Skip to main content
. 2024 Jan 2;14:217. doi: 10.1038/s41598-023-50623-1

Table 5.

Removal of contaminants and associated mechanisms through non-metallic heteroatom-doped biochar.

Doping agent Biochar type Pyrolysis temperature (°C) Contaminants Removal capacity Mechanism involved References
Nitrogen Bamboo 500 Chlorotetracyclin 92%

Non-radical pathways 1O2

Radical pathway: SO4·

68
Boron Wheat straw 700 Phenol 33 mg g−1

Non-radical pathways 1O2

Radical pathway: SO4·

70
S and N Peanut shell 300 Diethyl phthalate 14 mg g-1 Increased removal via pyridinic-N formation and the oxidized sulfur groups on doped-biochar 71
Nitrogen Pomelo peel 800 Sulfamethoxazole 95% Non-radical oxidation involving electron transfer and 1O2 72
Sulfur Tapioca peel 800

Rhodamine B

Malachite green

33 mg g−1

30 mg g-1

H- bonding, surface interaction, and electrostatic attraction 73
Sulfur Wood pellets 800 Bisphenol A 91% Driven via hydroxyl radicals and surface-bound singlet O2 71
Co-doped (boron and nitrogen) Wheat straw 700 Oxytetracycline 60% High defect sites and large SSA 75
Sulfur Bamboo 600 Oxytetracycline 89%

Non-radical pathways 1O2

Radical pathway: SO4·-

77
Boron Wheat straw 900 Sulfamethoxazole 90% Boron-doping restrained the electron transfer 78
Co-doped (copper and nitrogen) Glucose 700 Tetracycline 100% Radical degradation such as electron transfer and ·OH 84
Nitrogen Hickory chip 600 Reactive red 37 mg g-1 zeta potential enhancement and electrostatic interaction 79
Co-doped (nitrogen and sulfur) Wood shaving 800 Methylene blue 40% Activation through the thiophenic S and graphitic-N active sites 74
Nitrogen Enteromorpha prolifera 800

Phenanthrene

Acenaphthene

Naphthalene

90 mg g−1

51 mg g−1

86 mg g−1

Partition effect, π–π stacking, mass transfer, and pore-filling 81
Nitrogen Glucose 700 Pnitrophenol 94% New sorption sites of pyrrolic-N and pyridinic-N 75
Nitrogen Maize straw 600

Methyl blue

Acid orange 7

436 mg g−1

292 mg g−1

π–π stacking and pore-filling

Lewis acid–base interaction, π–π stacking, and electrostatic attraction

33
Nitrogen Phragmites australis 280 Phenanthrene 1.9 mg g−1 Electrostatic attraction, hydrophobic effect, and π–π interaction 82
Nitrogen Alfalfa 600

Methyl orange

Methyl blue

326 mg g−1

906 mg g−1

H-bonding, electrostatic interactions, and π–π stacking 69
Nitrogen Sawdust 800 Bisphenol A 50 mg g-1 π-π EDA interactions 67
Nitrogen Pomelo peel 200 Orange II 100% 1O2 and ·OH expedited the degradation 72
Nitrogen Peanut shell 350 Pb2+ 130 mg g−1 ion exchange and surface complexation 23
Co-doped (phosphorus and nitrogen) Lotus leaf 600 Pb2+ 321 mg g−1 Precipitation and surface complexation 32
Sulfur Corn straw 800 Pb2+ 181 mg g−1 Precipitation, reduction, and complexation 69
Nitrogen Loofah sponge 400 Cr (IV) 238 mg g−1 In-situ reduction, complexation, and electrostatic attraction 44
Nitrogen Hemicelluloses 200 Cr (VI) 349 mg g−1 Chelation, redox, and electrostatic attraction 71
Nitrogen Maize straw 600

Cd2+

Cu2+

197 mg g−1

104 mg g−1

Complexation and cation-π bonding with hydroxyl groups and graphitic-N 74
Boron Maize straw 800 Fe2+ 50–132 mg g−1 Co-precipitation, ions exchange, and chemical complexation 75
Co-doped (nitrogen and oxygen) Rice husk 500

Zn2+

Ni2+

Cu2+

12 mg g−1

8 mg g−1

13 mg g−1

Electrostatic attraction and surface complexation 80