiple mismatches, with mass
not consistent with the precursorm/z, and without significant alignments for
Novor, Casanovo, Spectralis-score on Casanovo-Novor and Spectralis-EA at

different precision estimates on the set of spectra of the heart sample unidentified
by MaxQuant. c Left: Prosit-predicted spectrum (top) and experimental spectrum
(bottom) for the reference peptide sequence ISAPNVDFNLEGPK. The cartoon
illustrates the relevant nucleotide sequence and fragment ion series assuming the
reference genome allele. Right: Same as for left, but for the peptide sequence
ISASNVDFNIEGPK predicted by Spectralis-EA for the same experimental spectrum.
Cartoon as in left inset for the alternative allele detected on RNA-seq of the same
sample. A proline instead of serine is present at the fourth position. Parts of the
spectra differing in left and right are shown in boxes. Source data are provided as a
Source Data file.
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the precursor m/z and aligned perfectly when allowing for a single
mismatch (84%, Fig. 6b). Some of these mismatches are the result of
missense mutations. One example is the correct call of a single amino
acid variant in the AHNAK nucleoprotein in the heart sample (Fig. 6c).
Spectralis predicted the peptide ISASNVDFN[IL]EGPK which is ranked
among the top 0.8% of the sequences, had a predicted Levenshtein
distance of 0.18, and aligned to the reference peptide ISAPNVDFN-
LEGPK. Aproline insteadof serine is present in the referencepeptide at
the fourth position. This missense variant was supported by RNA-seq
data of the same sample (NM_001620.3:c.16348C>T, p.Pro5450Ser,
Methods). Using Spectralis, we were able to identify evidence of this
genetic variant expressed in the heart sample directly from spectra
independent of genetic data. Altogether, these results indicate that
Spectralis can identify single amino acid changes in peptides and can
be used to identify genetic variants indirectly from spectra.

Discussion
In conclusion, we have introduced Spectralis, a method for de novo
peptide sequencing that substantially increases sensitivity in the high
precision range over state-of-the-art. Spectralis builds upon a model-
ing task, bin reclassification, which assigns ion series to discretizedm/z
values even in the absence of a peak. We showed that predicted bin
classes enable improved scoring of PSMs. Using Levenshtein distance
estimates as PSM scores, we demonstrated that rescoring peptides
predicted by existing de novo peptide sequencing methods could
improve recall by nearly two-fold at 90% precision. Furthermore, we
devised an evolutionary algorithm leveraging these modeling innova-
tions, resulting in an increased overall recall.

Our scoredoes not improve theoverall recall as it does notmodify
predicted peptides. However, it is very advantageous in practice to
achieve a better separation between correctly and incorrectly pre-
dicted peptides. The scoring function can be used as a standalone
method with little computational cost to rank. It also allows the com-
parison and integration of predicted peptides from several methods
for de novo peptide sequencing using a single procedure. The guided
mutations showed promising results for improving incorrect peptide
candidates. However, the evolutionary algorithm leveraging guided
mutations yielded modest improvements over rescoring alone.
Nonetheless, we found that it allows generating several plausible
candidates with very small Levenshtein distances to the correct pep-
tide. Considering two ormorehigh-confidence predictions per spectra
could be useful for applications in which identifying a large portion of
the peptide, yet not entirely, is of interest, for instance in cases of
ambiguous spectra. For high-precision use cases, however, applying
our score on candidate peptides proposed by existing de novo
sequencing tools should be favored.

The graph used to derive guided peptidemutations is reminiscent
of the widely used spectrum graph defined on peaks of an experi-
mental spectrum3. A limitation of our graph representation compared
to peak-based spectrum graphs is that we operate at the 1-Dalton
resolution. Even though 1 Dalton corresponds approximately to the
mass of a proton or a neutron, mass spectrometers allow measure-
ments in higher resolutions which could in principle be leveraged.
However, the 1-Dalton resolution is not a conceptual limit of our
approach. Higher resolutions could be obtained at the cost of longer
run time. The advantage of a bin-based rather than apeak-based graph,
however, is that the nodes of our graphdonot dependon the presence
of an experimental peak, but only on the output of the bin reclassifi-
cation. Therefore, this facilitates the generation of paths connecting
nodes spaced by single amino acidmasses. It should also be noted that
Spectralis-score, which integrates Prosit predictions at a tolerance of
20 parts-per-million, leverages more highly resolved m/z ratio
information.

We showed evidence of a rare missense variant with a maximum
allele frequency smaller than 1%38. Thus, the ability to identify rare

variants independent of genomic data lends credence to the idea that
spectra contain personally identifiable information39,40. As de novo
peptide sequencing continues to improve, we are getting closer to
being able to re-identify individuals by means of mass spectrometry.
Consequently, we agree that raw mass spectrometry proteomics data
must be shared through data access portals with similar data control
measures as next-generation sequencing data41.

A newer version of Casanovo, Casanovo v3.2.042, has been
developed concurrently with Spectralis. Casanovo v3.2.0 is a much-
improved version of Casanovo v2.0.0 obtained by training on a very
large dataset consisting of ~30 million PSMs. A revised version of
Spectralis-score trained on Casanovo v3.2.0 scores still modestly, yet
significantly increases recall at 90% precision on six of nine species
(Supplementary Fig. 25). Future work, outside the scope of this study,
is necessary to investigate further the complementarity of the two
approaches, e.g., by training the bin reclassification algorithms on the
remaining errors of Casanovo v3.2.0.

One limitationofour study is that Spectralis is so far restricted to a
single post-translational modification, methionine oxidation. Further
post-translational modifications could be addressed in future work by
extending the AA-gapped convolutions. For instance, modeling
phosphorylation in animals would require adding the phosphorylated
masses of three amino acids only.

Another limitation is that our approach assumes a single correct
peptide per spectrum. To this end, we have restricted our database
search ground truth to at most one peptide for each spectrum.
However, studies have estimated that approximately half of all
spectra are chimeric, i.e., they contain peaks from two or more
precursor ions with similar masses and retention times43–45. This
might further explain the limited overall recall of Spectralis and other
earlier de novo peptide sequencing tools, which all also assume a
single peptide per spectrum. Modeling mixtures of peptides would
require different modeling schemes and the establishment of sui-
table ground truth data.

Despite these limitations, Spectralis exhibits strong de novo
peptide sequencing performance especially at high precision ranges,
allowing it to be used for variant calling. It could therefore make
proteomics more amenable to applications ranging from pathogen
surveillance to immuno-peptidomics and metaproteomics.

Methods
Datasets
We downloaded the publicly available dataset from Wang et al.29

consisting of 7,902,759 experimental spectra across 30 healthy human
samples from the PRoteomics IDEntifications (PRIDE) database with
identifier PXD010154. We defined 302,054 peptide identifications by
the database search engine MaxQuant (version 1.5.3.30)28 at 1% FDR as
a ground truth dataset of correct peptide identifications. For this, the
spectra were previously searched against the Ensembl human pro-
teome database (release-83, GRCh38)46. Carbamidomethyl (C) was
specified as a fixed modification and methionine (M) oxidation and
acetylation (Protein N-Term) were considered variable modifications.
Trypsin/P was specified as the proteolytic enzyme with 2 maximum
missed cleavages. In addition, we downloaded RNA-seq data corre-
sponding to the samedataset fromWang et al.29 from theArrayExpress
database, study E-MTAB-2836.

We downloaded the nine-species dataset first introduced by Tran
et al.25 consisting of about 1.5 million spectra across nine species. The
ground truth dataset of peptide identifications was obtained from the
FTP server of the MassIVE database (ftp://DeepNovo2017@massive.
ucsd.edu) provided by Tran et al.25. As the data provided does not
contain raw spectra but only preprocessed spectra, we obtained those
from the original repositories of each species in PRIDE with identifiers:
PXD005025, PXD004948, PXD004325, PXD004565, PXD004536,
PXD004947, PXD003868, PXD004467, and PXD004424.
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Data preprocessing
To define the final set of ground truth peptide identifications and their
corresponding experimental spectra for the human dataset by Wang
et al.29, we removed all correct peptides with a length larger than 30
and smaller than 7, as well as those with a charge larger than 6.
Moreover, we removed peptides marked as decoys. We discarded
secondary peptides (“MULTI-SECPEP”) so that each experimental
spectrum is attributed to at most one peptide sequence, namely the
one with the highest score. Furthermore, we kept only unmodified
peptides or peptides with methionine oxidation in the dataset. Finally,
we removed all peptide sequences with a computed mass differing
from the experimental mass by more than one Dalton. The experi-
mental masses were derived from the original precursor m/z and
precursor charge which are contained in the raw files. Raw spectra
were converted into MGF format using pyteomics47 (https://github.
com/levitsky/pyteomics, v4.6).

We ran Novor (v1.05)16, Casanovo (v2.0.0)27, DeepNovo (v0.0.1)25,
and PointNovo (v0.0.1)26 on all spectra from the human dataset by
Wang et al.29. We obtained one candidate peptide with its respective
score for each spectrumand each tool. For Novor, we specified 10 ppm
for the precursor mass tolerance and 0.05Da for the fragment mass
tolerance. Post-translational modification settings consisted of carba-
midomethyl as a fixed modification and methionine oxidation as a
variable modification. The fragmentation technique was set to HCD
(Higher Energy Collision Dissociation) and the mass analyzer to FT
(Fourier Transform). We ran Casanovo v2.0.0 and DeepNovo based on
the publicly available pre-trained weights for each model trained on 8
different species excluding human peptides.

We split the human dataset by Wang et al.29 consisting of unique
PSMs with peptide identifications by MaxQuant, Novor, and Casanovo
(v2.0.0) and our own mutations of correct peptide sequences by
peptide into train (80%), validation (10%), and test (10%) set. On the
train set, we removed peptide identifications whose computed mass
differed from the mass derived from the experimental precursor m/z
by more than 20 ppm. Moreover, we obtained further incorrect can-
didate peptides for the train test by performing isobaric amino acid
substitutions and permutations of adjacent amino acids on correct
peptide identifications. We trained and evaluated all models using the
same split.

For the nine-species dataset, we obtained peptide predictions
from the raw spectra by running Novor (v1.05) and Casanovo (v2.0.0).
In addition, we ran Casanovo (v3.2.0) on all unprocessed raw spectra.
We obtained peptide sequences proposed by DeepNovo from the
MassIVE repository (MSV000081382). To obtain peptide sequences by
PointNovo, we retrained themodels asdescribed byQiao et al.26 on the
nine-species dataset based on the publicly available code repository.
For the evaluation of ourmethods,we removed all PSMs from the nine-
species dataset for which the correct peptide was contained in the
training set of the human dataset by Wang et al.29 Moreover, for each
species, we removed PSMs for which the correct sequences were
contained in anyother species.We also removed all PSMs forwhich the
experimental mass derived from the precursor m/z and precursor
charge differed from themass of the correct peptide bymore thanone
Dalton.

Bin reclassification with AA-gapped convolutions
The neural network for bin reclassification receives a discretized
(binned) spectrum representation and predicts membership for singly
charged b-ions and y-ions for each bin.We used a bin resolution of 1 Da
and consideredm/z ratios up to 2000Da. The following input features
were computed for every bin: (i) the sum of all experimental peak
intensities within the bin boundaries, (ii) the sum of peak intensities
within the bin boundaries that Prosit22 predicted for the input candi-
date peptide, and (iii) the binary class labels for b-ions and y-ions of the
input candidate peptide.

The model consists of several AA-gapped convolution layers with
skip connections between layers. We defined an AA-gapped convolu-
tion as a convolution operation where dilations correspond to the
molecular masses of the 20 canonical amino acids and methionine
oxidation. We used zero-padding to maintain the length dimension
constant across layers. The number of filters was the same for all inner
layers. Batch normalization and ReLU activations were applied after
each convolution layer. We trained the model with Adam48 using a
batch size of 512 optimizing focal loss49, and applied reduction of the
learning rate on plateau as well as early stopping. Hyper-parameter
search using optuna50 allowed optimizing the number of filters per
inner layer, the number of layers, the dropout rate, and the learning
rate. The best model consisted of 16 AA-gapped convolution layers
with 20 filters in each layer, a dropout rate of 0.3, and was trained with
a learning rate of 4 × 10−5. It was trained using PyTorch (v1.8.1)47 on four
A40 GPUs for 30 epochs, which resulted in a total training time of
~1.5 days.

Deep learning-based guided mutations
We implemented a graph-based algorithm that generates additional
peptide sequences for a given input sequence using the predicted bin
probabilities for b-ions and y-ions by the bin reclassificationmodel.We
constructed a graph by introducing a node for every m/z bin with a
predicted probability larger than 0.35.

In order to deal with prefix fragments (b-ions) and suffix frag-
ments (y-ions) in a unified fashion, we transformed m/z values of
predictedb-ions to their complement to theprecursorm/z.Wedefined
the maximum over the two predicted probabilities for the b-ions and
y-ions as node weights.

In addition, we added a source node with m/z value equal to 19
(i.e., themass of onewatermolecule andoneproton) and a target node
withm/z bin equal the discretized experimental peptide mass derived
from the precursor m/z and a proton. Source and target nodes
received a node weight of one. Moreover, nodes for the m/z bins
corresponding to y-ions of the input sequence were introduced to the
graph with a node weight of 0.01.

We allowed an edge between two nodes if the difference between
the m/z bins of the nodes corresponded to the discretized molecular
mass of any amino acid. We labeled the edges with all amino acids that
fulfilled the constraint.

To create additional peptide sequences, we performed weighted
randomwalks starting from the source node until the target node was
reached. To ensure that all random walks starting from the source
node eventually led to the target node, we removed all nodes and
edges that were not contained in any path from source to target. Edge
probabilities for transition were defined based on the node weights.
For any edge e = (v,w) with nodeweights pv and pw for the nodes v and
w, we computed its edge probability pe as follows:

pe : =
pv +pwP

w0,ðv,w0Þ2E ðpv +pw0Þ ð1Þ

The peptide sequence can be recovered by concatenating all edge
labels in the reversed path, thus starting from the target node. If more
than one amino acid was labeled in an edge, one of them is selected at
random.

Scoring procedure
Spectralis-score of a PSM was estimated as the Levenshtein distance33

of an input peptide sequence to the correct peptide sequence. The
Levenshtein distance was computed with equal weights for insertions,
deletions, and substitutions using the Python package editdistance
(https://github.com/roy-ht/editdistance, v0.5.3). A random forest
regressor served to predict the Levenshtein distance of a peptide
sequence to its correct sequence.
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We defined 114 features as input for the model derived from the
comparison between Prosit-predicted and experimental spectra. To
this end,wefirst applied basepeaknormalization to eachexperimental
spectrum denoted as (Mexp, Iexp) consisting of m/z value and intensity
pairs and to each Prosit-predicted spectrum (Mtheo, Itheo) consisting of
k ≤m/z value and intensity pairs. Intensity values below 0.02 were set
to zero. Next, we defined experimental peaks, if any, corresponding
theoretical peaks. The corresponding intensity Î

exp
k to a theoretical

intensity Itheok of a peak k in the theoretical spectrumwas defined as the
intensity Iexpj of its closest peak jwithin amass tolerance δ = 20ppm as
follows:

Î
exp
k :¼ Iexpj , if jMtheo

k �Mexp
j j< δ �Mtheo

k

0, otherwise:

(
ð2Þ

We labeled these corresponding experimental peaks as b and y frag-
ment ions according to the Prosit-predicted annotation.

We provided the model with three complementary feature types:
similarity features, counting features, and features derived from the
bin reclassification model.

The similarity features capture the quantitative agreement
between Prosit-predicted and experimental peak intensities. They
consist of the normalized spectral angle as defined earlier22, the Pear-
son correlation coefficient, cosine similarity, as well as the mean,
standard deviation, quantiles, maximum, and minimum of the abso-
lute differences.

The counting features capture the qualitative agreement between
Prosit-predicted and experimentalm/z ratios of peaks. They consist of
the number (absolute and relative to the number of predicted peaks)
of corresponding peaks for all four combinations of zero and nonzero
experimental and theoretical intensities.

The similarity features and the counting features were generated
for all peaks jointly, as well as for the b fragment ions and for the y
fragment ions separately.

The features derived from the bin reclassification model were the
amount of predicted bin class changes at various bin probability
thresholds (0.25, 0.3, 0.35, 0.4, 0.45, and 0.5).

A list containing all features and computed feature importances
obtained from the mean of the computed absolute SHAP values51 is
provided in Supplementary Table 1.

The random forest predictor was trained to predict log2 (d + 1),
whered is the Levenshtein distance of the peptide,minimizing the sum
of squared errors using scikit-learn (v0.24.2)52. The final model, selec-
ted after hyper-parameter search with optuna50, contained 86 indivi-
dual trees, a maximum tree depth of 175, a maximum number of 36
features for eachnode split, and aminimumamount of 112 samples per
leaf node.

For comparison, an XGBoost (v1.6.2)34 model was fitted with the
same target variable and same features as the random forest using
scikit-learn. The final XGBoost model, selected after hyper-parameter
search with optuna, consisted of 410 gradient-boosted trees, a max-
imum depth of 10, a ratio of 0.17 for subsampling features when
constructing each tree, and a ratio of 0.92 for subsampling the training
dataset. All other hyper-parameters were set to the default values.

The score integrating Spectralis-score and the spectral angle
between the spectrum predicted by PredFull35 and the experimental
spectrum was derived by fitting a logistic regression on these two
scalars as features without any interaction term on the training dataset
of the heart sample.

An alternative score was trained taking the defined 114 features as
input, as well as the original scores provided by Casanovo v3.2.0
employing the leave-one-species-out cross-validation proposed by
Tran et al.25. This score was obtained by fitting an XGBoost model to
predict the Levenshtein distance of a candidate peptide to the correct
peptide.

Evolutionary algorithm
For each experimental spectrum, candidate peptides provided by any
de novo peptide sequencing tool served as input for the evolutionary
algorithm. Here, for each experimental spectrum, we considered the
candidate peptide provided by Casanovo as the initial sequence only if
the difference between the computed peptide mass and the experi-
mental mass derived from the precursorm/z was not larger than 1 Da.
Otherwise, we started the optimization procedure with the candidate
peptide generated by Novor. We denote this combination of sequen-
ces by Casanovo and Novor as Casanovo-Novor.

An initial population of candidate peptides was constructed by
random isobaric substitutions and permutations of certain residues of
the initial sequence: at most 3 consecutive residues were replaced by a
combination of amino acids so that the total mass difference to the
initial peptide sequence was not larger than 20 ppm.

At each generation, a set of n peptides is selected for the next
generation based on the Spectralis-score s1,...,sn of candidate peptides
in a current generation. The ne highest-scored peptides were directly
inherited to the next generation. To maintain a fixed number of indi-
viduals in each generation, j: = n − ne candidate peptides were selected
for mutation in the next generation. For this, we assigned a weight for
selection wi to each peptide with index i and score si as follows:

wi :¼ exp
1
T
ðsi � s*Þ

� �
ð3Þ

where T denotes the temperature constant of the optimization pro-
cedure and s* the score of the fittest element in the current generation.
After defining all selection weights, the selection procedure chose j
peptides for mutation according to these weights. On each of those j
peptides, we applied the guided mutation procedure.

Both selection and mutation procedures were repeated for m
generations, each of them with the same size of n individuals and elite
size of ne, before the most highly scored candidate peptide according
to the selected fitness function was returned as the final peptide
sequence of the given spectrum. Hyper-parameter grid search on a
random subset of the validation set identifiedm = 5, n = 1,024 and ne =
103 as optimal hyper-parameters.

For initial peptide sequences of length larger than 30 or precursor
charge larger than 6, we returned the initial sequence and the lowest
possible score. Initial peptide sequences with an estimated Levensh-
tein distance smaller than 1 and larger than 7 were not optimized but
returned unmodified as the final sequence of the evolutionary
algorithm.

Peptide alignment and variant calling
Peptide alignmentswereobtained by running blastp (version 2.12.0+)53

against all translations from Ensembl genes and ab initio gene pre-
dictions provided by Ensembl human proteome database46,54 genome
build GRCh38, release 83. As a scoring matrix, we used the identity
matrix, modified such that leucine and isoleucine were considered
equivalent. All other blastp settings were set to their default values,
including the value of 10 for the e-value. We restricted the output of
blastp to atmost one hit per queried peptide sequence. Ifmultiple hits
were returned by the search, we selected the hit with the lowest
e-value. We defined a query peptide to be a perfect alignment if the
peptide is identical to the target peptide except for differences
between leucine and isoleucine.

For each method, we computed the score cutoff for three preci-
sion values (80, 90, and 95%) as the median across the 30 samples of
the score cutoffs yielding these precision values on spectra identified
by MaxQuant.

To call missense variants from the selected RNA-seq sample (RNA-
seq ID: SAMEA2154361, corresponding proteomics ID: heart_5a),
wefirst aligned theRNA-seq reads using STAR (v2.7.10a)55 as part of the
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nf-core rnaseq56 module to the hg38 genome assembly using default
parameters. We used GATK haplotypecaller through the RNA-seq
variant callingmodule of theDetection of RNAOutliers Pipeline (DROP
v1.2.2)57 to call variants. Variants that were missense were identified
using VEP v.10654.

To map peptides to RNA-seq based missense variants, we ran a
BLAST53,58 search using tblastn which provided nucleotide coordinates
for eachpeptide. The tblastn results wereprocessed in a similarmatter
described for the blastp results above. We overlapped the nucleotide
coordinates with the obtained missense variants from VEP using
GenomicRanges59.

Evaluation metrics
On top of precision-recall at bin level, we further evaluated the
model for bin reclassification with change precision and change
recall curves, which use change probabilities instead of the origi-
nal probabilities predicted by the model. For every bin, the change
probability was defined as the predicted probability p, for bins
with an initial label equal to 1, and 1 − p for bins with an initial label
equal to 0.

We evaluated the de novo peptide sequencing methods with
precision-recall curves at peptide level computed on the set of spectra
identifiedwithMaxQuant at 1% FDR. Peptide-level recall was defined as
the fraction of correct peptide sequences over the total number of
peptide sequences identified with MaxQuant at 1% FDR. Note that
unlike recall defined for binary classifiers, peptide-level recall is not
guaranteed to reach one at the most lenient score cutoff.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometric raw data from the human dataset by Wang et
al. including theMaxQuant Spectronaut search data is available via the
PRIDE databasewith the dataset identifier PXD010154. RNA-Seq data is
available in the following database: ArrayExpress E-MTAB-2836. The
human proteome database (genome build GRCh38, release 83) was
downloaded from Ensembl (https://ftp.ensembl.org/pub/release-83/
fasta/homo_sapiens/pep). The raw mass spectrometric data for the
nine-species dataset by Tran et al. is available via the PRIDE database
with identifiers: PXD005025, PXD004948, PXD004325, PXD004565,
PXD004536,PXD004947, PXD003868, PXD004467, and PXD004424.
The correct peptide identifications, as well as predictions by Deep-
Novo, can be downloaded from the MassIVE repository with identifier
MSV000081382. Model weights for running Casanovo were down-
loaded from Zenodo with DOI zenodo.679126360. The trained bin
reclassification model and random forest, as well as Novor, Casanovo,
DeepNovo, PointNovo and Spectralis predicted peptides with respec-
tive scores are deposited on Zenodo with DOI zenodo.839384661. The
data to reproduce themainfigures in this study have beendeposited in
the Figshare repository with DOI figshare.2353679462. Source data are
providedwith this paper asa SourceDatafile. Sourcedata areprovided
with this paper.

Code availability
Source code and scripts are available on GitHub at https://github.com/
gagneurlab/spectralis63.
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