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A robust deep learning detector 
for sleep spindles and K‑complexes: 
towards population norms
Nicolás I. Tapia‑Rivas 1, Pablo A. Estévez 1,2,3* & José A. Cortes‑Briones 4,5,6

Sleep spindles (SSs) and K-complexes (KCs) are brain patterns involved in cognitive functions that 
appear during sleep. Large-scale sleep studies would benefit from precise and robust automatic sleep 
event detectors, capable of adapting the variability in both electroencephalography (EEG) signals and 
expert annotation rules. We introduce the Sleep EEG Event Detector (SEED), a deep learning system 
that outperforms existing approaches in SS and KC detection, reaching an F1-score of 80.5% and 
83.7%, respectively, on the MASS2 dataset. SEED transfers well and requires minimal fine-tuning for 
new datasets and annotation styles. Remarkably, SEED substantially reduces the required amount of 
annotated data by using a novel pretraining approach that leverages the rule-based detector A7. An 
analysis of 11,224 subjects revealed that SEED’s detections provide better estimates of SS population 
statistics than existing approaches. SEED is a powerful resource for obtaining sleep-event statistics 
that could be useful for establishing population norms.

Sleep has a central role in cognitive function1, brain development2, and neurological and neuropsychiatric 
disorders3,4. During sleep, the brain transitions through five stages: wakefulness (W), rapid eye movement sleep 
(REM), and three non-REM sleep stages (N1, N2, and N3)5. Sleep spindles (SSs) and K-complexes (KCs) are 
two short-lived neural activity patterns occurring during stage N2 that are typically captured using electroen-
cephalography (EEG) (see Fig. 1). Both patterns are involved in several cognitive functions including memory, 
learning, and stimulus processing6,7.

Alterations in the duration, amplitude, frequency, and density of SSs have been associated with neuropsychi-
atric and neurological disorders. For example, recent studies suggest that SS alterations could be biomarkers of 
focal epilepsy8, autism spectrum disorder9, and clinical high-risk psychosis3. Likewise, KC alterations have been 
associated with sleep apnea10 and Alzheimer’s disease4.

While promising, these studies lack the sample sizes required to assess the clinical potential of SS or KC and 
validate them as biomarkers. One of the main obstacles to increasing sample size is the reliance on costly expert 
annotations. Furthermore, expert annotations have low inter-rater reliability11, thus a consensus of experts is 
required to achieve high-quality annotations11,12. For this reason, automatic SS and KC detection is an active 
area of research aiming to overcome the limitations of manual detection while maintaining high accuracy and 
adaptability to diverse EEG signals.

While alterations in SS parameters may indicate illness, there is also considerable variation within the normal 
population related to factors like sex, age, and origin13. A one-size-fits-all approach is unlikely to be effective in 
developing SS-based diagnostic strategies. Instead, abnormal deviation detection needs a reference of healthy 
ranges across demographics. Large-scale studies with automatic detectors can provide such characterization. 
For example, Purcell et al14. studied variation across sex, age, and race, starting from the age of 5, while more 
recently, Kwon et al15. examined variation from birth to the age of 18. The main limitation of these studies is the 
detection accuracy. They could be improved by detectors that are not only more accurate but also robust to be 
trusted in a wide variety of demographics.

Several methods have been proposed for the automatic detection of SSs and KCs. These approaches use infor-
mation obtained from signals in the time16–20 and/or frequency domains21–28. Traditionally, automatic SS and KC 
detection algorithms such as A7 for SSs21, and Spinky for SSs and KCs25, rely on expert-informed handcrafted 
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features extracted from EEG signals. The main advantage of these rule-based detectors is that predictions depend 
on familiar and easy-to-understand criteria. However, according to the literature, the definitions of SSs and KCs 
are vague and incomplete7,23, e.g., some consider that the 0.5-s minimum duration for spindles is arbitrary11. 
This makes it difficult to pre-define versatile-enough, one-size-fits-all features, and rules to suit most SS and KC 
definitions. Recently, deep learning detectors, a set of algorithms that automatically extract and learn features 
from the raw data, have been shown to outperform rule-based, handcrafted-feature algorithms and achieve state-
of-the-art performance16,17,22,23. However, we identified two main gaps that we address to make deep learning 
detection of SSs and KCs more accurate and widely adopted by sleep researchers.

First, we hypothesized that better performance could be achieved by better context processing. Although SS 
and KC duration is ~ 1 s, experts typically analyze larger segments, usually ~ 25s11. In this way, experts contex-
tualize the pattern in the surrounding activity to deal with noise, adapt to subject-level variation, and precisely 
determine the pattern’s onset and ending times. That is, experts leverage temporal dynamics in the EEG that are 
relevant for detection.

In the deep learning literature, recurrent neural networks (RNNs) are recommended as the method of choice 
to model temporal dynamics in time series such as EEG signals, since they are specifically designed for sequence 
processing. However, even with algorithmic improvements, recurrent architectures struggle with long sequences 
because they forget29,30: they cannot retrieve and harness information from distant contexts. In practice, a length 
of 250–500 samples is usually regarded as a safe maximum. For this reason, convolutional neural networks 
(CNNs) are usually used as a previous stage of RNNs. Several CNN + RNN models have been developed for sleep 
stage scoring, where EEG segments of 30 s are processed31,32.

Typically, sleep EEG events such as SSs and KCs have a duration of approximately one second. In the literature, 
CNN + RNN methods for detecting sleep EEG events use short EEG segments as inputs (~ 1 s), i.e., segments 
with less than 500 samples22,33. Some CNN-based models process 20-s segments, thus using a longer context16,17.

In order to use 20-s contexts for detecting SS and KC events, we propose a DL-based architecture that com-
bines CNNs and RNNs. Convolutional architectures excel at extracting local features and reducing input width 
while keeping relevant information. Therefore, a convolutional stage can be used to transform a 20 s EEG segment 
into a shorter time series, where each sample already encodes local signal patterns (around 1 s of signal). Then, 
a recurrent stage can be used to model this shorter, richer sequence. We conducted a preliminary exploration of 
sequential context processing in a previous work34.

The second gap is that the aforementioned SS and KC detectors have not been thoroughly validated on 
large-scale datasets, for their correct behavior and generalization capabilities. Such validation is important for 
human raters to understand their operation limits and to adopt them as a replacement for well-known rule-based 
detectors. To address this gap, we conducted an extensive quantitative and qualitative validation of the proposed 
detection method, using both labeled and large unlabeled datasets. Moreover, we build upon previous research 
and provide improved ranges of SS parameters across demographics.

In summary, we introduce and validate the Sleep EEG Event Detector (SEED), a novel end-to-end deep 
learning approach to detecting SS and KC in sleep EEG signals. This work has 4 main contributions: First, a 
detailed description of SEED’s training and architecture, which uses convolutional layers for local-feature extrac-
tion, and recurrent layers for modeling long-term (20 s) signal dynamics; second, an extensive quantitative and 
qualitative validation assessment of SEED using 2 labeled and 7 unlabeled datasets comprising a total of 11,499 
subjects; third, an assessment of SEED’s generalizability through transfer learning experiments; and fourth, an 
estimation of SS population statistics using SEED’s state-of-the-art SS detection performance. These results are 
a significant advancement over existing large-scale SS population statistics, which are based on a less-accurate, 
previous-generation detectors.

Figure 1.   An EEG segment during sleep stage N2. One K-complex (KC) and two sleep spindles (SSs) are shown 
as annotated by a human expert.
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Results
Datasets overview
The data were extracted from 9 sleep EEG datasets and comprised 11,499 single-channel EEG recordings col-
lected during stage N2 from channels C3 or C4. Two datasets, MASS2 and MODA, have expert annotations 
for sleep stage, SSs and/or KCs. The remaining datasets, CAP and NSRR6 (which comprises 6 datasets), have 
expert annotations for sleep stage only (see Table 1). In what follows, MASS2 and MODA will be termed labeled 
datasets, and CAP and NSRR6 will be termed unlabeled datasets.

Labeled datasets
MASS235 comprises 3 datasets: (1) SSs annotated by expert E1 (MASS2-SS-E1) and (2) expert E2 (MASS2-SS-
E2), and (3) KCs annotated by expert E1 (MASS2-KC); MODA12 comprises data collected from 2 age groups: 
(1) young (mean age of 24.1 years old) and (2) older adults (mean age of 62.0 years old). These datasets were 
used for performance analyses.

Unlabeled datasets
Following Purcell et al14., NSRR6 comprises 6 sleep datasets from the National Sleep Research Resource (NSRR)36: 
CHAT37, CCSHS38, CFS39, SHHS40, MrOS41, and SOF42. The NSRR6 dataset was used for population statistics 
analysis. Lastly, the CAP dataset43,44 was used for transfer learning analyses (for details on all datasets, see 
Methods).

Sleep EEG event detector (SEED)
For an EEG signal segment, the proposed Sleep EEG Event Detector (SEED) estimates each sample’s probability 
of being part of an event of interest (see Fig. 2a). SEED’s estimation is obtained by combining a convolutional 
neural network to extract local features and a recurrent neural network to integrate local features within a wide 
temporal context of 20 s (see Fig. 2b). Each event’s onset and ending point are obtained by thresholding SEED’s 
estimated probabilities.

Baselines
Four state-of-the-art deep learning sleep event detectors were used for baseline comparisons: DOSED16 was used 
for SS and KC detection, SpindleNet22 was used for SS detection, SpindleU-Net17 was used for SS detection, and 
DKL-KC23 was used for KC detection. In addition, two representative rule-based, handcrafted feature detectors 
were used for comparisons: A721 was used for SS detection, and Spinky25 was used for KC detection. DOSED, A7, 
and Spinky have an open-source training implementation that allowed us to assess them using the same training 
settings that were used for SEED. No open-source implementations were available for the other detectors; thus, 
comparisons were conducted using published reports of their performance.

Performance comparison
SEED’s and the baseline detectors’ performance are reported in Table 2. Following Warby et al.’s work11 using 
Intersection over Union (IoU) for obtaining detection metrics, we computed recall, precision, and F1-score. In 
addition, we used mean IoU (mIoU) to capture localization accuracy, i.e., the accuracy at predicting the onset 
and ending points of events. Since recordings from the MASS2 dataset influenced hyperparameter and archi-
tectural decisions during SEED’s development, we conducted an additional assessment of SEED’s performance 
on a subset of subjects from the MASS2 dataset that was held out and not used during SEED’s development. 

Table 1.   Description of sleep EEG datasets. SS: sleep spindle; KC: K-complex; N.A.: not applicable; epm: 
events per minute. NSRR6 combines the datasets CHAT, CCSHS, CFS, SHHS, MrOS and SOF. Dataset 
details can be found in the main text and the Methods section. The terms labeled and unlabeled refer to the 
availability of event (SS or KC) annotations since every dataset has sleep stage annotations. * Segments of 115 s 
were randomly extracted from sleep stage N2.

Labeled datasets Unlabeled datasets

MASS2-SS-E1 MASS2-SS-E2 MASS2-KC MODA CAP NSRR6

Subjects 15 15 15 180 80 11,224

Age (mean ± SD) 23.6 ± 3.7 23.6 ± 3.7 23.6 ± 3.7 40.6 ± 19.4 39.5 ± 16.9 58.6 ± 23.5

Sampling rate (Hz) 256 256 256 256 100–512 125–512

Annotated event SS SS KC SS N.A N.A

Annotated or selected segments Stage N2 Stage N2 Stage N2 115 s segments* Stage N2 Stage N2

Annotated or selected size (h) 60.01 60.01 60.01 24.97 251.64 36,548.1

Annotation source One expert One expert One expert Consensus of 31–42 exp N.A N.A

Total events 9,990 21,846 8,781 5,272 N.A N.A

Density (epm) 2.72 6.02 2.49 3.52 N.A N.A

Mean duration (s) 0.83 1.20 0.73 0.84 N.A N.A
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The results obtained in this subset were similar to the results reported in Table 2, indicating negligible design 
overfitting (see Supplementary Table 1).

SEED outperformed baseline algorithms in all comparisons on mIoU (when available). Additionally, SEED 
outperformed baselines on F1-score except for one match in which SpindleU-Net’s and SEED’s F1-scores were 
not significantly different (p = 0.85 in MASS2-SS-E1 and p = 0.62 in MASS2-SS-E2). Importantly, SpindleU-Net’s 
mIoU was 11.2% lower than SEED’s.

The between-subject variability of SEED’s performance was measured with the coefficient of variation (ratio 
between the standard deviation and the mean) of the F1-score (Table 3). In this metric, SEED outperformed all 
the baseline detectors. In general, metric variability was higher for SS compared to KC detection.

Following previous work11, Table 4 reports the correlations and mean differences between expert rater and 
detector detections in global event characteristics (scatter plots shown in Supplementary Figs. 1 and 2). The 
results show that SEED outperformed or matched other detectors’ best performance. SEED’s largest performance 
improvement was in SS and KC duration estimation. In comparison, DOSED showed a large positive bias in 
mean event duration, incorrectly overestimating SSs in an average of 0.18 s and KCs in an average of 0.14 s.

To assess the effect of event characteristics on detector performance (e.g., duration and amplitude), F1-scores 
were obtained for a range of event durations, peak-to-peak (PP) amplitudes, SS frequencies, and ages. Subjects 
were divided into 2 groups based on age (young and old subjects), whereas the remaining characteristics were 
divided into consecutive groups of approximately the same number of annotations at the dataset level. Because 
this arbitrary division caused imbalances at the subject level, micro-average metrics were used for both the 
MODA and MASS2-KC datasets (see Methods). The results are shown in Fig. 3 (exact F1-scores and test statistics 
are shown in Supplementary Tables 2 and 3).

SEED outperformed baseline detectors in every comparison except for SSs lasting less than 0.6 s. In this 
case, the difference in F1-score between SEED and DOSED was non-significant (p = 0.18). Further analyses, in 
this case, revealed that the F1-score was mainly driven by an abnormally high precision (i.e., few false positives) 

Figure 2.   SEED’s event detection process and architecture. (a) Raw EEG signals are preprocessed and 
segmented in windows of Tw=20 s samples. Each window is fed to the deep neural network underlying SEED, 
which estimates each sample’s probability of being part of an event (SS or KC). To avoid border effects, signal 
segments of TB samples are concatenated to both input window’s borders, which are dropped afterward. The 
raw probabilities are adjusted and thresholded using a pair of thresholds, one for detection and another for 
duration estimation. The resulting events can be post-processed using expert knowledge. Finally, events outside 
the valid annotation mask (e.g., N2 stages) are discarded. (b) High-level description of SEED’s neural network 
architecture. (c) Definition of Convolutional Multi-dilated Block (Conv MDB) k, F. It has the same number of 
parameters as a sequence of two Conv k, F layers, but with a larger receptive field.
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in DOSED’s predictions (the precision was 90.4 ± 2.5% while the recall was 52.6 ± 4.6%). This was a result of 
DOSED’s tendency to overestimate event duration (see Table 4), which led to few predictions lasting less than 
0.6 s. Furthermore, clear associations between event characteristics and detector performance were observed 
across detectors: Positive associations between F1-scores and both SS and KC duration and PP amplitude; SS 
detection reliability was higher in the middle range of the SS frequency band; and SS detection accuracy was 
worse for older subjects as shown by an accuracy reduction of 5% for SEED and 6.4–6.6% for the other detectors.

Table 2.   SS and KC detection performance. mIoU: mean Intersection over Union; N.A.: not available. Metrics 
of SEED (proposed detector), DOSED, A7 and Spinky were obtained using open-source implementations, 
whereas metrics of SpindleU-Net, SpindleNet and DKL-KC were obtained from their original publications. 
P-values are defined against SEED’s performance. * These standard deviations between partitions are not 
reported in the original publication; these estimations are based on the reported by-subject F1-score (see 
Methods).

Dataset Detector

F1-score (%) mIoU (%)

Mean ± SD p-value Mean ± SD p-value

MASS2-SS-E1 (15 subjects)

SEED 80.8 ± 2.1 84.8 ± 1.2

DOSED 76.8 ± 2.9  < 0.001 74.7 ± 2.1  < 0.001

A7 73.0 ± 3.4  < 0.001 73.9 ± 1.0  < 0.001

MASS2-SS-E1 (19 subjects)
SEED 80.5 ± 2.1 84.7 ± 1.0

SpindleU-Net 80.3 ± 1.9* 0.848 73.5 -

MASS2-SS-E2 (15 subjects)

SEED 86.1 ± 2.0 78.7 ± 1.1

DOSED 82.5 ± 2.5  < 0.001 73.1 ± 1.1  < 0.001

A7 74.9 ± 2.8  < 0.001 74.7 ± 1.1  < 0.001

SpindleU-Net 85.4 ± 2.7* 0.615 N.A -

SpindleNet 83.0 ± 2.0 0.020 N.A -

MODA

SEED 81.8 ± 1.4 83.4 ± 0.5

DOSED 77.5 ± 1.7  < 0.001 71.4 ± 1.1  < 0.001

A7 73.3 ± 1.9  < 0.001 71.0 ± 0.9  < 0.001

MASS2-KC (15 subjects)

SEED 83.7 ± 1.5 90.6 ± 0.6

DOSED 78.1 ± 2.2  < 0.001 72.3 ± 1.4  < 0.001

Spinky 63.1 ± 3.8  < 0.001 41.2 ± 1.6  < 0.001

MASS2-KC (19 subjects)
SEED 83.6 ± 1.7 90.4 ± 0.4

DKL-KC 78.0 ± 2.0  < 0.001 N.A -

Table 3.   Detection performance variability across subjects. The variability (less is better) is measured as the 
coefficient of variation of the F1-score. The coefficient of variation is the ratio between the standard deviation 
and the mean, expressed as a percentage. Due to repeated cross-validation, each subject has 3 available test 
performance values, allowing many possible coefficients of variations to be obtained by randomly selecting one 
value per subject. Leveraging that, its distribution was estimated by repeating such random selection 100 times. 
P-values are defined against SEED’s performance. * Data with non-normal distribution. See Methods/Statistics 
for details on the statistical tests.

Dataset Detector

Coefficient of variation (%)

Mean ± SD p-value

MASS2-SS-E1

SEED 4.6 ± 0.4

DOSED 6.9 ± 0.4  < 0.001

A7 6.9 ± 0.1  < 0.001

MASS2-SS-E2

SEED 4.0 ± 0.1

DOSED 5.2 ± 0.3  < 0.001

A7 5.8 ± 0.1*  < 0.001

MODA

SEED 9.2 ± 0.4

DOSED 11.6 ± 0.5  < 0.001

A7 16.9 ± 0.4*  < 0.001

MASS2-KC

SEED 3.9 ± 0.2

DOSED 5.2 ± 0.3  < 0.001

Spinky 11.5 ± 0.1  < 0.001
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Transfer learning analysis
An important application involves using a detector in recordings with potentially different data characteristics 
compared to the recordings used to develop the detector. A desirable property in this setting is generalization, 
i.e., the detector’s robustness to changes in the data. However, when the evaluation data distribution differs 
significantly from the training data distribution, a degradation in performance is expected, unless a correction 
is made leveraging knowledge of the evaluation data distribution. A common instance of this process for deep 
learning methods is known as transfer learning, where a detector is pretrained (standard training of parameters) 
on a source dataset and then fine-tuned (further training using the previously trained parameters as initializa-
tion) on a target dataset. Fine-tuning is expected to require less data than standard training on the target dataset 
to achieve good performance.

The evaluation data distribution could differ due to changes in the general EEG characteristics (e.g., subject’s 
demographics), or in the characteristics of expert annotations (e.g., annotation policies). MASS2-SS-E1 and 
MASS2-SS-E2 have the same EEG signals, and MODA comes from the same cohort (the MASS cohort). How-
ever, their annotations show differences in their typical duration and PP amplitude (see Supplementary Fig. 3).

To gauge the degradation in performance that occurs when changing datasets, we trained each SS detector 
on each SS dataset and we used them to predict directly on the other datasets, without adjustments. The results 
are shown in Fig. 4 (exact F1-scores and test statistics are shown in Supplementary Table 4). As expected, across 
transfers, similar performance drop patterns were observed across detectors. In general, the worst transfers 
involved MASS2-SS-E1, either as the source (recall < 50%) or as the target (precision < 50%).

Considering the performance drops, we explored fine-tuning for SEED. First, we assessed improvements in 
the worst transfer performance seen in Fig. 4: SEED was trained from scratch on MASS2-SS-E1 (pretraining) 
and then retrained on a fraction of MODA (fine-tuning). For comparison, we also evaluated the performance 
obtained by training on the same fractions of MODA without pretraining. The results of these experiments are 
shown in Fig. 5 (exact statistics are shown in Supplementary Table 5).

The analyses showed that pretraining SEED on MASS2-SS-E1 allows state-of-the-art performance to be 
obtained using a small fraction of MODA (F1-score of 79.5 ± 2.4% using 10% of MODA), especially by improv-
ing precision (80.7% vs 76.4%, p = 0.005, using 10% of MODA) and mIoU (82.1% vs. 78.1%, p < 0.001, using 
10% of MODA) with respect to the scenario without pretraining. Pretraining had no significant effect on SEED’s 
performance on MODA when SEED’s training was conducted on the complete MODA dataset. This suggests that 
the main advantage of pretraining is to reduce the amount of data necessary for achieving high performance with 
fine-tuning. Indeed, fine-tuning SEED on 10% of MODA was enough to surpass the performance of DOSED 
shown in Table 2 (p = 0.014 for F1-score, p < 0.001 for mIoU).

Table 4.   Correlation between experts and detectors for subject-level parameters of SSs and KCs. SS: sleep 
spindle; KC: K-complex; epm: events per minute; PP: peak-to-peak. Subject-level parameters correspond to 
whole-recording aggregates of event-level instances. The correlation is measured between values determined 
by expert annotations and detections. The difference is defined as the estimated value (by detections) minus 
the ground truth value (by expert annotations).

Parameter Detector R-squared Mean difference

Mean SS duration (s) (MODA)

SEED 0.62  − 0.017

DOSED 0.47 0.179

A7 0.35  − 0.020

SS density (epm) (MODA)

SEED 0.94 0.136

DOSED 0.90  − 0.154

A7 0.88 0.177

Mean SS PP amplitude (μV) (MODA)

SEED 0.99 0.815

DOSED 0.98 1.542

A7 0.97 0.496

Mean SS frequency (Hz) (MODA)

SEED 0.95 0.063

DOSED 0.93 0.071

A7 0.77 0.087

Mean KC duration (s) (MASS2-KC)

SEED 0.80  − 0.003

DOSED 0.64 0.140

Spinky 0.00 0.671

KC density (epm) (MASS2-KC)

SEED 0.91 0.112

DOSED 0.91 0.106

Spinky 0.82  − 0.179

Mean KC PP amplitude (μV) (MASS2-KC)

SEED 0.93 1.157

DOSED 0.91 3.179

Spinky 0.88 9.642
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We additionally explored whether pretraining could keep its benefits without requiring expert annotations on 
the pretraining dataset, further reducing the requirements of labeled data. To that end, SEED was pretrained on 
the unlabeled dataset CAP using labels generated automatically by the rule-based, handcrafted-feature detector 
A7 using the parameters reported in the original publication (based on a dataset different from MODA)21. This 
artificial dataset (termed CAP-A7) had 51,597 SS events with a mean SS density of 3.3 events per minute, and 
a mean SS duration of 1.0 s. During pretraining, SEED reached an F1-score of 88.1 ± 0.3% on CAP-A7. After 
pretraining on CAP-A7 and fine-tuning on just 10% of MODA, SEED reached an F1-score of 78.8 ± 1.5% on 
MODA, again surpassing the reference performance of DOSED (p = 0.035). The full results of fine-tuning SEED 
on MODA after pretraining on CAP-A7 are shown in Fig. 5 (and Supplementary Table 5) to ease comparison. 
Interestingly, across all cases, no significant differences (p > 0.18) were observed between F1-score improve-
ments resulting from fine-tuning after pretraining on data with expert-based (MASS2-SS-E1) or rule-based 
(A7) annotations. However, mIoU saturated faster to a near-maximum when pretraining was conducted on 
data annotated by experts.

Population statistics in unlabeled data
Previous research has shown that demographic factors such as age and sex, can influence the characteristics of 
SSs11,12,14. Thus, to evaluate the validity of SEED’s predictions, we examined whether the established associations 
between demographic factors and SS characteristics were present in SEED’s SS detections. For this purpose, 
SEED was used to generate a large collection of 4,388,910 SS detections from N2 stage EEG signals collected 
from 11,244 subjects from the unlabeled NSRR6 dataset. As a preliminary validation of this large collection 

Figure 3.   SS and KC detection performance (F1-score) per parameter range. For SSs (from MODA dataset), the 
parameters considered were (a) duration, (b) PP amplitude, (c) spindle frequency and (d) age of the subject. For 
KCs (from MASS2-KC dataset), the parameters considered were (e) duration and (f) PP amplitude. Performance 
is measured by comparing detections and annotations that exist in a given range of the chosen parameter (e.g., 
between 0.6 s and 0.9 s of duration). Each data point represents the mean ± 2SD of the F1-score computed by 
micro-average.
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Figure 4.   Detector generalization to a dataset not used for training. Performance of SS detection (F1-score) 
when a detector is trained on one SS dataset and is used directly (without fine-tuning) on another. (a) Detectors 
trained on MASS2-SS-E1. (b) Detectors trained on MASS2-SS-E2. (c) Detectors trained on MODA. Each data 
point represents the mean ± 2SD of the F1-score computed by micro-average.

Figure 5.   SS detection performance on MODA with fine-tuning after pretraining SEED on another dataset. 
Fine-tuning is conducted using a fraction of MODA. On the X-axis, a fraction of 0% represents no training, 
whereas 100% represents no restrictions in size. Shown metrics are (a) F1-score, (b) recall, (c) precision and 
(d) mIoU. Three cases were considered: random initialization and standard training (blue curve); pretraining 
on the labeled dataset MASS2-SS-E1 (the worst direct transfer, see Fig. 4) and fine-tuning on MODA (red 
curve); pretraining on the artificial dataset CAP-A7 and fine-tuning on MODA (green curve). The dotted line 
corresponds to the performance of DOSED trained on the full MODA dataset only. Outliers corresponding to 
the case pre-trained on MASS2-SS-E1 without fine-tuning (MODA fraction 0%) are not shown in the plots. The 
performance metrics for this case are F1-score 53.6%, Recall 38.0%, and Precision 92.1%.
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before the main analysis, we verified some desired properties: global statistics (without conditioning on age or 
sex) for duration, PP amplitude, frequency, and SS density are close to the literature (Supplementary Fig. 5 and 
Supplementary Table 6); top detections (in estimated probability) are prototypical SSs instead of artifactual noise 
(Supplementary Fig. 7); and relative sigma power (ratio between average power in the 11–16 Hz and 4.5-30 Hz 
ranges) correlates with SS density, closely following the ground truth tendency observed in the MODA dataset 
(Supplementary Fig. 8).

To obtain reliable estimations of the relationships between SS parameters and both age and sex, subjects with 
less than 10 SS detections (110 subjects, representing 0.98% of the total) were excluded from analyses. Also, for 
simplicity, 3 subjects aged between 4 and 5 years old were included in the 5-year-old age interval. The resulting 
dataset included data for both sexes (41% women) and represented the full range of ages between 5 and 90 years 
old (the age interval with the least subjects was 30–35 years of age, with 15 men and 14 women; the full age and 
sex distribution is shown in Supplementary Fig. 6).

The analyses showed that SS duration increases with age, peaks at the age of 10–15 years old (Fig. 6a–d), then 
progressively decays until the age of 65–70 years old, after which it remains stable. SS amplitude peaks at the age 
of 5–10 years old, decays strongly until the age of 20–25 years old, remains stable until the age of 60–65 and then 
decays again at the age of 65–70 years old. SS frequency is minimal at the age of 5–10, increases progressively 
until age 20–25 years old, remains stable until the age of 40–45 years old, and decays slowly after that. Finally, SS 

Figure 6.   Relationship between SEED’s SS detections, age, and sex on NSRR6. (a-d) To show age effects, 
subjects were grouped using 5-year intervals. For each age group, the following SS parameters are shown: (a) 
Mean duration. (b) Mean PP amplitude. (c) Mean spindle frequency. (d) Spindle density. (e–h) To show sex 
effects, subjects were grouped using sex and age intervals whose boundaries are the average menarche and 
menopause ages. For each sex and age group, the following SS parameters are shown: (e) Mean duration. 
(f) Mean PP amplitude. (g) Mean spindle frequency. (h) Spindle density. Women show a greater value than 
men (p < 0.001, indicated by the symbol ***) in every comparison, except for PP amplitude in 5–12 years old 
(non-significant difference of + 0.6 μV, p = 0.29). Black circles at the median indicate data with non-normal 
distribution. See Methods/Statistics for details on the statistical tests.
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density increases with age and peaks at the age of 15–20 years old, decays strongly until the age of 30–35 years old, 
remains stable until the age of 55–60 years old, and decays strongly after that. The exploration of the relationship 
between sex and SS parameters (Fig. 6e–h), showed that women had significantly larger average values than men 
(p < 0.001). The only exception was PP amplitude during childhood (p = 0.29). Sex differences were larger for PP 
amplitude and density during late adulthood. Moreover, unlike men, in women, PP amplitude did not decrease 
when transitioning from adulthood to late adulthood.

Discussion
In this work we introduced SEED, a novel deep-learning model for detecting transient events in sleep EEG. 
Compared to traditional detectors, SEED’s end-to-end approach has the advantage of not requiring handcrafted, 
rule-based features as it learns to automatically extract relevant features from the data during training. SEED 
achieved state-of-the-art performance in detecting SSs and KCs. SEED’s architecture features a novel hierarchi-
cal design that, by combining convolutional and recurrent layers, allows for the processing of sleep events using 
long-range contextual information (20 s). This design improved SEED’s capacity to both detect and precisely 
determine the duration of SS and KC events and enabled it to outperform state-of-the-art detectors in most 
metrics. Furthermore, differently from previous detectors, SEED does not require arbitrary partitions of the input 
signals nor fixed-sized sliding or candidate windows, making it simpler to use and more likely to generalize to 
other transient events with little intervention.

Purcell et al.’s pioneering work14, applying a rule-based detector (based on wavelet filtering and subsequent 
thresholding) to a large unlabeled open-source EEG sleep dataset (NSRR6), offered invaluable insight into the 
interactions between demographic factors and SS characteristics in the population. To validate SEED’s SS per-
formance at the population level, we compared SEED’s SS detections (SEED-SSs) on the NSRR6 dataset with 
the detections reported by Purcell et al14. on the NSRR6 dataset (Purcell-SSs), Warby et al11. on the Wisconsin 
Sleep Cohort—WSC dataset (Warby-SSs), and Lacourse et al12. on the MODA dataset (Lacourse-SSs). The main 
differences among these 4 approaches involve the characteristics of the detectors, post-processing of event dura-
tion, and handling of artifacts (for details, see Methods). In general, while SEED replicated the most important 
results of Purcell-SSs, Warby-SSs, and Lacourse-SSs, the characteristics of SEED-SSs were closer to Warby-SSs 
and Lacourse-SSs than Purcell-SSs. This suggests that SEED’s detections are closer to the results obtained with 
the gold standard (expert annotations) than with a rule-based detector. Thus, SEED’s population statistics rep-
resent a significant advancement over Purcell et al.’s work, providing a more accurate characterization of SSs in 
the general population.

The distribution of SS characteristics (duration, PP amplitude, and frequency) in SEED-SSs was similar to the 
distributions in Purcell-SSs and Warby-SSs. However, SEED-SSs had fewer events with very small PP amplitudes 
compared to Purcell-SSs and Warby-SSs. In terms of frequency, the SSs detected by the three models were similar 
in the sigma band, but SEED-SSs and Warby-SSs exhibited events with frequencies up to 16 Hz, whereas events 
in Purcell-SSs had frequencies up to only 15 Hz. Notably, SEED-SSs included events with frequencies between 
10 and 11 Hz, which were absent in Warby-SSs and Purcell-SSs. In Warby-SSs, this difference can be explained 
by the fact that the WSC dataset does not contain EEG recordings from children, whose spindles typically fall in 
the lower end of the frequency spectrum. Therefore, 10–11 Hz spindles are expected in a dataset that includes 
children, such as NSRR6. On the other hand, while Purcell-SSs are based on the same dataset as SEED-SSs (i.e., 
NSRR6), the detector used by Purcell et al. has limited sensitivity in this frequency range. Regarding the dis-
tribution of SS density per subject, Purcell-SSs differed from both Warby-SSs and Lacourse-SSs. Interestingly, 
the SS density distribution in SEED-SSs was closer to the distributions of Warby-SSs and Lacourse-SSs than to 
the distribution of Purcell-SSs. As mentioned, this finding suggests that when discrepancies occur between SS 
characteristics based on rule-based detections (Purcell-SSs) and gold standard expert annotations (Warby-SSs 
and Lacourse-SSs), SEED’s predictions align with the results obtained using the gold standard method. However, 
differently from Warby-SSs and Lacourse-SSs, SEED’SSs had a high percentage of cases with 0 events per minute 
(see Supplementary Fig. 5d). It is likely that this divergence results from the fact that the NSRR6 dataset is biased 
towards older adults (see Supplementary Fig. 6), who are known to have low sigma activity and, therefore, low 
spindle density (see Fig. 6d).

SEED’s excellent performance at the population level makes it suitable for establishing population-level 
reference ranges, which will facilitate the detection of SS and KC biomarkers for diagnostic groups such as 
schizophrenia and dementia, or SS- and KC-based indices of treatment response in clinical trials45. Furthermore, 
SEED’s minimal requirement for labeled data compared to other detectors, enabled by our novel rule-based 
pretraining approach, makes our tool a valuable resource for conducting studies in underrepresented or clinical 
populations for whom labeled data is scarce. This will help reduce some of the biases present in current sleep 
studies, resulting from limitations related to small sample sizes and unbalanced representation of different age 
groups, genders, geographic and cultural origins, and clinical populations, among others. In recent years, simpler 
and wireless alternatives to traditional EEG systems have been developed and validated, thus expanding the 
population size with access to sleep monitoring46. State-of-the-art sleep staging algorithms, such as U-Sleep47,48, 
can further accelerate SS and KC detection by providing SEED with sleep stage information. Collectively, these 
approaches could pave the way for fully automatic systems with the capacity to accurately detect sleep events in 
tens of thousands of individuals.

Regarding transfer learning, there were performance drops across the board when the detectors were applied 
to external, never-seen datasets. Since EEG signals across datasets had similar characteristics, the drops were 
likely driven by event annotation differences in the training and external datasets. Supplementary Fig. 3 shows 
the shifts in the distributions of expert annotations for spindle duration and peak-to-peak amplitude across dif-
ferent datasets. Since SS detection on EEG recordings is a segmentation task, such shifts are known to require 
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knowledge of the target distribution to correct the detector49. In other words, dealing with this performance 
drop requires parameter tuning based on the new annotation rules.

Since the shift was mainly in the annotations, there was no need to implement large changes in the feature-
extraction and context-integration stages (e.g., layers) of the detectors, just in the final classification stage that 
implements the criteria used for annotating the events. This fine-tuning process requires little data from the 
target dataset and was effective in correcting performance.

Pretraining a model on large datasets can improve its generalization, thereby reducing the amount of data 
needed for fine-tuning on new datasets. The main challenge of pretraining models for biomedical signal analy-
sis is obtaining large amounts of expert-annotated data, which is often difficult to acquire. For this reason, one 
of the most relevant contributions of our work is demonstrating that pretraining SEED on data (CAP dataset) 
annotated automatically, without human intervention, using the A7 rule-based algorithm had the same benefits 
on SEED’s performance on a new dataset as pretraining SEED on expert-annotated data (MASS2 dataset). This 
suggests that the synthetic annotations generated by a ruled-based algorithm carry enough information about 
sleep EEG event detection for the model to learn the basic-level features and context relationships necessary to 
solve the more complex task of emulating the performance of expert raters. This approach is a promising strategy 
for training deep learning event detectors when there is not enough data for pretraining.

SEED was extensively validated through several experiments including experiments on unlabeled data. The 
results demonstrated that SEED is a reliable sleep EEG event detector with good generalization to external 
datasets and results aligned with expert criteria reported in the literature. While SEED outperformed previous 
detectors on between-subject performance variability, there is still room for improvement, especially in SS detec-
tion. SEED’s performance was assessed on healthy subjects older than 5 years old, only. The generalization of 
SEED’s findings to younger subjects or populations with pathologies such as schizophrenia, will require further 
investigation.

There are large publicly available sleep EEG datasets that do not have annotations for sleep events, such as 
those made available by the NSRR. We believe that deep learning detectors would benefit from pretraining on 
this type of data in combination with synthetic annotations generated by a sleep event detector. An intriguing 
area for future research would be to investigate the characteristics of synthetic annotations that minimize the 
need for fine-tuning the detector on the target dataset. The access to large and unbiased population statistics 
would allow us to detect biases in the population distributions derived from our detector and correct them when 
necessary. We firmly believe that having open access to large datasets in the order of hundreds of thousands of 
individuals will become critical to the future development of the field.

Methods
Data sources
The algorithms’ performance detecting SSs and KCs was assessed using single-channel, labeled (SS and KC 
labels) and unlabeled EEG datasets collected during stage N2 at channels C3 or C4. The channels were C3-LE 
for MASS2, either C3-LE or C3-A2 (depending on the subject) for MODA, and C3-A2 (or C4-A1 if artifactual 
or unavailable) for CAP and NSRR. Following the format of the MASS2 dataset35, data were segmented in 20 s 
segments. Sleep stage and event (SS and KC) were annotated by expert raters (for details, see Table 1). Each 
recording used for analyses was collected on a different subject. In cases that had more than one EEG recording, 
only the first recording was used.

MASS2
The Montreal Archive of Sleep Studies (MASS) dataset35 is a public whole-night EEG dataset collected on 200 
subjects. In this work, we utilized the second subset of MASS (MASS2) comprising annotated EEG recordings 
segmented in 20 s epochs. The data were collected on 19 subjects (18–33 years old; mean 23.6; SD 3.7). Two 
experts, E1 and E2, performed SS and KC annotations for stage N2 EEG at channel C3. E1 annotated SSs and KCs 
for 15 subjects and E2 annotated SSs only for all the subjects. These data were used as 3 distinct EEG datasets: SSs 
annotated by E1 (MASS2-SS-E1) and E2 (MASS2-SS-E2), and KCs annotated by E1 (MASS2-KC). For simplicity, 
the 15 subjects annotated by both experts were used for experiments; however, general performance results were 
obtained using all the subjects in MASS2-SS-E1 and MASS2-KC to facilitate comparisons with the literature.

MODA
The Massive Online Data Annotation (MODA) platform was used to generate an open-source dataset with SS 
annotations made by a consensus of experts on data collected from 180 subjects (18–76 years old; mean 40.6; SD 
19.4) from the MASS dataset (MODA dataset)12. The MODA dataset is divided into 2 age groups: (1) 100 young 
subjects (mean age of 24.1 years) annotated by 42 experts, and (2) 80 older subjects (mean age of 62.0 years) 
annotated by 31 experts. Each expert annotated a sample of 115-s EEG segments collected during stage N2 from 
electrode C3. In total, MODA consists of 30 subjects with 10 annotated EEG segments each and 150 subjects 
with 3 annotated segments each. To simplify the analyses, each 115 s segment was extended to 120 s by adding 
2.5 s of the signal at the edges, resulting in 6 disjoint 20 s segments.

CAP
The Cyclic Alternating Pattern (CAP) sleep dataset43,44 is a public dataset consisting of whole-night EEG record-
ings collected on 108 subjects. CAP’s annotations were conducted on 30 s epochs and include sleep stages only. 
Subjects with signals with high-frequency noise, non-biological periodic artifacts, or flat sigma activity were 
excluded from analyses. As a result, N2 data from 80 subjects (14–77 years old; mean 39.5; SD 16.9) collected at 
channel C4 (C3 if missing) were used for experiments. Epochs with amplitudes > 300μV were discarded.
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NSRR6
Following Purcell et al.14, we consolidated 6 publicly available sleep datasets from the National Sleep Research 
Resource (NSRR6)36: CHAT37, CCSHS38, CFS39, SHHS40, MrOS41, and SOF42. The NSRR6 dataset comprises 
whole-night recordings collected on 11,630 subjects (40.9% women) aged 4–90 years (mean 58.6; SD 23.5); the 
recordings have annotations for sleep stages using 30 s epochs. Analyses were conducted on N2 stage data col-
lected with channel C3; C4 data was used when C3 data was either artifactual or not available. We computed sta-
tistics on 20 s EEG segments based on the amplitude, standard deviation, and frequency spectrum (fit to a power 
law distribution), and flagged as artifactual each EEG segment with statistics falling outside the range observed 
in the MASS2 and MODA datasets. Artifactual signals or subjects with less than 1 h of clean N2 stage data, were 
excluded from analyses. In total, 96.5% of the subjects and ~ 90% of stage N2 data were kept for analysis.

Data partition
Labeled datasets (SS or KC annotations) were partitioned with no subject overlap into training, validation, and 
test sets. We followed a five-fold cross-validation scheme (3 folds for training, 1 for validation, and 1 for testing) 
in which each subject was used once for testing and once for validation. The scheme was repeated 3 times with 
different random seeds, resulting in 15 partitions. MODA was stratified according to age group and the number 
of labeled segments.

MASS2 (n = 15) was used for designing the detector. Eleven subjects were randomly selected and used for 
network design and hyperparameter search (MASS2-Train); the rest of the subjects (n = 4) were used for testing 
the detector (MASS2-Test) to ensure an unbiased estimation of performance. Additionally, we conducted a biased 
evaluation of the detector’s performance using cross-validation with the full MASS2 dataset.

Performance metrics
Metric for individual events
Following Warby et al11., the similarity between an annotated event A (ground truth) and a prediction B was 
measured using the Intersection over Union (IoU), defined as:

where |A ∩ B| represents the length of the signal segment in which annotation and prediction overlap, and |A ∪ B| 
represents the length of the overlapping signal segment plus the total length of the non-overlapping segments. 
Thus, an IoU(A,B) of 1 (maximum) represents a perfect overlap between prediction and ground truth (A = B), 
and an IoU(A,B) of 0 represents the cases when there is no prediction B for an event A (undetected event – false 
negative), or there is no event A corresponding to a prediction B (false prediction – false positive). For an anno-
tation/prediction pair (A, B) and a fixed threshold τIoU , a prediction B was considered a true positive (TP) when 
IoU(A,B) ≥ τIoU ; otherwise, A was considered a false negative (FN) and B a false positive. Thus, TP, FN, and 
FP are functions of τIoU.

Metrics for groups of events
For a given IoU threshold, we computed Recall, Precision, and F1-score. We used τIoU = 0.2 to assess the detec-
tor’s performance at finding events as in previous work11. Additionally, we report the mean IoU (mIoU) between 
valid pairs of events and predictions to assess the detector’s performance at localizing events, i.e., at predicting 
the event’s onset and ending points. That is, a high mIoU indicates a high average temporal overlap between a 
detection and its associated expert annotation.

Development metric
As mentioned above, the F1-score (at τIoU = 0.2 ) captures the performance at detecting events, whereas the mIoU 
captures the performance at localizing events. However, for model development, i.e., making design decisions 
and hyperparameter selection, it is convenient to optimize a single metric. For this reason, we capture both per-
formance dimensions simultaneously by measuring the area under the F1-score versus τIoU curve: high detection 
performance corresponds to higher F1-score values close to τIoU = 0 , and high localization performance (high 
mIoU) has the effect of delaying the decay of the curve (i.e., the F1-score drops after a large threshold). This 
metric will be referred to as Average F1-score (AF1) due to its equivalence to the mean F1-score value calculated 
across every threshold between 0 and 1. The AF1 allows designing detectors and adjusting hyperparameters 
without using arbitrary τIoU values.

Metrics for groups of subjects
While a group of subjects can be interpreted as a single group of events, it is often convenient to consider each 
subject independently. However, the literature is not consistent in this regard. Therefore, to further standardize 
the framework introduced by Warby et al11., we assessed each group of subjects using either a macro-average 
or micro-average. In a macro-average, each subject contributed equally to the group average. After calculating 
the metric value of each event, the macro-average was obtained by first collapsing each subject to a single value 
(e.g., by averaging or computing an F1-score) and then averaging the results of all the subjects. Instead, in a 
micro-average, each event contributed equally to the group average, so subjects with more events -SSs and KCs- 
contributed more to the result. The micro-average was obtained by aggregating the values of all the events lumped 
together, irrespective of the subjects of origin. In general, we used macro-average, except when the dataset or the 

IoU(A,B) =
|A ∩ B|

|A ∪ B|
∈ [0, 1],
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experiment did not have enough events per subject to allow a reliable estimation of the subject’s metric value. 
In particular, for MODA we report the micro-average.

Metrics in cross‑validation
The dataset was partitioned using fivefold cross-validation, without subject overlap between the partitions. To 
assess a detector’s robustness to changes in the populations or the initialization of the detector, the metrics were 
computed for each testing set (macro-average) and their means and standard deviations were calculated across 
testing sets. Instead, to assess a detector’s robustness to individual differences, for each testing dataset, each 
subject’s metrics were computed (micro-average) and their standard deviation was obtained. This was used as a 
measure of the dispersion of performance across individuals.

Overview of SEED’s detection process
The general process is illustrated in Fig. 2a. EEG signals, pre processed using standard procedures, are fed to a 
deep neural network in 20-s segments. The network then outputs the probability of each sample being part of 
an event of interest. A threshold τp is applied to the probabilities to determine the existence of an event, and a 
threshold τL < τp is applied to determine the event’s duration. This process generates a collection of candidate 
event detections that is further refined with a post-processing specific to the event of interest (SS or KC). Finally, 
an annotation mask is applied to retain only detections that fall within valid portions of the EEG signals (see 
“Annotated or selected segments” in Table 1 for the mask choice of each dataset). For example, the annotation 
mask could be 1 for every sample located in a stage N2 epoch, and 0 elsewhere.

We included EEG segments with non-N2 stages (i.e., with an annotation mask equal to 0) to improve train-
ing and inference. During training, EEG segments were randomly extracted with the only restriction that the 
center must be a valid (N2 stage) sample, to increase robustness to temporal translations. However, since non-N2 
samples were masked, these samples were ignored in the calculation of the loss. During inference, we allow the 
model to make detections on non-N2 samples to consider events located at the borders of N2-stage intervals. 
However, generated detections that fall completely outside the masked region were ignored.

EEG preprocessing
Excepting for MODA, EEG signals were bandpass filtered (0.1–35 Hz) with a zero-phase Butterworth filter of 
order 3. MODA was filtered between 0.3 and 30 Hz to match the original publication’s preprocessing12. The 
signals’ sampling rates were standardized to 200 Hz using a polyphase filtering resampling method, and the 
signals’ amplitudes were normalized with the standard deviation computed on the training and validation data, 
but not the testing data. To limit the distorting effect of signal artifacts, for each recording, samples with absolute 
magnitudes larger than the 99th percentile of the recording’s absolute magnitude distribution, were discarded.

No artifact removal was applied. To avoid extreme amplitudes, normalized signals were clipped at ± 10, which 
is equivalent to a ± 170 μV range in the non-normalized MASS2-Train dataset.

SEED’s architecture
SEED’s internal information processing pipeline can be divided into three consecutive stages: local encoding, 
contextualization, and by-sample classification (see Fig. 2b). SEED’s input consists of EEG signal segments of 
Tw + 2TB samples. The actual EEG window to be scored has a length of Tw = 4000 samples, but an extra segment 
of TB = 520 samples is attached at each side of the window to avoid border effects (for details see below). SEED 
outputs a by-sample probability vector (dense segmentation) of length Tw/8 , equivalent to one event prediction 
for every 8 input samples. In general terms, the local encoding stage uses a 1D convolutional block that extracts 
local features from the input signal and downsamples it by a factor of 8, transforming it in a multivariate time 
series of length Tw/8 . Next, the contextualization stage uses a sequential block to integrate features extracted from 
distant, non-neighboring samples. Finally, the by-sample classification stage takes the temporally contextualized 
data and uses a 1D convolutional layer and a softmax function to assign each EEG sample the probability of being 
part of an event (positive class) or background signal (negative class). The output’s temporal resolution is 8 times 
lower than the temporal resolution of the original EEG signal. Thus, for EEG signals sampled at 200 Hz (5 ms 
interval between consecutive samples), SEED outputs a prediction every 40 ms of the input signal. We consider 
this time span dense enough for detecting SSs and KCs which usually have durations of at least 300 ms. While 
this reduced temporal resolution was used to compute the loss function, at inference time, SEED’s output time 
series is linearly upsampled to match the sampling rate of the input EEG signals.

The architectures of SEED’s stages are illustrated in Fig. 2b. In the beginning, a batch normalization (batch-
norm) layer50 is applied to improve normalization and introduce small-scale noise during training. The local 
encoding stage comprises a series of two 1D convolutional layers followed by two convolutional multi-dilated 
blocks (Conv MDBs). The Conv MDB is a custom block consisting of four 2-layered convolutional blocks pro-
cessing information in parallel, each with a different dilation rate in its kernel (see Fig. 2c). This design allows for 
an increase in Conv MDBs’ receptive fields without increasing the number of parameters or compromising their 
capacity to extract granular information. Convolutional layers used throughout SEED have a kernel size of 3, 
zero-padding, and are followed by batchnorm and Rectified Linear Unit (ReLU)51 layers. Pooling layers (average 
pooling) with a size of 2 were used after each block for subsampling. The number of channels at the first two 1D 
convolutional layers is F = 64, which doubles after each subsampling step, reaching a total of 4F = 256 channels 
at the last Conv MDB of the local encoding stage. The receptive field (EEG segment length) underlying each 
time point of the local encoding stage’s output was 204 time points (1.02 s). To reduce border effects caused by 
zero-padding, 0.6 s worth of input EEG signal were removed from each border of the encoding stage’s output. 
The contextualization stage comprises two Bi-directional Long Short-Term Memory (BLSTM) layers, each with 
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N1=256 neurons per direction, followed by a 1D convolutional layer with a kernel size of 1, N2=128 channels, and 
a ReLU layer. Long Short-Term Memory (LSTM)52 layers are a common type of recurrent layer with memory; 
BLSTMs concatenate two independent LSTM layers, one traversing the input from left to right, and the other 
from right to left. We applied dropout53, a regularization method that randomly replaces output values of the 
preceding layer with zeros, to each layer in this stage with dropout probabilities ρ1 , ρ2 and ρ2 , respectively ( ρ1
=0.2, ρ2=0.5). To ensure a minimum bidirectional context at the contextualization stage (see Fig. 2b), we cropped 
2 s from each border after the last BLSTM layer. Considering both border requirements, we set TB=520 (2.6 s). 
Hyperparameters were set by optimizing AF1 on the MASS2-Train subset. Supplementary Table 7shows the 
evaluated options and selected values of the hyperparameters.

Training
Weights were initialized following standard practices54,55, except for the output neuron’s bias for the positive class. 
Following previous work on segmentation neural networks, the bias was initialized to log

(
p1/

(
1− p1

))
 , with p1

=0.1 being a small positive class probability56. This decision avoids training instabilities resulting from the loss 
function being dominated by the background EEG class.

Attached to the EEG signal we have two binary time series of the same length, one representing expert 
annotations and the other the annotation mask (e.g., a mask indicating stage N2 segments). We randomly sam-
ple M = 32 points from EEG signals (having a positive mask). Each point is used as the central point of a 20-s 
window, making up a batch of 32 training examples. Each window includes the time series of the EEG signal, 
labels, and mask. The random center selection allows the model to increase its robustness to temporal transla-
tions. A training epoch was defined as the number of iterations that traverse the entire collection of disjoint 20-s 
segments with a positive mask.

Compared to background activity, SSs and KCs are rare events. To generate a balanced training batch, M/2 
center points were extracted from segments exhibiting high event activity, while the remaining M/2 center points 
were extracted from segments displaying low event activity. The boundary between high and low event activity 
was determined by the median event activity of the entire training dataset.

Loss function
Let the binary label vector y ∈ {0, 1}Tw be the annotation mask of the training segment m ∈ {0, 1}Tw , and let 
p ∈ R(Tw/8)×2 be the probabilities of the predicted classes. To match the model’s classification rate (1 prediction 
every 8 samples), the labels (y) and masks (m) were downsampled using an average pooling layer of size 8 fol-
lowed by rounding the values to the nearest integer. If the k-th sample is of class yk , then the corresponding class 
probability pk

(
yk
)
 should be maximum. To achieve this, we minimized the segment’s weighted cross-entropy loss, 

in which each sample’s weight included its mask value ( mk ) and a class-specific weight ( wclass

(
yk
)
 ). Therefore, 

the loss was set as follows:

Data augmentation
Some transformations that should not change the labels were applied to the input signal during training. First, 
we applied additive noise uniformly sampled from [− 1, 1] μV. Next, we either increased or decreased the activity 
in some frequency bands in ways that do not change the labels according to expert knowledge. For SSs, 4-8 Hz 
and 7–10 Hz activity was increased in the background EEG and decreased inside events, and 0.5–2 Hz activity 
was increased or decreased anywhere. For KCs, 11–16 Hz activity was increased or decreased anywhere. Let x 
be an EEG segment of T = Tw + 2TB samples (more than 20 s). To decrease activity in a given frequency band (
f1, f2

)
 , x was replaced with x − awz , where a is a scale factor (uniformly sampled from [0, 1]), z = BPF

[
f1, f2

]
(x) 

is the result of bandpass filtering the signal x between frequencies f1 and f2 , and w is a window that leaves only 
a random portion of z, with random center and duration uniformly sampled from [1, 5] s. Furthermore, to 
increase activity, x was replaced with x + wz , where z

(
f1, f2,Amax

)
 is a randomly generated oscillatory signal, 

with a variable frequency between f1 and f2 and a variable amplitude between 0 and Amax , and w is a window 
generated using the procedure described above. To avoid experimental overhead, the hyperparameter Amax was 
set according to the amplitude statistics of MASS2-Train, using E1 annotations, leading to 18μV for 0.5–2 Hz, 
20 μV for 4–8 Hz, 12 μV for 7–10 Hz, and 10 μV for 11–16 Hz.

Optimization
The Adam optimizer57 was used for loss minimization with a learning rate of 10−4 , default exponential decay 
rates, and a batch size of 32. The validation AF1 (using τp=0.5) was computed after each training epoch for assess-
ing model quality. If the model did not improve for 5 consecutive training epochs, the learning rate was decayed 
by a factor of 2 and the count was restarted. Training was stopped, and the best model was selected if 200 epochs 
were reached or no improvement was observed after 4 decays. As recommended for recurrent architectures58, 
the maximum norm of the gradient was limited to 1.

l
(
y, p

)
= −

∑Tw/8
k=1 mkwclass

(
yk
)
logpk

(
yk
)

∑Tw/8
k=1 mkwclass

(
yk
)
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Fine‑tuning
The fine-tuning of pretrained models followed the same optimization procedures described above but with an 
initial learning rate of 5 · 10−5 and a maximum of 3 decays instead of 4. This is equivalent to skipping to the first 
decay in a regular training.

Inference probability vector
The model processes entire EEG recordings using windows of length Tw=4000 (20 s) and steps of length Tw/2 . 
For each predicting window, only the central half was kept. These segments were concatenated to generate a 
probability time series covering the complete EEG recording.

Collection of detections
To generate detections (i.e., event onset and ending timestamps), the probability time series was first linearly 
upsampled by 8 to match the input signal sampling frequency. Next, inspired by traditional detectors, we used 
two thresholds: τp (for existence) and τL < τp (for duration). Let p ∈ (0, 1) be the output probability for the 
positive class. Given a detection threshold τp , p was transformed to an adjusted probability p̃ ∈ (0, 1) defined as:

This implies that p̃ has a detection threshold of 0.5, recovering the common practice of selecting the most 
likely class. This transformation also simplifies ensembling models since p̃ has the same interpretation in every 
model. Then, a detection was defined as an interval having p̃ ≥ τL and at least one sample satisfying p̃ ≥ 0.5 . A 
post-processing step can be applied to this collection of detections to integrate domain knowledge. Finally, only 
detections with at least one sample inside the annotation mask were kept.

The threshold τp was set at the end of training by grid search to maximize AF1 in the combination of the 
training and validation sets. We found that using the validation set alone increased the variance of the predic-
tions. For simplicity, we fixed τL = 0.85 · 0.5 = 0.425 . Using two thresholds resulted in better performance 
compared to using only τp.

Event probability
The model outputs probabilities for individual samples, making event probabilities (i.e., probabilities for intervals) 
ambiguous. For analysis purposes, we defined the probability of an event as the 75th percentile of its adjusted 
probabilities. We used the 3rd quartile instead of the median or the mean to gain robustness against the event 
borders, which typically have low probabilities.

Post‑processing for sleep spindle detections
Following standard procedures5, detections closer than �sep were combined, and detections shorter than �min 
were removed. Given that SS duration distribution is mostly bounded14, detections longer than 2�max were dis-
carded, and the �max in the center were kept for detections lasting between �max and 2�max . Following Warby 
et al.11, the intervals were set to �sep=0.3 s, �min=0.3 s and �max=3 s.

Post‑processing for K‑complex detections
Considering that KCs have a duration of at least 0.5s5, predictions shorter than 0.3 s were removed, which allows 
some room for prediction error. Multiple KCs might be predicted as a single event due to the lack of minimum 
separation, while they are considered disjoint in MASS2-KC. To split combined detections, we proposed a new 
post-processing, inspired by the negative peak detection of traditional detectors like Spinky25. Within each pre-
diction, the lowpass filtered signal with 4 Hz cut-off was used to find negative peaks. To avoid border artifacts, 
peaks located at less than 0.05 s from the start of the prediction or less than 0.2 s from the end of the prediction 
were ignored. Next, peaks without a zero-crossing in between were averaged, so that each KC candidate was 
represented by a single negative peak. If more than one peak remained after this procedure, the prediction was 
split at the middle point between the peaks. After splitting, detections shorter than 0.3 s were removed.

Baselines with open‑source training implementation
SEED’s performance was compared to the performance of 3 open-source detectors from the literature: DOSED16, 
A721, and Spinky25. DOSED is a convolutional neural network method that predicts SSs and KCs on 20-s EEG 
segments. A7 is a signal processing method that predicts SSs using a sliding window of 0.3 s to compute fea-
tures that are combined using expert rules. Spinky is a signal processing method that predicts SSs and KCs by 
decomposing signals into oscillatory and transient components, and then applying simple detection rules. We 
did not use Spinky to predict SSs due to its poor performance. Additionally, Spinky only provides the location 
of KCs’ negative peaks, so we assumed that KCs start 0.1 s before and end 1.3 s after their peaks, as it is done in 
its original publication.

Grid searches were conducted to adjust Spinky’s and A7’s thresholds to maximize AF1 in the training set. 
After training, DOSED’s output threshold was adjusted using the same procedure as for SEED. The remaining 
hyperparameters matched those reported in the original publications.

z̃ = log

(
p

1− p

)
− log

(
τp

1− τp

)
,

p̃ =
1

1+ exp
(
−z̃

) .
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Baselines without open‑source training implementation
Three additional deep learning methods were found in the literature that did not offer a training implementation: 
SpindleNet22, a convolutional and recurrent neural network method that predicts SSs on small 0.25-s windows; 
SpindleU-Net17, a convolutional neural network method that predicts SSs on 20-s windows by returning a dense 
segmentation of the signal (a class score for each time step); and the method proposed in Lechat et al14., abbrevi-
ated here as DKL-KC, a fully-connected neural network method that predicts KCs on candidate 6-s windows. 
Similar to Spinky, DKL-KC only provides the location of KCs.

For these detectors, we used their reported cross-validation performance on MASS2 using the experimental 
settings closest to our approach. For SpindleNet, we used the reported performance against the union of E1 and 
E2 annotation sets as the performance against E2, since the union of experts is approximately the same as E2 
alone. For SpindleU-Net, we use the reported performance against each expert on the whole dataset (19 subjects 
for E1 and 15 subjects for E2). The original publication reports the standard deviation between subjects instead 
of partitions, which would be an unfair comparison since the dispersion between subjects tends to be larger. 
However, it also reports the performance for each subject. Based on this, we built subsets of subjects matching 
our cross-validation partitions and took their average value as a way to simulate each partitions’ performance, 
which allowed us to estimate a standard deviation between such partitions. For DKL-KC, we used the reported 
performance on the whole dataset (19 subjects). Both SpindleNet and SpindleU-Net were evaluated with a post-
processing that considered a different minimum duration. While SEED, DOSED and A7 were evaluated using 
0.3 s, SpindleNet was evaluated using 0.4 s and SpindleU-Net using 0.5 s in their original publications.

Subject‑level metrics in the MODA dataset
Some of the analyses require computing a metric for individual subjects instead of the whole dataset at once (e.g., 
between-subject variability and subject-level SS parameters). While most datasets in this work have enough EEG 
data per subject to obtain reliable metrics, it is not the case for MODA. With the purpose of obtaining reliable 
metrics for the MODA dataset for subject-level analyses, metric calculations in that type of experiments were con-
ducted on the subsample of subjects (n = 28) who had at least 19 min of EEG data and at least 10 SS annotations.

Normalization of EEG signals in transfer learning
The input normalization required for SEED and DOSED, was conducted separately using the source and target 
datasets as references. The best performance was achieved when using statistics from the source dataset. For 
DOSED, this involved scaling the standardized signals by the ratio between the standard deviations of the target 
and source datasets.

Perturbation transformations on EEG signals
For the perturbation analysis (see Supplementary Fig. 4), we considered three types of perturbations: scaling, 
axis inversion, and band-stop filtering. Scaling consisted in multiplying the EEG signal by a factor between 0.5 
and 1.5. Axis inversion included both Y and X axis inversions; for Y axis inversions signals were multiplied by 
-1 (amplitude inversion) and for the X axis inversions, signals were reversed in time (time inversion). Finally, 
band-stop filtering consisted of applying a band-stop filter to the EEG signal to remove a specific frequency band.

SS detections on the unlabeled NSRR6 dataset
The detections were obtained by averaging the probability outputs of the 5 SEED models, which were obtained 
using five-fold cross-validation on MODA. NSRR6 signal’s preprocessing and SEED’s detection post-processing 
matched those used for MODA. In addition, detections with duration > 3 s or with PP amplitudes > 134.12 μV 
(maximum amplitude in MODA) were rejected to reduce the effects of artifacts (< 0.1% of detections were 
rejected).

Methodological differences with respect to literature in the NSRR6 dataset
In addition to the differences between detectors, our approach diverges from Purcell et al14. in the post-processing 
of event duration and the handling of artifacts. Purcell et al.’s post-processing discarded SSs lasting less than 0.5 s 
and merged SSs closer than 1 s. Instead, we followed the criteria proposed by Warby et al11., which allows shorter 
and closer SSs. Moreover, Purcell et al. removed artifacts from EEG signals following several criteria: arousals, 
movements, aberrant segments according to power analysis, anomaly detection according to signal statistics, 
cardiac interference correction, among others. In contrast, we relied on the processing capabilities of deep learn-
ing approaches which allowed using minimal preprocessing. EEG segments with statistics (from amplitude and 
power spectrum) outside the range seen on MASS signals, were discarded; this approach allowed us to double 
the data used by Purcell et al. (36,548 h vs. 16,499 h of N2 sleep).

Statistics
For each experiment, data distributions were tested for normality using the Kolmogorov–Smirnov test. For nor-
mally distributed data, differences between means (e.g., between the F1-score of SEED and a baseline detector) 
were assessed using Welch’s unequal variances t-test. For non-normally distributed data (see Table 3 footnote 
and Fig. 6 caption), mean differences were assessed using the non-parametric Mann–Whitney U test. All tests 
were two-sided with a significance level of 0.05.
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Data availability
All datasets are publicly available. The polysomnography data for the MASS2 and MODA datasets are available 
from http://​ceams-​carsm.​ca/​mass/. The expert annotations for the MODA dataset are available from https://​osf.​
io/​8bma7/​wiki/​home/. The polysomnography data for the CAP dataset is available from https://​physi​onet.​org/​
conte​nt/​capsl​pdb/1.​0.0/. The polysomnography data for the NSRR6 dataset is available from the National Sleep 
Research Resource website https://​sleep​data.​org/​datas​ets.

Code availability
The code and pretrained weights are publicly available at https://​github.​com/​nicol​asigor/​Sleep-​EEG-​Event-​Detec​
tor. SEED was implemented using TensorFlow 1.14 in Python 3.7.
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