
CANCER IMMUNOLOGY RESEARCH | CANCER IMMUNOLOGYAT THE CROSSROADS

Determinants for Antitumor and Protumor Effects of
Programmed Cell Death
Samuel T. Workenhe, Jordon M. Inkol, Michael J. Westerveld, Shayla G. Verburg, Sarah M. Worfolk,
Scott R. Walsh, and Kaslyn L.F. Kallio

ABSTRACT
◥

Cytotoxic anticancer therapies activate programmed cell death in
the context of underlying stress and inflammatory signaling to elicit
the emission of danger signals, cytokines, and chemokines. In a
concerted manner, these immunomodulatory secretomes stimulate
antigen presentation and T cell–mediated anticancer immune
responses. In some instances, cell death–associated secretomes
attract immunosuppressive cells to promote tumor progression.
As it stands, cancer cell death–induced changes in the tumor
microenvironment that contribute to antitumor or protumor effects
remain largely unknown. This is complicated to examine because

cell death is often subverted by tumors to circumvent natural, and
therapy-induced, immunosurveillance. Here, we provide insights
into important but understudied aspects of assessing the contribu-
tion of cell death to tumor elimination or cancer progression,
including the role of tumor-associated genetics, epigenetics, and
oncogenic factors in subverting immunogenic cell death. This
perspective will also provide insights on how future studies may
address the complex antitumor and protumor immunologic effects
of cell death, while accounting for variations in tumor genetics and
underlying microenvironment.

The Contribution of Programmed Cell
Death to Immunity

The maintenance of organismal development and tissue homeo-
stasis requires a balance between the production of new cells and
clearance of stressed and dying cells. Programmed cell death is a highly
regulated process used to not only clear unneeded cells, but also to
communicate homeostatic disturbances, such as danger and tissue
injury, to the immune system. Hence, cell death can elicit immune
responses against malignancies (1, 2) and pathogens (3). The inter-
action of dying cancer cells with the immune system has been
intensively studied across a variety of model systems, revealing that
programmed cell death can elicit an antitumor (4–9) or protumor
immune response (10–12).

Studies investigating the role of cell death in the initiation of
anticancer immunity started with the exploration of how apoptotic
cells communicate with dendritic cells (DC; refs. 13–19). Subsequent
studies using cytotoxic anticancer agents, such as cytotoxic che-
motherapies (20), radiation (21), oncolytic viruses (22), photodynamic
therapy (23), extracorporeal photochemotherapy (24, 25), facilitated
the rapid identification of mechanistic details associated with the
immunogenicity of cell death and its contribution to anticancer
immunity (20, 26–29). Two decades later, we have gained a remarkable
understanding of the types of cell stress and programmed cell death
that contribute to the emission of molecules (Fig. 1) and their role in
shaping anticancer immunity (Fig. 2).

Danger signals, cytokines, and chemokines emitted during immuno-
genic cell death (ICD) promote the activation, maturation, and traf-
ficking of innate immune cells. Specifically, surface-expressed “eat me”
signals, such as calreticulin, attract antigen-presenting cells (mainly
DCs) to take up dying cells, along with a variety of immunomodulatory
secretomes that stimulate DCs tomigrate to the lymph nodes to present
antigens to na€�ve T cells for generating cytotoxic T-cell responses
(refs. 20, 26–29; Fig. 2A). It is worthy of mention that T-cell responses
after ICD are suspected to spread across multiple neoantigens, creating
a broad T-cell repertoire and thus, making it attractive to target tumors
with highheterogeneity (21, 30, 31). In addition to effective CD8þT-cell
activation, ICD-associated secretomes, mainly chemokines, can
facilitate their trafficking into non–T cell–inflamed tumors (32–34).
On the contrary, in some tumor types, such as pancreatic and
prostate cancer, the secretomes emitted after gemcitabine or oxa-
liplatin promote the recruitment of immunosuppressive cells, such
as myeloid-derived suppressor cells (MDSC; refs. 10, 11) and
IgAþPD-L1þIL10-producing plasmocytes (12), thereby promoting
disease progression (Fig. 2B).

In linewith the antitumor effects of ICD, chemoradiotherapies exert
immune-mediated anticancer effect in patients (4–9) and can syner-
gize with immune checkpoint inhibitors (35–40); although, biomar-
kers to select patients and predict response are poorly defined (41, 42).
To fill these gaps, mechanistic understanding of ICD processes,
specifically the individual types of premortem stress and programmed
cell death that contributes to anticancer immunity, are highly desired.
Unfortunately, many types of chemotherapies simultaneously activate
multiple types of premortem stress and cell death in neoplastic
cells and actively dividing immune cells. Hence, the specific processes
and mechanisms, from the dying cancer cell and the immune cell
compartment, that contribute to therapeutic efficacy of ICD remain
largely unknown.

What Types of Programmed Cell Death
Are Immunostimulatory?

During cytotoxic anticancer treatments, cell death takes place in the
context of underlying stress [genotoxic, endoplasmic reticulum,
and mitochondrial stress, as well as reactive oxygen species (ROS)
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overload] that also facilitates the emission of secretomes, thus, com-
plicating the direct assessment of cell death–associated immunologic
events. There is a surge of genetically engineered cell death systems that
specifically activate each type of cancer cell death in isolation, thereby
facilitating the discovery of how specific cell death types influence the
anticancer immunity cycle (43–50). Overall, past studies have largely
focused on secretome-mediated effects of cell death; as a result, its
indirect effects on the tumormicroenvironment remain understudied.
Depending on tumor type, cancer cell death can indirectly affect
anticancer immunity by remodeling the tumor architecture and

vasculature, thereby influencing the trafficking of antitumor and
protumor immune cells and modulating the function of supporting
stroma and fibroblasts (51). In the next sections, we will describe the
individual types of programmed cell death and their effect on anti-
cancer immunity.

Apoptosis
Apoptosis is a type of cell death that is integral to themaintenance of

tissue homeostasis, and organism development, as well as numerous
pathologies, including cancer. Apoptosis can be initiated by the
intrinsic or extrinsic pathway, both of which can result in distinct
anticancer immune outcomes (Fig. 1A). Apoptotic cells activate
diverse immune-mediated anticancer outcomes, depending on the
type of cell death stimuli, upstream stress (26, 28, 52, 53), and cell
death signaling and tumor type (34, 54). Unlike chemoradiotherapy-
induced immunogenic apoptosis (20), induction of apoptosis by
dimerizing C-terminal caspase 8 or caspase 9 has demonstrated
less-immunogenic outcomes (43, 44). This is not surprising given
apoptotic caspases dampen IFN secretion after the sensing of mito-
chondrial DNA (55–57). Despite that, apoptosis can be immunogenic
when it takes place after mitochondrial membrane permeabilization in
a caspase-independent fashion (58) or when the cytotoxic agent
concurrently activates endoplasmic reticulum (ER) stress and auto-
phagic response that contributes to the surface expression of calreti-
culin, promoting phagocytosis (26, 59) and/or natural killer (NK)
cell–mediated killing (60), as well as the emission of danger signals,
ATP, high mobility group 1 (HMGB1), annexin A1, type I IFNs, and
C-X-C motif chemokine ligand 10 (CXCL10; refs. 20, 26–28). These
danger signals are sensed by pathogen recognition receptors on DCs
and, in concert with cytokines and chemokines, stimulate DCs to
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Figure 1.

Lethal stimuli and signaling pathways leading to activation of programmed cell death. Many cytotoxic anticancer treatments including chemotherapeutics, radiation,
photodynamic therapy, biologics, and oncolytic viruses can trigger cell death. Apoptosis (A) can be initiated via the intrinsic or extrinsic pathway, both activating
distinct signaling to emit secretomes that can differentially activate immunity against cancer. The role of pyroptosis (B) in anticancer immunity is accumulating.
Activated caspases cleave gasdermin proteins to release the N-terminal domain that creates pores in the mitochondria (N-terminal gasdermin A and E) and the
plasma membrane (all gasdermins, except Pejvakin). How the involvement of mitochondria and/or other organelles during pyroptosis affects immunogenicity
remains unknown. Effector T cells and NK cells can also initiate tumor pyroptosis, although the role of this in further expanding T-cell responses needs to be
investigated. Necroptosis (C) has been extensively studied in the context of cancer. The involvement of NFkB during necroptosis signaling contributes to
inflammatory cytokines and chemokines that either result in antitumor or protumor outcome. In addition, MLKL overexpression can also initiate cell death and
antitumor immunity. Ferroptosis (D) is an iron-dependent cell death involving lipid peroxidation. The immunogenicity of ferroptotic tumor cells is conflicting,
although several immunostimulatory secretomes are released after this type of cell death. In addition, T cell–secreted IFNg can trigger ferroptosis to potentiate the
anticancer immunity cycle.

Box 1. The unknown territories in cell
death and immunity research

1. Does cell death activated by different pore-forming proteins
(gasdermin proteins,MLKL) result in different immune outcomes?
2. What is the individual contribution of cell stress to anticancer
immunity?
3. What types of cell death and secretomes predict the outcome of
ICD in patients?
4. What dose of cytotoxic therapies can activate the immunosti-
mulatory type and rate of cell death for a durable anticancer effect?
5. What are the effects of cell death on the tumor architecture and
overall microenvironment?
6. What types of oncogenic drivers and interactions are circum-
venting the induction of immunostimulatory cell death?
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undergo activation, maturation, and migration into the draining
lymph node to efficiently prime T cells (Fig. 2A). The cytokines and
chemokines produced during immunogenic apoptosis are also crucial
to allow T-cell activation, differentiation, and migration into malig-
nant lesions (32).

Pyroptosis
Upstream pyroptotic signaling activates caspases and gran-

zymes (46, 47) to cleave gasdermin (GSDM) proteins, freeing the
pore-forming N-terminal domain from the autoinhibitory C-terminal
domain. The pores formed by N-terminal gasdermin protein activate
the formation of higher-order ninjurin-1 polymers that mediate
plasma membrane rupture (refs. 61–65; Fig. 1B). Many chemother-
apeutics, including doxorubicin, cisplatin, actinomycin-D, CPT-11,
etoposide, and mitoxantrone, activate gasdermin E-mediated pyrop-
tosis (45). Moreover, photodynamic therapy activates pyroptosis in

pancreatic tumors (66). Furthermore, oncolytic viruses (48), as well as
the combination of TNFa, cycloheximide, and navitoclax, activate
pyroptosis (67). In addition, granzyme B from cytotoxic CD8þ T
cells (46) and granzyme A from NK cells and T cells (47) can cleave
gasdermin E and B, respectively, to induce tumor pyroptosis. Unlike
their natural T-cell counterpart, chimeric antigen receptor–loaded T
cells secrete higher amounts of granzyme B, thereby activating gas-
dermin E–mediated tumor pyroptosis and the associated cytokine
release syndrome (68).

Pyroptosis is highly inflammatory, although detailed investigation
on the nature of secretomes that mediate anticancer immunity remain
to be identified (63). For example, the N-terminal domain of gasder-
min A and E can induce mitochondrial oxidative stress and pore
formation prior to plasmamembrane rupture, which allows the release
of danger signals and intracellular contents that contributes to the
immunogenicity (69–71). Pyroptosis allows the release of cytokines,
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Figure 2.

Mechanisms of immune stimulation (A) and immunosuppression (B) mediated by secretomes emitted from dying cancer cells. Several types of cancer cell death
result in the surface expression of calreticulin and/or the emission of danger signals (ATP and HMGB1), cytokines and chemokines. In a concerted approach, all these
molecules activate antitumor immune responses, mediated by DCs priming T cells to become cytotoxic against tumors expressing cognate antigens. In addition, the
NKp46 receptor of NK cells can directly recognize calreticulin on the surface of stressed cells to engage in tumor cell killing. Immunostimulatory secretomes are also
essential for T-cell activation and trafficking into malignant lesions. In some cancers, cell death can attract immunosuppressive B cells and MDSCs, thereby
contributing to tumor progression.

Determinants of Cell Death–Induced Immunity
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such as IL1b and IL18, as well as danger signals, HMGB1, and
ATP (63). These immunomodulatory secretomes stimulate a variety
of immune cells, including NK cells, macrophages, DCs, and the
subsequent generation of antigen-specific CD8þ and CD4þ T-cell
responses (46, 47, 49, 66). In tumors undergoing pyroptosis, there is
decreased FoxP3þCD4þ regulatory T cells, monocytes, neutrophils,
and MDSCs (46, 47, 49). Thus, pyroptosis can induce robust anti-
immune responses and improve the survival of tumor-bearing
mice (46, 47, 49).

Necroptosis
Necroptosis is initiated by a variety of stimuli, including the

engagement of death receptors (TNFR1 and Fas/FasL), Toll-like
receptors, or intracellular nucleic acid sensors under a caspase-8
inhibited state (72). Necroptosis execution involves the kinases
receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and
RIPK3 to activate NFkB-mediated inflammation and to phosphor-
ylate mixed lineage kinase domain-like (MLKL), which executes cell
lysis (73, 74). Several chemotherapies such as etoposide, givinostat,
obatoclax, and 5-fluorouracil trigger necroptosis (75–77). Further-
more, ionizing radiotherapy and targeted receptor therapy also
activate necroptosis (75, 78–80). Along similar lines, certain onco-
lytic virus monotherapies can induce necroptosis and combine
favorably with chemotherapies to potentiate anticancer effect
(refs. 34, 81, 82; Fig. 1C).

Necroptotic fibroblasts, induced after dimerization of RIPK3,
release danger signals HMGB1, ATP, and proinflammatory cytokines
(IFNg , IL6) and chemokines (CCL3, CCL4, CCL5; refs. 43, 44). Intra-
tumoral inoculation of necroptotic fibroblasts elicits a CD103þ cell–
mediated T-cell response (43, 44). Furthermore, necroptosis induces
an appreciable increase in intratumoral neutrophils and macro-
phages (34). It is worthy of mentioning that RIPK3 lacking the RIP
homotypic interaction motif domain fails to elicit NFkB-mediated
inflammation and tumor control (43). Meanwhile, another study
reports that necroptotic cell death induced by intratumoral injection
of MLKL mRNA exerts durable antitumor effects, suggesting that
necroptotic cell death in the absence of NFkB activation can also elicit
antitumor immunity (82, 83).

Ferroptosis
Ferroptosis is driven by iron-dependent, excessive phospholipid

peroxidation that compromises plasma membrane integrity and cell
lysis (84). It is regulated by a variety of metabolic pathways,
including redox homeostasis, iron handling, mitochondrial activity,
and the metabolism of lipids and amino acids (ref. 85; Fig. 1D).
Phospholipid peroxidation relies on iron, ROS, and phospholipids
containing polyunsaturated fatty acid chains. An important regu-
lator of ferroptosis is the micronutrient selenium, which is required
for the biosynthesis of selenoproteins that scavenge ROS. A key
inhibitor of phospholipid peroxidation is glutathione peroxidase 4
(GPX4; ref. 86). In addition, a variety of factors can influence the
induction of ferroptosis by regulating cellular metabolism and ROS
levels. Despite a wealth of knowledge in the mechanisms regulating
ferroptosis, the exact molecular events and terminal effectors of
ferroptotic cell death are unknown.

Ferroptosis is activated in cancer cells after treatment with inhibi-
tors of the cystine/glutamate antiporter system, such as erastin (87, 88)
and sulfasalazine (89, 90), tyrosine kinase inhibitors (91), radiother-
apy (92), and neratinib (a potent, irreversible pan-tyrosine kinase
inhibitor; ref. 93). Ferroptosis inducers ML161, RSL, and erastin, as
well as inducible genetic depletion of GPX4 in cancer cells, promotes

the surface expression of calreticulin and emission of danger signals
ATP andHMGB1 and cytokines (50, 94). However, there is conflicting
evidence on the effects of ferroptotic cancer cells on DC activation and
cross-priming (50, 94). A recent study shows that ferroptotic cancer
cells suppress DC function and fail to protect against tumor
growth (50). However, previous work using RSL3 reports that early
ferroptosis has the opposite effect of potentiating DC function and the
associated antitumor effects (94). Interestingly, both studies used the
MCA205 tumor model, hence the conflicting findings could be
attributed to animal facility-associated microbiome differences (95).
There are also two instances where ferroptosis is shown to promote
tumor progression via immunosuppressive intratumoral macrophage
infiltrate (96, 97).

Recent studies demonstrate that T cell–mediated tumor killing
involves ferroptosis (98, 99). In vitro IFNg alone fails to induce
ferroptosis but synergizes with arachidonic acid to activate ACSL4-
dependent tumor ferroptosis (99). However, in established tumors,
IFNg secreted by cytotoxic CD8þ T cells inhibits the glutamate–
cystine antiporter system xc

� in tumors to promote lipid perox-
idation and ferroptosis (98). Furthermore, forcing tumors to
undergo immunogenic ferroptosis by cyst(e)inase, an engineered
enzyme that degrades both cystine and cysteine, synergizes with
immune checkpoint inhibitor therapy (98). Overall, because fer-
roptosis is a relatively new type of cell death, additional studies are
required to clarify the immunologic outcomes of inducing ferrop-
tosis in distinct tumor types with variable immune landscapes and
microenvironments.

Tumors (Epi)genetics, the Associated
Oncogenic Signaling, and the Tumor
Microenvironment Dictate the
Outcome of Cancer Cell Death

Tumors evolve to evade anticancer immunity via acquisition of
genetic or epigenetic aberrations in pyroptosis and necroptosis effector
proteins (refs. 46, 100–105; Fig. 3).Mutations in RIPK3 andMLKL are
well documented in several tumor types (102, 106–108). RIPK3
expression is epigenetically regulated at different stages of tumor
progression (100, 109), and treatment with a hypomethylating agent,
decitabine, can restore RIPK3 expression and significantly improve
responses to chemotherapy in human tumor xenografts (100).

Lung adenocarcinoma, colon adenocarcinoma, and uterine corpus
endometrioid carcinoma possess themost frequent gasdermin E linker
region mutations, with lung and colon adenocarcinoma commonly
containing loss-of-function mutations (46, 110). In addition, selection
pressure to downregulate gasdermin E coincides with emerging data
suggesting it can regulate anticancer immunity (46). Tumors express
five spliced variants of gasdermin B, whereby N-terminal fragments of
isoforms 3 and 4 induce pyroptosis, but isoforms 1, 2, and 5 lack the
motif that allows gasdermin B to insert in the membrane. These
mutated gasdermin B 3/4 isoforms block pyroptosis caused by other
cytotoxic gasdermin B isoforms (111). Gasdermin proteins can also
undergo cancer-specific methylation. Methylation of gasdermin A, C,
and E promotor sites has been observed in both gastric cancer and
esophageal squamous cell carcinoma (104, 112). Treatment with
decitabine successfully restores gasdermin A expression and induction
of pyroptosis in gastric cancers (113, 114). Furthermore, gasdermin E
is hypermethylated at the CpG islands near the transcription site in
over half of breast cancers (105). Human tumors frequently mutate
gasdermin E and C in the linker region between the N- and C-terminal
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domain, abrogating cleavage and activation of their pore-forming
activities (46).

Tumor genetics and associated oncogenic factors can establish
immunosuppressive intratumoral niches, as has been comprehen-
sively reviewed elsewhere (115). In addition to these noncell auton-
omous effects, oncogenic pathways involving oncogenes and tumor
suppressors can also interfere with the cancers own cell death machin-
ery to either provide a proliferative advantage or allow escape from
immune-mediated attack (100, 116–121). In many cancers, distinct
combinations of oncogenes and loss of tumor suppressors drive
tumorigenesis and regulate signaling, leading to apoptosis. In most
instances, tumor suppressors p53 (122–125), Rb (126–128), and
PTEN (129) stimulate proapoptotic signaling to clear premalignant
cells, whereas oncogenic Kirsten rat sarcoma virus (KRAS) positively
regulates cancer cell survival and proliferative capacity by down-
regulating apoptotic pathways (130–132). It is not known whether
inhibition of KRAS or any other antiapoptotic oncogenic pathway
results in immunostimulatory apoptosis.

Oncogenic drivers suppress the expression of necroptotic and
pyroptotic effector proteins and ablation of oncogenic signaling results
in the enhancement of ICD, thereby reigniting antitumor immunity.
For example, c-Myc interacts with RIPK3 and RIPK1 to prevent
necrosome formation (119). Depletion of c-MYC reinstates necrop-
tosis-promoting antitumor immunity (119). Yet another oncogene
that compromises the ICD machinery is BRAF. BRAF/AXL ablates
RIPK3 expression in patient-derived xenografts (120). In a separate
study, the combined inhibition of BRAF and MEK in mutant mela-
noma has proven successful at promoting pyroptosis, with the hall-
mark of HMGB1 release and expansion of tumor-specific CD8þ T

cells (121, 133). Finally, inhibition of KRASG12C regresses patient-
derived colorectal, lung, and pancreatic xenografts through activation
of ICD (116). Indeed, such an outcome has been translated into
patients and has garnered clinical efficacy (116). Yet it is not known
what type of specific cell death is activated upon KRASG12C inhibition
after treatment with AMG510. Cancer cell ferroptosis is also regulated
by oncogenic Ras (134–137) and the tumor suppressor p53 (138, 139),
yet it remains unknown whether this directly influences immune
outcome. In summary, all of these studies highlight the need for
comprehensive and systematic studies to elucidate how distinct onco-
genic pathways influence cell death–mediated immunity and antitu-
mor effects (1). The findings are foundational to apply chemora-
diotherapies in combination with oncogenic inhibitors to stimulate
patient antitumor responses.

A Perspective of Factors That Dictate
the Antitumor and Protumor Effects of
Cancer Cell Death

Specific cell death types have been associated with natural and
therapy-induced antitumor or protumor effects. Tumors that endog-
enously express higher levels of immunostimulatory cell death effec-
tors proteins, such as RIPK3, gasdermins, and ACSL4, show an
elevated CD8þ T-cell infiltrate and prolonged patient surviv-
al (8, 9, 46, 47, 99, 111). In the context of ICD-inducing treatments,
the nature of the lethal stimuli, along with tumor type, its underlying
genetics, and the microenvironment, dictate the type of immunosti-
mulatory secretomes emitted to predict the initiation of anticancer or
protumor immunity. As reviewed elsewhere (140, 141), additional host
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and attack. Cancer cells evade immunogenic cell death by
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ICD. In some cases, the immunosuppressive microenvi-
ronment renders ICD-primed antitumor cells to lose
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factors, such as germline mutations in pathogen recognition receptors
and host microbiota, affect immune response and survival response
after chemoradiotherapies.

There are many clinical trials combining ICD-inducing treatments
with immune checkpoint inhibitors (35–40), although there is lack of
defined clinical biomarkers to select patients and to predict treatment
outcomes. Regarding biomarker development, care must be taken in
correlating the level of transcripts or full-length cell death proteins
with immune cell infiltration, functionality, and patient survival. In
addition to widely known discrepancies between transcript and pro-
tein expression patterns, cell death effector proteins have multiple
functions, and their specific role in programmed cell death requires
active protein modifications, such as cleavage or phosphorylation. In
addition, tumors express dominant-negative isoforms of cell death
effector proteins to evade ICD. For example, gasdermin B has five
isoforms, and tumors preferentially overexpress isoforms with a
dominant-negative effect to escape NK cell– and T cell–mediated
attack (111); thus, correlating the totality of gasdermin B isoformswith
immune functionwould lead to incorrect interpretation. To add to this
complexity, there is extensive cross-talk among cell death pathways,
with many of the upstream signaling and effector proteins shared
between distinct cell death modalities and other inflammatory pro-
cesses. Hence, careful analysis is warrantedwhen correlating the extent
of cell death with immune infiltration and survival outcomes. To this
end, we recommend future studies to comprehensively quantify all the
forms of cell death to define the major modality of cell death induced
by specific ICD-inducing treatments in a specific cancer type and how
that shapes the tumor immune landscape. In parallel, preclinical
studies using genetic systems to activate specific cell death modalities
will provide fundamental insight of the transcriptional, immunologic,
and microenvironmental signatures for further biomarker develop-
ment and integration into existing clinical biomarkers.

Despite mounting evidence underpinning the contribution of stress
responses in ICD (142), expression of cell death effector proteins
MLKL (82, 83) and gasdermin A/E (46, 49) induce robust anticancer
immunity, highlighting the immunogenicity of cancer cell death in the
absence of underlying stress and inflammatory signaling. However,
there is limited knowledge on how the induction of cancer cell death in
acute and chronic setting shapes immunity. It is likely that the type,
rate, and amount of cell deathmay dictate immunity by influencing the
activation and trafficking of immune cells and the availability of
secretomes and tumor antigens. In a recent work, pyroptosis induction
in less than 15% the cancer cells eradicates entire established mam-
mary tumors (49). Relating this to a clinical setting, the dose regimen of
chemoradiotherapies that preferentially activate ICD and anticancer
effects are unknown. However, sublethal doses are suspected to
exert better anticancer effects, mainly by enhancing cancer cell
genotoxic and ER stress to stimulate T-cell responses (143) and/or
activating cancer cell senescence that potently activates T cell–
mediated immunity (144). Future clinical studies correlating the
type and extent of cancer cell death with T-cell infiltrate and
anticancer effects are highly desired.

In a variety of immune-responsive and spontaneously arising
murine tumors, chemoradiotherapy-mediated rapid activation of ICD
results in immune-mediated tumor elimination (145). On the con-

trary, the protumor effects of cell death are presented in chronic
inflammatory settings, where elevated expression of cell death effector
proteins accelerates tumor progression (10, 11, 146–152). For example,
necroptosis is frequently reported as immunostimulatory in the
context of chemoradiotherapy (34, 153) or when it is activated by
expressing dimerizable RIPK3 or MLKL (30, 43, 44, 154). In contrast,
pancreatic tumors overexpressing RIPK1/3 accelerate tumor progres-
sion by secreting CXCL1 to attract MDSCs. Accordingly, ablating
necrosome formation generates a T cell–inflamed pancreatic tumor
microenvironment (10, 11). Although previously unexplored, defining
the mechanisms by which pancreatic ductal adenocarcinoma (PDA)
prevents plasma membrane rupture downstream of pathologically
elevated necrosome formation (10) may identify therapeutic oppor-
tunities to trigger PDA cell lysis and possibly kickstart the antitumor
immunity cycle.

It remains intriguing under what tumor microenvironmental con-
ditions a specific type of cell death becomes antitumor or protumor.
Tumor type, genetics, and anatomical location can shape the under-
lyingmicroenvironment, which in turn dictates the immune-mediated
anticancer effect of ICD-inducing therapies. In this respect, a highly
immunostimulatory cell death may not overcome an immunosup-
pressive tumorwhen administered as amonotherapy (33, 34, 54), and a
less-ICD may readily exert durable anticancer immunity in immune-
responsive tumors (20, 155). Hence, investigating how cell death
affects the overall immune landscape using tumors arising in different
anatomical locations with variable intratumoral environments is
highly desired. Future studies are needed to investigate how tumors
with varying immune landscape respond to a similar lethal stimulus,
with the goal to define the type and amount of cell death, the
composition of their secretomes, or the recruitment and functionality
of innate and adaptive immune cells. Furthermore, given the micro-
environment-based immune cell plasticity and distinct immunoreg-
ulatory networks in tumor-draining lymph nodes (156), it is possible
for tumors and draining lymph nodes to subvert the entry or func-
tionality of cell death–activated immune cells. Elucidating how the
tumormicroenvironment shapes immune-mediated outcomes of ICD
will have profound effects in the design of biomarkers for patient
selection and to predict treatment efficacy.
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