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Labeled temperate hardwood  
tree stomatal image datasets  
from seven taxa of Populus and  
17 hardwood species
Jiaxin Wang   1, Heidi J. Renninger 1 & Qin Ma   2,3,4 ✉

Machine learning (ML) algorithms have shown potential in automatically detecting and measuring 
stomata. However, ML algorithms require substantial data to efficiently train and optimize models, 
but their potential is restricted by the limited availability and quality of stomatal images. To overcome 
this obstacle, we have compiled a collection of around 11,000 unique images of temperate broadleaf 
angiosperm tree leaf stomata from various projects conducted between 2015 and 2022. The dataset 
includes over 7,000 images of 17 commonly encountered hardwood species, such as oak, maple, ash, 
elm, and hickory, and over 3,000 images of 55 genotypes from seven Populus taxa. Inner_guard_cell_
walls and whole_stomata (stomatal aperture and guard cells) were labeled and had a corresponding 
YOLO label file that can be converted into other annotation formats. With the use of our dataset, users 
can (1) employ state-of-the-art machine learning models to identify, count, and quantify leaf stomata; 
(2) explore the diverse range of stomatal characteristics across different types of hardwood trees; and 
(3) develop new indices for measuring stomata.

Background & Summary
Stomatal responses to environmental factors, such as humidity and soil moisture, are crucial for driving pho-
tosynthesis, productivity, water yield, ecohydrology, and climate forcing1–4. However, to fully understand these 
responses, we must improve our understanding of the mechanistic basis of stomatal response to environmental 
factors5. Unfortunately, current stomatal studies are limited by the laborious and time-consuming process of 
manually counting and measuring stomatal properties, resulting in small dataset size and image scales when 
observing stomata. Therefore, having large stomatal image datasets for developing fast and high-throughput 
methods for studying stomata is highly warranted.

The potential of artificial intelligence (AI) for developing annotated, high-throughput stomatal measur-
ing methods is high, which could significantly enhance scientists’ ability to conduct large-scale and intensive 
stomatal studies. Recently, state-of-the-art machine learning algorithms, such as deep learning, specifically 
convolutional neural networks (CNNs), have been designed to solve complex image detection and segmenta-
tion problems, resulting in various applications tailored to specific objectives6,7. One of the most efficient and 
straightforward CNN architectures is You Only Look Once (YOLO), proposed by Redmon, et al.8. This archi-
tecture has been used for stomatal detection, counting9–12, and measuring12,13. These studies have shown the 
potential of using machine learning algorithms for automated stomatal detection and measurement. However, 
fine-tuning and improvement of machine learning-based stomatal study methods are currently limited by the 
small, inconsistent, and monotypic nature of stomatal image datasets, which are also poorly accessible.

Many studies have increased stomatal image datasets during machine learning training to avoid overfitting 
using augmentation techniques such as random translation, rotation, flipping, and zooming9,14. While image 
preprocessing techniques can increase the training sample size, model performance may still be limited due to 
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variability in stomatal characteristics. For example, some methods trained using specific species datasets may 
only be sensitive to those species and cannot be generalized for other species9. Therefore, it is crucial to create 
a publicly accessible leaf stomatal image database to develop machine learning-based, state-of-the-art stomatal 
measuring methods to be used by ecologists, plant biologists, and ecophysiologists.

Our collection consists of around 11,000 unique images of hardwood leaf stomata collected from projects 
conducted between 2015 and 2022. Within the hardwood stomatal dataset, there are more than 7,000 images 
of 17 common hardwood species, such as oak, maple, ash, elm, and hickory. Additionally, the dataset contains 
over 3,000 images of 55 genotypes from seven Populus taxa (Tables 1, 2). We labeled inner_guard_cell_walls 
as “0”, whole_stomata (stomatal aperture and guard cells) as “1” and created a YOLO label file for each image. 
These images and corresponding labels are freely accessible, making it easier to train machine-learning models 
and analyze leaf stomatal traits. With the help of our dataset, individuals can: (1) utilize cutting-edge machine 
learning models to train for high-throughput detection, counting, and measurement of leaf stomata of temperate 
hardwood trees; (2) investigate the diversity in stomatal characteristics across various types of hardwood trees; 
(3) develop novel indices for measuring stomata.

Methods
Leaves and micrographs collection.  The study utilized stomatal images from two datasets: Hardwood 
and Populus spp., acquired from 2015 to 2022. The Hardwood dataset contained 16 species, including American 
elm (Ulmus americana Planch), cherrybark oak (Quercus pagoda Raf.), Nuttall oak (Quercus texana Buckley), 
shagbark hickory (Carya ovata (Mill.) K. Koch), Shumard oak (Quercus shumardii Buckley), swamp chestnut oak 
(Quercus michauxii Nutt.), water oak (Quercus nigra L.), willow oak (Quercus phellos L.), ash (Fraxinus L.), black 
gum (Nyssa sylvatica Marshall), deerberry (Vaccinium stamineum Linneaus), leatherwood (Dirca palustris L.), red 
maple (Acer rubrum L.), post oak (Quercus stellata Wangenh.), willow (Salix spp.), and winged elm (Ulmus alata 
Michx.), with the age of seedlings ranging from 1–3 years for Nuttall oak, water oak, and Shumard oak, and 30–50 
years for the rest. Using a compound light microscope (Olympus, Tokyo, Japan) equipped with a digital micro-
scope camera (MU300, AmScope, USA) with a 5 mm lens and a fixed microscope adapter (FMA050, AmScope), 

Datasets Taxa Common names Scientific names and authorities Genotypes

Hardwoods

NA Ash Fraxinus L. NA

NA Black gum Nyssa sylvatica Marshall NA

NA Deerberry Vaccinium stamineum Linneaus NA

NA Leatherwood Dirca palustris L. NA

NA American elm Ulmus americana Planch NA

NA Cherrybark oak Quercus pagoda Raf. NA

NA Red maple Acer rubrum L. NA

NA Nuttall oak Quercus texana Buckley NA

NA Post oak Quercus stellata Wangenh. NA

NA Shagbark hickory Carya ovata (Mill.) K. Koch NA

NA Shumard oak Quercus shumardii Buckley NA

NA Swamp chestnut oak Quercus michauxii Nutt. NA

NA Water oak Quercus nigra L. NA

NA Willow Salix spp. NA

NA Willow oak Quercus phellos L. NA

NA Winged elm Ulmus alata Michx. NA

Populus I

D × D Eastern cottonwood Populus deltoides × Populus deltoides 106B-1

D × D Eastern cottonwood Populus deltoides × Populus deltoides 110412

D × D Eastern cottonwood Populus deltoides × Populus deltoides 111733

D × D Eastern cottonwood Populus deltoides × Populus deltoides 112107

D × D Eastern cottonwood Populus deltoides × Populus deltoides 113B-3

D × D Eastern cottonwood Populus deltoides × Populus deltoides 120-4

D × D Eastern cottonwood Populus deltoides × Populus deltoides 19

D × D Eastern cottonwood Populus deltoides × Populus deltoides 3-1

D × D Eastern cottonwood Populus deltoides × Populus deltoides 47-5

D × D Eastern cottonwood Populus deltoides × Populus deltoides 6-4

D × D Eastern cottonwood Populus deltoides × Populus deltoides 6-5

D × D Eastern cottonwood Populus deltoides × Populus deltoides S7C2

D × D Eastern cottonwood Populus deltoides × Populus deltoides S7C20

D × D Eastern cottonwood Populus deltoides × Populus deltoides ST66

D × D Eastern cottonwood Populus deltoides × Populus deltoides ST75

Table 1.  Plant species used for this study (checked based on Integrated Taxonomic Information System (ITIS, 
www.itis.gov)).
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over 10,000 stomatal images were captured. The Populus dataset consisted of over 3,000 images from 55 genotypes 
of seven taxa of hybrid poplar and eastern cottonwood (Populus deltoides), which were 4 to 5 years old. Detailed 
taxa and genotype information are shown in Tables 1 and 2.

Between June and August 2020 to 2022, we selected trees and measured their photosynthetic CO2 response 
curves (AC/i), after which we collected one fully expanded, fresh leaf from each tree. The leaves were placed in 
labeled plastic bags and kept in a cooler for transportation to the laboratory, where they were stored in a 4 °C 
refrigerator. Following the method described by Hilu and Randall15, we prepared the leaves for stomatal peels by 
drying any moisture on the leaves surface with paper towels and applying clear nail polish to 4–6 locations on the 
abaxial epidermis of the leaves. After allowing the nail polish to dry for approximately 5–8 minutes, we removed 
it from the leaves and placed it on pre-cleaned microscope slides, covering it with one or two coverslips. We 
used a 10X upper eyepiece and either an X20 or X40 magnification lens to capture three to ten images per leaf.

Annotation process.  We used manual and pre-trained model labeling methods to process image labels. 
Specifically, we manually labeled 1,000 images, 300 from Populus and 700 from other hardwood species, to train 
a YOLO model for detecting and measuring inner_guard_cell_walls and whole_stomata. The StoManager1, 
which incorporates our trained model, has been made publicly available on Zenodo13,16. It has a user-friendly, 

Datasets Taxa Common names Scientific names and authorities Genotypes

Populus II

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 11666

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 11732

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 13724

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 13725

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 14490

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 14507

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 14508

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 24033

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 24159

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 29310

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 6323

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 7388

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 8015

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 8019

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 9189

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 9225

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 9671

D × M Poplar hybrid Populus deltoides × Populus maximowiczii 9707

D × N Poplar hybrid Populus deltoides × Populus nigra 11789

D × N Poplar hybrid Populus deltoides × Populus nigra 11797

D × N Poplar hybrid Populus deltoides × Populus nigra 11802

D × N Poplar hybrid Populus deltoides × Populus nigra 11822

D × N Poplar hybrid Populus deltoides × Populus nigra 11840

D × N Poplar hybrid Populus deltoides × Populus nigra 11859

D × N Poplar hybrid Populus deltoides × Populus nigra 11867

D × N Poplar hybrid Populus deltoides × Populus nigra 14278

D × N Poplar hybrid Populus deltoides × Populus nigra 14340

D × N Poplar hybrid Populus deltoides × Populus nigra 433

D × N × M Poplar hybrid Populus deltoides × nigra × maximowiczii 24250

D × T Poplar hybrid Populus deltoides × Populus trichocarpa 10016

D × T Poplar hybrid Populus deltoides × Populus trichocarpa 7903

D × T Poplar hybrid Populus deltoides × Populus trichocarpa 7938

D × T Poplar hybrid Populus deltoides × Populus trichocarpa 8717

D × T Poplar hybrid Populus deltoides × Populus trichocarpa 8729

T × D Poplar hybrid Populus trichocarpa × Populus deltoides 9755

T × M Poplar hybrid Populus trichocarpa × Populus maximowiczii 24301

T × M Poplar hybrid Populus trichocarpa × Populus maximowiczii 24326

T × M Poplar hybrid Populus trichocarpa × Populus maximowiczii 24340

T × M Poplar hybrid Populus trichocarpa × Populus maximowiczii 29270

T × M Poplar hybrid Populus trichocarpa × Populus maximowiczii 24245

Table 2.  Hybrid poplars used for this study.
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Fig. 1  (a) The number of stomata per image of the 17 hardwood species in the dataset, (b) histogram of the 
number of stomata across Hardwood and Populus datasets. Dots in plot (a) indicate the mean of the stomatal 
density and the lines represent the range of the stomatal density. Blue dotted lines represent the percentage 
quantiles.

0  0.210245  0.082050  0.115285  0.140562
0  0.358421  0.107173  0.087890  0.134041
0  0.838408  0.080401  0.100055  0.141237
0  0.467867  0.149827  0.086069  0.133811
0  0.720119  0.126008  0.115516  0.137421
0  0.031719  0.195982  0.058148  0.148587
0  0.147152  0.243657  0.099783  0.138364
0  0.278968  0.277097  0.107061  0.124252
1  0.835742  0.070483  0.057599  0.066364
1  0.209842  0.079604  0.060429  0.061843

Fig. 2  Original and annotated leaf stomatal images and the label file structure. C, X, Y, W, H represent class, 
x_center, y_center, width, and height of the bounding boxes, respectively. The x_center and y_center are 
expressed as normalized coordinates that correspond to the center of the bounding box, while width and height 
are normalized values that represent the relative width and height of the box concerning the dimensions of the 
image. Note that “C, X, Y, W, H” do not exist in label files, and we used these headings for explanation.
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Graphical User Interface (GUI) version designed for Windows-based systems. We used it to automatically label 
inner_guard_cell_walls and whole_stomata while exporting the label coordinates to YOLO Darknet format files. 
It is possible to convert our YOLO Darknet format labeling files into various other annotation formats, including 
Pascal VOC. Users who require labeling annotations in the Pascal VOC format can utilize online conversion 
tools, such as Roboflow’s public workspace and open-source GitHub repositories17,18.

The typical format for saving YOLO annotations is a.txt file with five columns containing information about 
the classes (0, 1) and four variables: x_center, y_center, width, and height of the bounding boxes. The x_center 
and y_center are expressed as normalized coordinates that correspond to the center of the bounding box, while 
width and height are normalized values that represent the relative width and height of the box concerning the 
dimensions of the image. Since StoManager1 exported annotations were structured slightly differently from 
YOLO annotations, we reformatted them in R and the code is publicly available on a GitHub repository (https://
github.com/JiaxinWang123/ScientificData_Labeled_Hardwood_Images).

Label quality check.  Labels created by StoManager1 were manually reviewed and adjusted using LabelImg 
(https://github.com/heartexlabs/labelImg) as necessary. After reviewing and modifying the labels, a subset of 
images was randomly chosen and used to train YOLO models for detecting the labeled classes, which included 
inner_guard_cell_walls and whole_stomata. To verify the accuracy of the annotations, a random selection of labe-
led images was split and used to train YOLOv7 and YOLOv8 models.

Data Records
The dataset contains original images, labels, and data records available to the public on figshare19 and Zenodo20. 
The data records are presented in a table with 10,715 observations and seven variables. Each observation in the 
table corresponds to a single image, and each variable represents a column that describes the image name, spe-
cies name, scientific name, magnification, width, height, and resolution (pixels per 0.1 mm line).

Every image in the dataset has a distinct file name and a corresponding label file, which contains informa-
tion about classes, coordinates, width, and height. These values are expressed as ratios to the image’s width 
and height and pertain to the bounding boxes of inner_guard_cell_walls and whole_stomata. Figures 1, 2, and 
Table 3 provide more comprehensive details regarding the original images, labels, and data records. It is essen-
tial to note that magnification, width, height, and resolution are crucial variables for studying leaf stomatal 
area, stomatal density, and stomatal area variance because they determine the scale of stomatal observation 
and measurement.

Technical Validation
Images, labels, and data records underwent a rigorous review process to ensure accuracy. The stomatal image 
dimension (number of pixels in width and height) was verified based on its property information, and the res-
olution (pixels per 0.1 mm line) was measured and verified using ImageJ software21. To assess and validate the 
quality of images and labels for model training, the dataset was evaluated using YOLOv7 and YOLOv8 mod-
els. Figure 3 presents the results obtained from the testing and validation process. To illustrate, we randomly 
selected 1,123 images for training, and the YOLOv8 models were trained for 993 epochs, and the most optimal 
model achieved a precision of 0.99168, a recall of 0.98522, a mean average precision at intersection over union 
(IOU) = 0.50 (mAP@50) of 0.9915, and a mAP@50–95 of 0.9297.

FileName Species ScientificName Magnification Width Height Resolution*
STMHD0806 American elm Ulmus americana Planch 200 1024 768 239

STMHD0884 American Holly Ilex opaca Aiton 200 2048 1536 476

STMHD3585 Ash Fraxinus L. 400 2048 1536 930

STMHD6460 Black gum Nyssa sylvatica Marshall 400 2048 1536 930

STMHD0984 Cherrybark oak Quercus pagoda Raf. 200 1024 768 239

STMHD3932 Deerberry Vaccinium stamineum Linneaus 400 2048 1536 930

STMHD4017 Leatherwood Dirca palustris L. 400 2048 1536 930

STMHD0001 Nuttall oak Quercus texana Buckley 100 1024 768 118

STMPP1445 Poplar Populus L. 200 2048 1536 476

STMHD5416 Post oak Quercus stellata Wangenh. 400 2048 1536 930

STMHD4147 Red maple Acer rubrum L. 400 2048 1536 930

STMHD2388 Shagbark hickory Carya ovata (Mill.) K. Koch 200 1024 768 239

STMHD2408 Shumard oak Quercus shumardii Buckley 200 1024 768 239

STMHD6341 Swamp chestnut oak Quercus michauxii Nutt. 400 1024 768 465

STMHD6510 Water oak Quercus nigra L. 400 1024 768 465

STMHD7133 Willow Salix L. 400 2048 1536 930

STMHD3138 Willow oak Quercus phellos L. 200 1024 768 239

STMHD3473 Winged elm Ulmus alata Michx. 200 1024 768 239

Table 3.  Data record structure. *Pixels per 0.1 mm line.
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Usage Notes
To prepare the dataset for object detection model training, we recommend uploading the desired images and 
labels to Roboflow. This platform can be used to verify and correct annotations, convert existing YOLO anno-
tations to other formats, and perform operations such as resizing, grayscale conversion, auto-orientation, and 
contrast adjustments. The dataset can also be randomly divided into training, validation, and testing subsets. 
To create a machine learning model that can be applied to a wider range of species, it is advisable to prepare a 
training image dataset comprising various species, dimensions, magnifications, and image quality. Including 
images with diverse quality levels, such as noise (i.e., different color points, stain, and patches), blur, or other 
imperfections, is also recommended. This will enable the model to learn to identify different stomata of different 
species even in low-quality images.

Once the models are trained, users can extract the detected features and use them to create new indices 
for assessing stomatal arrangement, operation, and potential functionalities. For instance, the YOLO model’s 
detected bounding box width and height can be employed for stomatal orientation, estimation of stomatal area, 
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Fig. 3  Training and validation results of YOLOv8 models using our hardwood stomatal image dataset (a), and 
the model performance (b) and (c). Train/box_loss, train/cls_loss, train/dfl_loss indicate the bounding boxes 
loss, class loss, and distribution focal loss, respectively, during the training process; Val/box_loss, val/cls_loss, 
val/dfl_loss represent the bounding boxes loss, class loss, and distribution focal loss, respectively, during the 
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of segmentation (i.e., metrics/precision(B) for detection and metrics/precision(M) for segmentation).
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and stomatal area variance13. Additionally, regression models can be constructed to estimate other indices, such 
as leaf stomatal guard cell and aperture width, length, and area, based on the detected bounding box width, 
height, and/or orientation. A conceptual diagram of this approach is provided in Fig. 4. Specifically, guard cell 
length is typically defined as the distance between the tips of the two guard cells surrounding the stomatal 
pore22. Therefore, to accurately derive the guard cell length from the output of StoManager1, users may need to 
incorporate the width, height, and orientation of the inner_guard_cell_walls and whole_stomata. One possible 
approach could be to use the orientation information to determine the angle between the two guard cells and 
then use trigonometry to calculate the guard cell length based on the width and the height of the bounding 
boxes measurements. Alternatively, users can build the relationships between guard cell length, width, and the 
bounding boxes’ width, height, and orientation. We also developed two weighted multivariate linear regression 
models using bounding boxes’ height and width of inner_guard_cell_walls and whole_stomata as independ-
ent variables, which can explain over 81 and 88% variation in measured stomatal guard cell length and width 
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respectively (Fig. 5). Detailed model fitting and plotting can be found in the GitHub repository (https://github.
com/JiaxinWang123/ScientificData_Labeled_Hardwood_Images).

Code availability
To ensure that the dataset can be easily reproduced and expanded upon in the future, we have made all the 
Python and R code used to generate and validate the resource available on a code repository (https://github.
com/JiaxinWang123/ScientificData_Labeled_Hardwood_Images). StoManager1’s source code and an online 
demonstration are available on GitHub (https://github.com/JiaxinWang123/StoManager1), along with a user-
friendly Windows application on Zenodo13.
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