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Abstract

ChatGPT has drawn considerable attention from both the general public and domain experts with its remarkable text generation
capabilities. This has subsequently led to the emergence of diverse applications in the field of biomedicine and health. In this work,
we examine the diverse applications of large language models (LLMs), such as ChatGPT, in biomedicine and health. Specifically, we
explore the areas of biomedical information retrieval, question answering, medical text summarization, information extraction and
medical education and investigate whether LLMs possess the transformative power to revolutionize these tasks or whether the distinct
complexities of biomedical domain presents unique challenges. Following an extensive literature survey, we find that significant
advances have been made in the field of text generation tasks, surpassing the previous state-of-the-art methods. For other applications,
the advances have been modest. Overall, LLMs have not yet revolutionized biomedicine, but recent rapid progress indicates that such
methods hold great potential to provide valuable means for accelerating discovery and improving health. We also find that the use of
LLMs, like ChatGPT, in the fields of biomedicine and health entails various risks and challenges, including fabricated information in its
generated responses, as well as legal and privacy concerns associated with sensitive patient data. We believe this survey can provide
a comprehensive and timely overview to biomedical researchers and healthcare practitioners on the opportunities and challenges
associated with using ChatGPT and other LLMs for transforming biomedicine and health.
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INTRODUCTION
The recent release of ChatGPT [1] and the subsequent launch
of GPT-4 [2] have captured massive attention among both the
general public and domain professionals and has triggered a
new wave of development of large language models (LLMs). LLMs
such as ChatGPT and GPT-4 are language models (LMs) that have
billions of parameters in model size and are trained with data

sets containing tens or hundreds of billions of tokens. They are
considered as foundation models [3] that are pre-trained on a
large-scale data and can be adapted to different downstream
tasks. LLMs have achieved impressive performance in a wide
range of applications in various fields including the biomedical
and health domains. A keyword search of ‘large language models’
OR ‘ChatGPT’ in PubMed returned 582 articles by the end of May
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2023. Moreover, the number of publications on the topic has grown
exponentially from late 2022 and doubled every month in the last
6 months, covering the technology and its implications for various
biomedical and health applications.

Furthermore, several biomedical-specific LLMs have been
developed by either training from scratch or fine-tuning existing
pre-trained LLMs with biomedical data [4–9]. To provide a com-
prehensive overview to biomedical researchers and healthcare
practitioners on the possible and effective utilization of ChatGPT
and other LLMs in our domain, we performed a literature
survey, exploring their potentials in a wide variety of different
applications such as biomedical information retrieval, question
answering, medical text summarization, information extraction
and medical education. Additionally, we delve into the limitations
and risks associated with these LMs.

Specifically, due to the remarkable language generation
capabilities, our focus centers on ChatGPT and other LLMs within
the domain of generative artificial intelligence (AI). We searched
articles containing keywords related to LLMs, such as ‘GPT’,
‘ChatGPT’ or ‘large language model’, along with keywords of
biomedical applications on PubMed (https://pubmed.ncbi.nlm.
nih.gov/), medRxiv (https://www.medrxiv.org/), arXiv (https://
arxiv.org/) and Google Scholar (https://scholar.google.com/), and
included the articles identified as relevant for our review. To
the best of our knowledge, this is the first comprehensive
survey of opportunities and challenges on ChatGPT and other
LLMs for fundamental applications in seeking information and
knowledge discovery in biomedicine and health, although there
are several previous survey papers on general LLMs [10, 11] and
use of ChatGPT for different specific health applications [12–14].
By discussing the capabilities and limitations of ChatGPT and
LLMs, we strive to unlock their immense potential in addressing
the current challenges within the fields of biomedicine and
health. Furthermore, we aim to highlight the role of these
models in driving innovation and ultimately improving healthcare
outcomes.

OVERVIEW OF CHATGPT AND
DOMAIN-SPECIFIC LLMS
Overview of general LLMs
An LM is a statistical model that computes the (joint) probability
of a sequence of words (or tokens). Research on LMs has been
going on for a long period of time [15]. In 2017, the transformer
model introduced by Vaswani et al. [16] became the foundational
architecture for most modern LMs including ChatGPT. The trans-
former architecture includes an encoder of bidirectional attention
blocks and a decoder of unidirectional attention blocks. Based on
the modules used for model development, most recent LMs can
be grouped into three categories: encoder-only LMs such as BERT
(Bidirectional Encoder Representations from Transformers) [17]
and its variants, decoder-only LMs such as the GPT (Generative
Pre-trained Transformer) family [18–20] and encoder–decoder LMs
such as T5 (Text-to-Text Transfer Transformer) [21] and BART
(Bidirectional and AutoRegressive Transformers) [22]. Encoder-
only and encoder–decoder LMs are usually trained with an infill-
ing (‘masked LM’ or ‘span corruption’) objective along with an
optional downstream task, while decoder-only LMs are trained
with autoregressive LMs that predict the next token given the
previous tokens.

Although the encoder-only and encoder–decoder models have
achieved state-of-the-art performance across a variety of natural
language processing (NLP) tasks, they have the downside that

requires significant amount of task-specific data for fine-tuning
the model to adapt to the specific tasks. This process needs to
update the model parameters and adds complexity to model
development and deployment.

Unlike those models, when GPT-3 [19] was released, it
demonstrated that large decoder-only LMs trained on large text
corpus gained significantly increased capability [23] for natural
language generation. After training, the models can be directly
applied to various unseen downstream tasks through in-context
learning such as zero-shot, one-shot or few-shot prompting
[19]. This led to a recent trend toward development of decoder-
only LLMs in the following years. Following GPT-3, a number
of powerful LLMs such as PaLM [24], Galactica [25] and the
most recent GPT-4 [2] have been developed. For more informa-
tion on these general-domain models, readers are invited to
consult [10, 11].

While LLMs are powerful, they are still likely to produce content
that is toxic, biased or harmful for humans since the large corpus
used for model training could contain both high-quality and low-
quality data. Thus, it is extremely important to align LLMs to
generate outputs that are helpful, honest and harmless for their
human users. To achieve this, Ouyang et al. [26] designed an
effective approach of fine-tuning with human feedback to fine-
tune GPT-3 into the InstructGPT model. They first fine-tuned GPT-
3 on a dataset of human-written demonstrations of the desired
output to prompts using supervised learning and then further
fine-tuned the supervised model through reinforcement learning
from human feedback (RLHF). This process was referred to as
alignment tuning. It was also applied in the development process
of ChatGPT and became an effective practice for development of
faithful LLMs.

With model size growing bigger, fine-tuning LLMs for down-
stream tasks becomes inefficient and costly. Alternatively, prompt
engineering serves as the key to unlock the power of LLMs given
their strong in-context learning ability. As demonstrated by GPT-
3, LLMs were able to achieve promising performance on a wide
range of natural language tasks through in-context learning by
prompting that used a natural language instruction with or with-
out demonstration examples as prompt for the model to generate
expected outputs. Wei et al. [27] showed that chain-of-thought
prompting through a series of intermediate reasoning steps was
able to significantly improve LLMs’ performance on complex
arithmetic, common sense and symbolic reasoning tasks. As a
useful approach, designing prompts suitable for specific tasks
through prompt engineering became an effective strategy to elicit
the in-context learning ability of LLMs. The process of training,
fine-tuning with human feedback and unlocking power of LLMs
through prompt engineering becomes the paradigm of LLMs as
shown in Figure 1.

LLMs for biomedical and health applications
Development of LLMs has been steadily setting new state-of-the-
art performance on a variety of tasks in general NLP as well
as in biomedical NLP specifically [8, 26, 28–30]. An example is
the performance of LLMs on the MedQA dataset, a widely used
biomedical question answering dataset that comprises questions
in the style of the US Medical Licensing Exam (USMLE) and is
used for evaluation of LLMs’ reasoning capabilities. In less than
half a year, LLM performance has approached a level close to
human expert by Med-PaLM 2 [30] from the level of human pass-
ing by GPT-3.5 [31], as depicted in Figure 2. These achievements
have been accomplished by adapting the LLMs for biomedical QA
through different strategies.
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Figure 1. The paradigm of LLMs. Pre-training: LLMs are trained on large scale corpus using an autoregressive LM; Instruction Fine-tuning: pre-trained
LLMs are fine-tuned on a dataset of human-written demonstrations of the desired output behavior on prompts using supervised learning; RLHF Fine-
tuning: a reward model is trained using collected comparison data, then the supervised model is further fine-tuned against the reward model using
reinforcement learning algorithm. Prompts: the instruction and/or example text added to guide LLMs to generate expected outputs. Generative outputs:
the outputs produced by the LLMs in response to the users’ prompts and inputs.

Figure 2. Performance of LLMs versus human on the MedQA (USMLE)
dataset in terms of accuracy. Accuracy of LLM performance on the MedQA
(USMLE) dataset has increased from the level of human passing by GPT-
3.5 to the level close to human expert by Med-PaLM 2 in less than half a
year.

There are several strategies that can be applied to adapt Chat-
GPT and other LLMs for specific applications in biomedicine and
health. When a large amount of data as well as more computing
resources and expertise are available, domain-specific LMs can
be developed by pre-training from scratch or from checkpoints
of existing general LMs. Alternatively, strategies such as fine-
tuning with task specific data, instruction fine-tuning and/or
RLHF fine-tuning, soft prompt tuning and prompt engineering can
be employed to adapt existing pre-trained LMs to specific domain
applications. Explanation of these strategies and corresponding
examples are listed as follows:

• Pre-training from scratch is to create a specialized LM by
pre-training the LM with randomly initialized parameters
on a large biomedical corpus using the training objective
of either infilling (‘masked LM’ or ‘span corruption’) or an
autoregressive LM. Both BioMedLM [6] and BioGPT [7] are
specialized biomedical LMs developed by pre-training on a
corpus of PubMed articles from scratch.

• Pre-training from checkpoints of existing general LMs is to
develop a specialized LM by initializing its parameters from
the checkpoint of an existing general LM and further pre-
training the model on a biomedical corpus with the infilling
or autoregressive LM training objectives. The PMC-LLaMA [9]
is a model developed by further pre-training the LLaMA-7B
[32] model on PubMed Central articles.

• Fine-tuning with task specific data has been frequently used
to adapt relatively smaller LMs for specific downstream tasks.
This strategy is to fine-tune the existing LMs on the training
data of a downstream task with the same training objective
of the task. The developers of BioGPT [7] also fine-tuned
BioGPT on task-specific data after it was pre-trained from
scratch.

• Instruction fine-tuning and/or RLHF fine-tuning is the strat-
egy for aligning LLMs with better instruction responses by
fine-tuning the model on data of instruction–response pairs
through supervised learning and/or reinforcement learning.
Several LLMs including Med-PaLM 2 [30], Clinical Camel [33],
ChatDoctor [34] and MedAlpaca [35] have been developed
through instruction fine-tuning.

• Soft prompt tuning is the learning of soft prompt vectors
that can be used as prompts to LLMs for specific down-
stream tasks. It is a strategy to take advantage of the benefit
from gradient-based learning through a handful of train-
ing examples while keeping parameters of the LLMs frozen.
The model of Med-PaLM [8] is the result of adapting Flan-
PaLM [36] to the biomedical domain through soft prompt
tuning.

• Prompt engineering is the process of designing appropriate
prompts to adapt LLMs for specific downstream tasks by
leveraging the powerful in-context learning capabilities of
LLMs without the need of gradient-based learning. Various
prompt engineering techniques have been developed and
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Table 1: Specialized LLMs in biomedical and health fields

LLM Size Description

BioMedLM 2.7B Developed based on HuggingFace’s implementation of the GPT-2 model with small changes through
pre-training from scratch on data of 16 million PubMed Abstracts and 5 million PubMed Central full-text
articles contained in the Pile dataset [40]

BioGPT 347M and 1.5B Developed based on the GPT-2 architecture through pre-training from scratch on a corpus of 15 million PubMed
articles that have both title and abstract

PMC-LLaMA 7B Developed by further pre-training from the LLaMA 7B model on 4.9 million PubMed Central articles filtered
from the S2ORC Datasets [41] for only five epochs

Med-PaLM 2 N/a Developed by instruction fine-tuning of PaLM 2 [42] based on a data mixture of medical question answering
datasets including MedQA [43], MedMCQA [44], HealthSearchQA [8], LiveQA [45] and MedicationQA [46]

Clinical Camel 13B Developed by instruction fine-tuning of the LLaMA 13B model on general multi-step conversations in the
ShareGPTa data and synthetic dialogs transformed from the MedQA data and clinical review articles

ChatDoctor 7B Developed by instruction fine-tuning of the LLaMA 7B model on more than 100 000 real-world
patient-physician conversations collected from two online medical consultation sites

MedAlpaca 7B and 13B Developed by instruction fine-tuning of the LLaMA 7B and 13B models on the Medical Meadow data, a
collection of reformatted instruction–response pairs including datasets for medical NLP tasks and data crawled
from various internet resources

Med-PaLM 540B Developed by adapting Flan-PaLM to medical domain through instruction prompt tuning on 40 examples

ahttps://sharegpt.com/.

applied for adapting LLMs to biomedical and health-related
tasks.

Although previous research has shown that LMs pre-trained
with biomedical domain-specific data can benefit various in-
domain downstream tasks [37–39], pre-training an LM from
scratch or existing checkpoint can be very costly, especially
when the sizes of LMs are growing larger. Adapting LLMs
through instruction fine-tuning, soft prompt tuning and prompt
engineering can be more cost-effective and accessible. In addition,
while the strategies listed above can be employed independently,
they can also be applied in combination when applicable.

The advances of LLMs in recent years have led to devel-
opment of a number of specialized biomedical LLMs such
as BioMedLM [6], BioGPT [7], PMC-LLaMA [9], Med-PaLM [8],
Med-PaLM 2 [30], Clinical Camel [33], ChatDoctor [34] and
MedAlpaca [35]. Uses of general LLMs including GPT-3 [19],
GPT-3.5 [31], ChatGPT [1], GPT-4 [29], Flan-PaLM [8] and Galac-
tica [25] for biomedical applications are being extensively
evaluated. Table 1 provides a list of domain-specific LLMs
[6–9, 30, 33–35, 40–46]. Performances of various LLMs on
different biomedical application tasks are described in section
Applications of ChatGPT and LLMs in Biomedicine and Health.

APPLICATIONS OF CHATGPT AND LLMS IN
BIOMEDICINE AND HEALTH
ChatGPT and other LLMs can be used in a wide range of biomed-
ical and health applications. In this survey, we cover applications
that are fundamental in satisfying information needs of clinical
decision-making and knowledge acquisition, including biomedi-
cal information retrieval, question answering, medical text sum-
marization, information extraction and medical education.

Information retrieval
Information retrieval (IR) is an integral part in clinical decision-
making [47] and biomedical knowledge acquisition [48], as it
covers various information-seeking behaviors such as literature
search [49], question answering [50] and article recommendation
[51]. LLMs like ChatGPT hold significant potentials in changing the
way people interact with medical information online [52].

First and foremost, current LLMs may not be directly used
as a search engine because their output can contain fabricated
information, commonly known as the hallucination issue. For
example, when prompted ‘Could you tell me what’s the relation
between p53 and depression? Please also provide the references
by PMIDs’, ChatGPT makes up the content of PMID 25772646
(perspectives on thyroid hormone action in adult neurogenesis)
to support its incorrect answers. This behavior makes retrieving
out-of-context knowledge from ChatGPT potentially dangerous by
leading the users to draw incorrect conclusions.

However, LLMs might facilitate the interpretation of traditional
IR systems by text summarization. It is also been shown by
several pilot studies in biomedicine that when LLMs are provided
with enough contexts and background information, they can
be very effective at reading comprehension [8, 31] and could
generate fluent summaries with high fidelity [53]. These results
suggest that ChatGPT might be able to summarize the informa-
tion returned by a traditional IR system and provide a high-level
overview or a direct answer to users’ queries. Many search engines
have integrated LLMs into their result page. For example, ‘You.
com’ and the ‘New Bing’ provide ChatGPT-like interactive agents
that are contextualized on the web search results to help users
navigate them; ‘scite.ai’ presents LLM-generated summaries with
references linked to the retrieved articles for literature search
results. While aforementioned features are potentially beneficial
for all IR systems, researchers have cautioned that the generated
outputs must be carefully verified. Although LLMs can summarize
in-context information with high fidelity, there is no guarantee
that such summaries are error-free [54].

LLMs like ChatGPT can also be used for query enrichment and
improving search results with generating more specific queries,
expanding a user’s search query to include additional relevant
terms, concepts or synonyms that may improve the accuracy
and relevance of the search results. For instance, Wang et al.
[55] used ChatGPT to formulate and refine Boolean queries for
systematic reviews. They created an extensive set of prompts
to investigate tasks on over 100 systematic review topics. Their
experiments were conducted on two benchmarking collections:
the CLEF technological assisted review (TAR) datasets [56–58]
and the Systematic Review Collection with Seed studies [59].
The ChatGPT-generated queries were compared to the original
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queries, the Baseline Conceptual and Objective. Evaluation was
performed using precision, recall and F1 and F3 score metrics.
Their results show that the ChatGPT-generated queries have
higher precision but lower recall compared to the queries
generated by the current state-of-the-art method [55].

Question answering
Question answering (QA) denotes the task of automatically
answering a given question. In biomedicine, QA systems can
be used to assist clinical decision support, create medical
chatbots and facilitate consumer health education [50]. Based
on whether the supporting materials are available, QA tasks can
be broadly classified into open(-domain) QA and machine reading
comprehension. In open QA, only the question is provided (e.g. a
consumer health search query), and a model needs to use external
or internal knowledge to answer the question. In machine reading
comprehension, both the question and the material for answering
the question are available, e.g. in the case where doctors ask
questions about specific clinical notes.

A wide variety of biomedical QA datasets have been introduced
over the past decade, including BioASQ [60, 61], MedMCQA [44],
MedQA (USMLE) [43], PubMedQA [62], GeneTuring [63]. MedMCQA
and MedQA are general medical knowledge tests in the US medi-
cal licensing exam (USMLE) and Indian medical entrance exams,
respectively. Both datasets are open-domain tasks where only the
question and four to five answer options are available. In contrast,
the questions and answers in GeneTuring are in the genomics
domain such as gene name conversion and nucleotide sequence
alignment. On the other hand, BioASQ and PubMedQA provide
relevant PubMed articles as supporting materials to answer the
given question. The biomedical QA tasks are evaluated using
the classification accuracy of the possible answers [four to five
provided options for MedMCQA and MedQA (USMLE), entities for
GeneTuring, yes/no for BioASQ and yes/no/maybe for PubMedQA].

Table 2 shows the performance of LLMs on three commonly
used biomedical QA tasks. Overall, the best results are achieved
by either Med-PaLM 2 (on MedQA and PubMedQA) or GPT-4 (on
MedMCQA), which are currently the largest LLMs containing hun-
dreds of billions of parameters. Notably, they achieve comparable
performance on the MedQA dataset and higher performance on
the PubMedQA dataset in comparison to the human expert. FLAN-
PaLM and GPT-3.5 also achieve high scores on PubMedQA, but
are much worse than Med-PaLM 2 and GPT-4 on the MedQA
and MedMCQA datasets. This is probably because PubMedQA
mainly requires the reading comprehension capability (reason-
ing), while the other open QA datasets require both reasoning
and knowledge. However, smaller LLMs (<10B), such as BioMedLM
and PMC-LLaMA, perform similarly to DRAGON [64], a BERT-sized
SOTA model enhanced by domain knowledge. This suggests that
auto-regressive LLMs could scale to large-enough model sizes
to outperform smaller models augmented by structured domain
knowledge.

Answering biomedical questions requires up-to-date and accu-
rate knowledge. To address the hallucination issue [65] in medical
QA systems, one of the current solutions is retrieval augmen-
tation, which refers to the approach of combining LLMs with a
search system, such as the New Bing for the general domain
and Almanac [66] in the clinical domain. For a given question,
the system will first retrieve relevant documents as supporting
materials and then prompt LLMs to answer the question based
on the retrieved documents. In this case, LLMs might generate
less hallucinations since they are good at summarizing content.
However, such systems are still not free from errors [54] and there

is a need for more systematic evaluations [52]. Another promising
direction for tackling the hallucination issue is to augment LLMs
with additional tools [67–70]. For example, the GeneTuring dataset
contains information-seeking questions for specific SNPs such as
rs745940901. However, auto-regressive LLMs possess no knowl-
edge about that SNP and most commercial search engines return
no results to this query, so retrieval augmentation might not work
either. In this case, the information source is only accessible via
the NCBI dbSNP database, and augmenting LLMs with NCBI Web
database utility APIs can potentially solve the hallucination issue
with regard to specific entities in biomedical databases [67].

Consumers have been relying on web search engines like
Google for their medical information needs [71]. It is conceivable
that they might turn to LLM chatbots because the dialog interface
can directly answer their questions and follow-ups. In fact, there
have already been several studies, such as Clinical Camel [33],
DoctorGLM [72], ChatDoctor [34], HuaTuo [73] and MedAlpaca
[35], that attempt to create clinical chatbots by instruction fine-
tuning open source LLMs (e.g. LLaMA) on biomedical corpora.
However, most of such studies only use small private datasets for
evaluation, and the accuracy, generalizability and actual utility of
such dialog systems remains unclear.

Biomedical text summarization
Text summarization in the biomedical and health fields is
an important application of natural language processing and
machine learning. This process involves condensing lengthy
medical texts into shorter, easy-to-understand summaries
without losing critical information. Summarization in the medical
field can be particularly challenging due to the complexity of
the language, terminology and concepts. In this section, we will
introduce three application scenarios for text summarization
in biomedicine: literature summarization, radiology report
summarization and clinical note summarization.

The first important application is medical literature summa-
rization [74]. A well-summarized literature review can help in
condensing a large volume of information into a concise, readable
format, making it easier for readers to grasp the key findings
and conclusions. Toward this goal, Cohan et al. [75] introduced a
scholar paper summarization task, where they proposed a large-
scale dataset of long and structured scientific papers obtained
from PubMed, where the abstracts are regarded as the summary
of the paper. Pang et al. [76] achieved state-of-the-art performance
on this dataset with top-down and bottom-up inference tech-
niques. Taking a step from paper summarization to literature
summarization, Chen et al. [77] proposed a related work genera-
tion task, where the related work section is considered as the liter-
ature review for the specific field. With the development of LLMs,
it is expected that more related documents can be considered [78],
and better evaluation metrics can be proposed to evaluate the
quality of summaries [79].

We next examine how summarization techniques can help
medical applications such as radiology report summarization
[80]. This is the process of condensing lengthy and detailed radi-
ology reports into concise, informative and easily understand-
able summaries. Radiology reports contain critical information
about a patient’s medical imaging results, such as X-rays, CT
scans, MRI scans and ultrasound examinations. Representative
datasets include MIMIC-CXR [81], which is a large-scale radiog-
raphy dataset comprising 473 057 chest X-ray images and 206 563
reports. Hu et al. [80] utilized an anatomy-enhanced multimodal
model to achieve state-of-the-art results in terms of the ROUGE
and CheXbert [82] metrics. In the era of LLMs, Ma et al. [83]
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Table 2: Performance of LLMs on biomedical QA tasks

Model Learning MedQA (USMLE) PubMedQA (r.r./r.f.) MedMCQA (dev/test)

Human expert [31] – 87.0 78.0/90.4 90.0
Human passing [31] – 60.0 – 50.0
Med-PaLM 2 [30] Mixed 86.5a 81.8/− 72.3a/−
GPT-4 [29] Few-shot 86.1 80.4/− 73.7/−
FLAN-PaLM [8] Few-shot 67.6 79.0/− 57.6/−
GPT-3.5 [31] Few-shot 60.2 78.2/− 59.7/62.7
Galactica [25] Mixed 44.4 77.6a/− 52.9a/−
BioMedLM [6] Fine-tune 50.3 74.4/− –
BioGPT [7] Fine-tune – −/81.0 –
PMC-LLaMA [9] Fine-tune 44.7 69.5/− −/50.5
Non-LLM SOTA [64] Fine-tune 47.5 73.4/− –

Note: All numbers are accuracy in percentages. Underline values denote the best performance by language models. r.r.: reasoning-required; r.f.: reasoning-free.
aFine-tuning.

proposed ImpressionGPT, which leverages the in-context learning
capability of LLMs for radiology report summarization. Wang and
colleagues proposed ChatCAD [84], a framework that summarizes
and reorganizes information from a radiology report to support
query-aware summarization.

Finally, clinical notes summarization [85] aims to summa-
rize other non-radiology clinical notes, which helps doctors and
other healthcare professionals quickly grasp the essential infor-
mation about a patient’s condition, treatments and progress.
While radiology report summarizations are more focused, deliv-
ering insights based on imaging studies, clinical note summariza-
tion involves summarizing the overall status, progress and plan
for a patient based on various clinical observations, examinations
and patient interactions [86]. McInerney et al. [87] proposed and
evaluated models that extract relevant text snippets from patient
records to provide a rough case summary. Recently, Peng et al.
[88] demonstrated that while ChatGPT can condense pre-existing
systematic reviews, it frequently overlooks crucial elements in the
summary, particularly failing to mention short-term or long-term
outcomes that are often associated with different levels of risk.
Patel and Lam [89] discussed the possibility of using an LLM to
generate discharge summaries, and Tang et al. [90] tested perfor-
mance of ChatGPT on their in-house medical evidence dataset.
As a concluding work, Ramprasad et al. [91] discussed the current
challenges in summarizing evidence from clinical notes.

Information extraction
Information extraction involves extracting specific information
from unstructured biomedical text data and organizing the
extracted information into a structured format. The two
most studied IE tasks are (a) named entity recognition (NER):
recognizing biological and clinical entities (e.g. diseases) asserted
in the free text and (b) relation extraction (RE): extracting relations
between entities in the free text.

Pre-trained LMs have been widely used in NER and RE methods.
The encoder-only LMs such as BERT are typically fine-tuned with
annotated data via supervised learning before being applied for
NER and RE tasks. Instead, using decoder-only LMs for NER and
RE will usually model them as text generation tasks to directly
generate the entities and the relation pairs. Current state-of-
the-art (SOTA) NER and RE performance were mostly achieved
by models based on encoder-only LMs that were pre-trained on
biomedical and clinical text corpus [92, 93] or machine learning
method [94].

Recently, several studies have been conducted to explore the
use of GPT-3 and ChatGPT for biomedical NER and RE tasks.

For example, Agrawal et al. [95] used GPT-3 for NER task on the
CASI dataset and showed that GPT-3 was able to outperform the
baseline model by observing a single input–output pair. Caufield
et al. [96] developed SPIRES by recursively querying GPT-3 to
obtain responses and achieved an F1-score of 40.65% for RE on
the BC5CDR dataset [94] using zero-shot learning without fine-
tuning on the training data. Gutiérrez et al. [97] used 100 training
examples to explore GPT-3’s in-context learning for biomedical
information extraction and discovered that GPT-3 outperformed
PubMedBERT, BioBERT-large and ROBERTa-large in few-shot set-
tings on several biomedical NER and RE datasets. A benchmark
study conducted by Chen et al. [98] employed prompt engineering
method to evaluate ChatGPT’s performance on biomedical NER
and RE in the BLURB benchmark datasets including BC5CDR-
chemical [94], BC5CDR-disease [94], NCBI-disease [99], BC2GM
[100], JNLPBA [101], ChemProt [102], DDI [103] and GAD [104] in
a zero-shot or few-shot manner. Chen et al. [105] performed a
pilot study to establish the baselines of using GPT-3.5 and GPT-
4 for biomedical NER and RE at zero-shot and one-shot settings.
They selected 180 examples with entities or relations and 20
examples without entities or relations from each of the BC5CDR-
chemical, NCBI-disease, ChemProt and DDI datasets and designed
consistent prompts to evaluate the performance of GPT-3.5 and
GPT-4. Tables 3 and 4 summarize performance of different LMs
on some commonly used NER and RE benchmark datasets.

The drawback of models achieving SOTA NER and RE perfor-
mance is their need of labeled data. The remarkable in-context
learning abilities of LLMs such as ChatGPT exhibited great poten-
tial and provided significant advantages for biomedical NER and
RE in circumstances where labeled data are not available. How-
ever, they are still not able to surpass performance of LMs that
are fine-tuned on task-specific datasets. In addition, several chal-
lenges still exist in the use of ChatGPT and other LLMs for infor-
mation extraction. The generative outputs of ChatGPT and other
LLMs sometimes will re-phrase the identified entities or pre-
dicted relations that make them difficult to verify. ChatGPT and
other LLMs can also produce entities and relations that sound
plausible but not factually true. Searching for prompts that are
appropriate for NER and RE can be challenging as well. Given all
these challenges, extensive research is needed to explore effective
approaches to leverage ChatGPT and other LLMs for biomedical
information extraction.

Medical education
The use of LLMs in medical education is an exciting and rapidly
growing area of research and development. In particular, LLMs
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Table 3: Performance of LLMs for NER compared to SOTA on selected datasets (F1-score in %)

LM Method BC2GM BC5CDR-chemical BC5CDR-disease JNLPBA NCBI-disease

SOTA Task fine-tuning 84.52 93.33 85.62 79.10 87.82
GPT-3 Few-shot 41.40 73.00 43.60 51.40
GPT-3.5 Zero-shot 29.25 24.05

One-shot 18.03 12.73
ChatGPT Zero-shot or

few-shot
37.54 60.30 51.77 41.25 50.49

GPT-4 Zero-shot 74.43 56.73
One-shot 82.07 48.37

Table 4: Performance of LLMs for RE compared to SOTA on selected datasets (F1-score in %)

LM Method BC5CDR CHEMPROT DDI GAD

SOTA Task fine-tuning 57.03 77.24 82.36 83.96
BioGPT Task fine-tuning and

few-shot
46.17 40.76

GPT-3 Few-shot 25.90 16.10 66.00
SPIRES Zero-shot 40.65
GPT-3.5 Zero-shot 57.43 33.49

One-shot 61.91 34.40
ChatGPT Zero-shot or few-shot 34.16 51.62 52.43
GPT-4 Zero-shot 66.18 63.25

One-shot 65.43 65.58

have a potential to mature into education applications and
provide alternative learning avenues for students to help them
acquire and retain knowledge more efficiently.

One of the attractive features of ChatGPT is its ability to
interact in a conversational way [106]. The dialog format makes it
possible for ChatGPT to answer follow-up questions and commu-
nicate in a conversational format. An early application of ChatGPT
in education is a pilot study conducted by Khan Academy [107].
Although the application is not in healthcare education, in general
education for students in grades K-12, it is an illustration of the
model’s integration in an educational environment. Khanmigo, a
real-time chat bot, analyzes the answers and guides the student
toward the solution by asking questions and providing encourage-
ment.

In addition, ChatGPT is equipped with the ability to provide
insights and explanations, suggesting that LLMs may have the
potential to become interactive medical education tools to sup-
port learning. One of the features making them suitable for
education is their ability to answer questions and provide learning
experiences for individual students, helping them learn more
efficiently and effectively.

ChatGPT can also be used for generating case scenarios [108,
109] or quizzes to help medical students practice and improve
their diagnostic and treatment planning abilities [110]. For exam-
ple, the author in [109] engages in a dialog with a chatbot, asking it
to simulate a patient with undiagnosed diabetes and the common
labs that may need to be run.

LLMs can also be used to help medical students improve
their communication skills. By analyzing natural language inputs
and generating human-like responses, LLMs can help students
practice their communication skills in a safe and controlled
environment. For example, an LLM might be used to simulate
patient interactions, allowing students to practice delivering
difficult news or explaining complex medical concepts in a clear
and concise manner.

Other applications
Besides the previously elaborated fundamental applications,
ChatGPT and other LLMs can be used for other applications
that are also important in biomedicine and health, such
as coreference resolution, text classification and knowledge
synthesis. Use of ChatGPT and other LLMs for these applications
has been comparably less explored. We briefly summarize these
applications as follows.

Coreference resolution is the process of finding all mentions
that refer to the same entities in a text. It is an essential task of
identifying coreference links to support the discovery of complex
information in biomedical texts. Some datasets used for research
of coreference resolution include MEDSTRACT [111], FlySlip [112],
GENIA-MedCo [113], DrugNerAR [114], BioNLP-ST’11 COREF [115],
HANAPIN [116] and CRAFT-CR [117]. While pre-trained LMs such
as BioBERT and SpanBERT haven been used in research of corefer-
ence reference, LLMs including ChatGPT have not been explored
[118].

Text classification aims to assign one or more pre-defined
labels to a given text such as a sentence, a paragraph or a docu-
ment. It plays an important role in biomedical sentiment analysis
and document classification. HoC [119] has been the dataset used
widely for research of biomedical text classification. It contains
1580 PubMed abstracts that were manually annotated for multi-
label document classification of hallmarks of cancer. State-of-
the-art performances on HoC were achieved by fine-tuned pre-
trained LMs [7]. Experiments had shown that performances of
LLMs such as ChatGPT and GPT-4 were suboptimal compared to
fine-tuned pre-trained LMs [98, 105].

Knowledge synthesis attempts to extract and summarize use-
ful information from large amount of data to generate com-
prehensive knowledge and new insights. It is a critical step in
biomedical knowledge discovery and translation. Pre-trained with
large number of diverse data, LLMs like ChatGPT are believed to
have encoded rich biomedical and clinical knowledge [8]. Some
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experiments had been conducted to evaluate use of LLMs for sum-
marizing, simplifying and synthesizing medical evidence [88, 90,
120]. LLMs will make it possible to automate knowledge synthesis
on a large scale to accelerate biomedical discoveries and improve
medical education and health practices.

Given the powerful capabilities of LLMs, we can expect that
more creative LLMs-powered applications will be developed in the
domains of biomedicine and health.

LIMITATIONS AND RISKS OF LLMS
While LLMs like ChatGPT demonstrate powerful capabilities,
these models are not without limitations. In fact, the deployment
of LLMs in high-stakes applications, particularly within the
biomedical and health domain, presents challenges and potential
risks. The limitations, challenges and risks associated with LLMs
have been extensively discussed in previous research [19, 121,
122], and in this survey, we will specifically focus on those relevant
to the context of biomedical and health domains.

Hallucination
All LMs have the tendency to hallucinate—producing content
that may seem plausible but is not correct. When such con-
tent is used for providing medical advice or in clinical decision-
making, the consequence can be particularly harmful and even
disastrous. The potential danger associated with hallucinations
can become more serious as the capabilities of LLMs continue to
advance, resulting in more convincing, persuasive and believable
hallucinations. These systems are known to lack transparency—
inability to relate to the source, which creates a barrier for using
the provided information. For healthcare professionals to use
LLMs in support of their decision-making, great caution should
be exercised to verify the generated information.

Another concern is that LLMs may not be able to capture
the full complexity of medical knowledge and clinical decision-
making or produce erroneous results. While LLMs can analyze
vast amounts of data and identify patterns, they may not be able
to replicate the nuanced judgment and experience of a human
clinician. The usage of non-standard terminologies presents an
additional complication.

Fairness and bias
In recent years, fairness has gained the attention of ML
research communities as a crucial consideration for both stable
performance and unbiased downstream prediction. Many studies
have shown that LMs can amplify and perpetuate biases [2,
123] because they learned from historical data. This may
inadvertently perpetuate biases and inequalities in healthcare.
In a recent study, researchers show that text generated with
GPT-3 can capture social bias [124]. Although there exists a
lot of research in the general domain regarding fairness in ML
and NLP including gender and racial bias, little work has been
done in biomedical domain. Many current datasets do not have
demographic information, as this relates to privacy concerns in
medical practices. An unfair and biased model in the biomedical
and health domain can lead to detrimental outcomes and affect
the quality of treatment a patient receives [125–127].

Privacy
The corpora used for LLMs training usually contain a variety of
data from various sources, which may include private personal
information. Huang et al. [128] found that LMs can leak personal
information. It was also reported that GPT-4 has the potential to be

used for attempt to identify private individuals and associate per-
sonal information such as geographic location and phone number
[122]. Biomedical and clinical text data used for training LLMs
may contain patient information and pose serious risks to patient
privacy. LLMs deployed for biomedical and health applications can
also present risks to patient privacy, as they may have access to
patient characteristics, such as clinical measurements, molecular
signatures and sensory tracking data.

Legal and ethical concerns
Debates on legal and ethical concerns of using AI for medicine
and healthcare have been carried out continuously in recent years
[129]. The widespread interests in ChatGPT recently also raised
many concerns on legal and ethical issues regarding the use of
LLMs like ChatGPT in medical research and practices [130, 131].
It was advocated to establish a robust legal framework encom-
passing transparency, equity, privacy and accountability. Such
framework can ensure safe development, validation, deployment
and continuous monitoring of LLMs, while taking into account
limitations and risks [132].

The acknowledgement of ChatGPT as an author in biomedical
research has been particularly identified as an ethical concern.
Biomedical researchers may have their opinions on whether Chat-
GPT or other LLMs should be welcomed to their ranks. In fact, sev-
eral papers already list ChatGPT as an author [133–136]. However,
after several ethical concerns were raised [137], several of these
papers ended up removing ChatGPT from the author list [133,
138]. One of the problems of allowing machine written articles is
whether they could be reliably recognized. In one report, humans
not only detected 68% of generated abstracts but also flagged 14%
of human abstracts as machine-generated [139].

The most valid criticism of LLM-assisted generation of scien-
tific papers is accountability. There are no consequences to the
LLM if the output is wrong, misleading or otherwise harmful.
Thus, they cannot take responsibility for writing the article [140–
144]. Another issue is copyright—in many jurisdictions, machine-
generated material may not receive a copyright [130, 140], which
poses an obvious problem for journals.

Questions also arise regarding the disclosure of LLM usage
during a project or in preparing a paper [142, 144]. There is a long-
standing tradition of reporting tools that were used for a project.
On one side, if the LLM had a material impact on the study, it
should be reported. On the other side, we do not report the spell
checker that was used to prepare a paper. Should we report the
LLM? Distinguishing these extremes in the context of an LLM will
require time and experience.

Lack of comprehensive evaluations
LLMs must be comprehensively evaluated with regard to their
performance, safety and potential bias before any implementa-
tions in biomedicine. However, evaluating these biomedical LLMs
is not trivial. While some traditional NLP tasks such as NER and
RE have reliable automatic evaluation metrics like F1 scores, users
mostly use LLMs to get free-text response for their biomedical
information needs, such as question answering and text sum-
marization. Generally, expert evaluations of such free-text LLM
outputs are considered as the gold standard, but getting such
evaluations is labor-intensive and not scalable. For example, a
panel of clinicians were employed to evaluate the Med-PaLM
answers to medical questions among several axes such as scien-
tific consensus, content appropriateness and extent of possible
harm [8]. However, only 140 questions have been evaluated in
the study, probably due to the high cost of expert annotations.
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Another issue for manual evaluation is that there is no consensus
on what axes should be evaluated or the scoring guidelines, so the
manual evaluation results from different studies are not directly
comparable. Therefore, it is imperative to arrive at a reporting
consensus, such as the PRISMA statement [145] for systematic
reviews, for evaluating biomedical LLMs.

Alternatively, there are two main approaches to evaluate LLM
answers without involving expert evaluators. The most common
practice is to convert the task into USMLE-style multi-choice
questions (such as MedQA, PubMedQA and MedMCQA) and eval-
uate the accuracy of LLM-generated answer choices. These tasks
serve as a good proxy for evaluating the knowledge reasoning
capabilities of LLMs. However, they are not realistic since the
answer choices will not be provided in real-life user questions in
biomedicine. The other solution is to evaluate the LLM-generated
response against a reference answer or summary with automatic
metrics. These automatic scoring can be based on lexical overlap
such as BLEU [146], ROUGE [147] and METEOR [148], as well as
semantic similarity like BERTScore [149], BARTScore [150] and
GPTScore [151]. Although these automatic metrics can evaluate
free-text LLM outputs in a large scale, they often do not strongly
correlate with human judgments [79, 90]. As such, it is also vital
to design new evaluation metrics, potentially with LLMs, that can
be both scalable and accurate.

Open-source versus closed-source LLMs
When it comes to implementing LLMs for applications, one impor-
tant decision the users need to make is whether to choose open-
source or closed-source LLMs. Both categories have their pros
and cons and pose distinct challenges and risks to users. Open-
source LLMs play an important role in facilitating innovation and
adaptation of new technologies in the community. They offer
users with more transparency and more control over the models,
but less support. Using open-source LLMs, users could adapt and
customize the LLMs to their specific needs with higher flexibility.
However, open-source LLMs users usually depend on the commu-
nity for support. When they don’t have strong internal technical
resources, they might face challenges in adaptation, customiza-
tion and implementation and run into the risk of unsuccessful
deployment of LLMs. On the other hand, closed-source LLMs can
provide users with more dedicated support, but less transparency
and less control over the models. Closed-source LLMs are often
backed by large corporations with substantial resources for sup-
port in development, improvement and deployment. However,
closed-source LLMs users could experience difficulties in cus-
tomizing the LLMs to their needs due to the lack of transparency
and control of the LLMs and may encounter the risks of vendor
dependency and leaking sensitive information when they are
submitted to the LLMs. Furthermore, costs of using open-source
versus closed-source LLMs can also be very different. Implement-
ing open-source LLMs might require more initial investment but
fewer long-term costs that are predictable, while using closed-
source LLMs might need less investment at the beginning but
higher subscription costs that may increase because of vendor
pricing changes. The decision to use open-source or closed-source
LLMs depends on the specific needs, priorities and resources of
the users. It is important for the users to carefully evaluate the
benefits and pitfalls of both options before making the decision.

DISCUSSION AND CONCLUSION
In this survey, we reviewed the recent progress of LLMs with a
focus on generative models like ChatGPT and their applications

in the biomedical and health domains. We find that biomedical
and health applications of ChatGPT and other LLMs are being
extensively explored in the literature and that some domain-
specialized LLMs have been developed. Performance of specialized
and non-specialized LLMs for biomedical applications have been
evaluated on a variety of tasks. Our findings also revealed that
performance of LLMs varies on different biomedical downstream
tasks. LLMs were able to achieve new state-of-the-art perfor-
mance on text generation tasks such as medical QA. However,
they still underperformed the existing fine-tuning approach of
smaller LMs for information extraction.

Looking forward, the opportunities for LLMs present promising
prospects for deployment of LLM-powered systems for biomedical
and health applications in real-life scenarios. In the era of LLMs,
the future direction of medical summarization holds significant
promise. We can anticipate that LLMs will be increasingly utilized
to automatically summarize extensive medical literature, radiol-
ogy reports and clinical notes. This would facilitate quicker access
to vital information and support decision-making processes for
healthcare professionals. Additionally, they are expected to better
handle complex medical terminology and context, thus improving
the quality of summaries. Another potential area of growth is
in patient communication. LLMs could be used to transform
complex medical jargon into layman’s terms, aiding patients in
understanding their health conditions and treatment options.
Furthermore, a medical classroom furnished with LLMs can bring
students more personalized learning experiences and more focus
on study of critical thinking and problem-solving skills. A clinical
system integrated with LLMs can beneficially provide patients and
physicians with efficient and quality healthcare services through
accurate diagnosis, precision medicine, appropriate decision-
making and proper clinical documentation in preparing succinct
clinical reports, concise clinical notes and warm-hearted patient
letters.

As a matter of fact, a number of articles have been published
on perspectives of using ChatGPT for biomedical and clinical
applications in practice [130, 131]. Many experiments have been
conducted to evaluate use of ChatGPT in various scenarios in
biomedical and clinical workflows. However, until now, no actual
deployment of ChatGPT or any other LLMs has been reported.
Because of the high-stakes nature of biomedical and health set-
tings, deployment of LLMs like ChatGPT into practice requires
more prudence given their limitations and risks. In particular,
the transparency challenge that the training data of ChatGPT
and other LLMs remain closed source increases difficulties in the
evaluation of LLMs.

While the potential benefits are immense, we must also be
mindful of the risks and challenges as discussed previously.
Strategies and techniques need to be developed and deployed
for overcoming the limitations of LLMs. To alleviate generation
of nonsensical or harmful content, retrieval augmentation
techniques can be used, effective prompts need to be crafted and
rigorous evaluation methods shall be applied [67, 152]. To mitigate
bias and improve fairness, training data need to be diversified,
bias and fairness of LLMs shall be analyzed and bias detection
shall be implemented. To protect privacy of individuals, sensitive
personal information shall be limited and deidentified when they
are used in LLMs. Regulations shall be created and issued to secure
legal and proper use of LLMs. The research community is working
hard on development of such strategies and techniques. Ensuring
the ethical use of AI in healthcare, maintaining patient privacy,
mitigating biases in AI models and increasing transparency of
AI models are some of the significant considerations for future
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development in this area. Therefore, a multidisciplinary approach,
including input from healthcare professionals, data scientists,
ethicists and policymakers, will be crucial to guide the future
direction of future research and development in the era of LLMs.

Key Points

• We examined diverse applications of LLMs including
ChatGPT in biomedicine and health.

• LLMs have achieved significant advances in the field
of text generation tasks, but modest advances in other
biomedical and health applications.

• The recent rapid progress of LLMs indicates their great
potential of providing valuable means for accelerating
discovery and improving health.

• The use of LLMs like ChatGPT in biomedicine and health
entails various risks and challenges including fabricated
information as well as legal and privacy concerns.

• A multidisciplinary approach is crucial to guide the
future direction of research and development of LLMs
for biomedical and health applications.
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