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Abstract

Background: Identifying predictors of readmissions after mitral valve transcatheter edge-to-edge 

repair (MV-TEER) is essential for risk stratification and optimization of clinical outcomes.

Aims: We investigated the performance of machine learning [ML] algorithms vs. logistic 

regression in predicting readmissions after MV-TEER.

Methods: We utilized the National-Readmission-Database to identify patients who underwent 

MV-TEER between 2015 and 2018. The database was randomly split into training (70 %) 

and testing (30 %) sets. Lasso regression was used to remove non-informative variables and 

rank informative ones. The top 50 informative predictors were tested using 4 ML models: ML-

logistic regression [LR], Naive Bayes [NB], random forest [RF], and artificial neural network 

[ANN]/For comparison, we used a traditional statistical method (principal component analysis 

logistic regression PCA-LR).

Results: A total of 9425 index hospitalizations for MV-TEER were included. Overall, the 30-day 

readmission rate was 14.6 %, and heart failure was the most common cause of readmission (32 %). 

The readmission cohort had a higher burden of comorbidities (median Elixhauser score 5 vs. 3) 

and frailty score (3.7 vs. 2.9), longer hospital stays (3 vs. 2 days), and higher rates of non-home 
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discharges (17.4 % vs. 8.5 %). The traditional PCA-LR model yielded a modest predictive value 

(area under the curve [AUC] 0.615 [0.587–0.644]). Two ML algorithms demonstrated superior 

performance than the traditional PCA-LR model; ML-LR (AUC 0.692 [0.667–0.717]), and NB 

(AUC 0.724 [0.700–0.748]). RF (AUC 0.62 [0.592–0.677]) and ANN (0.65 [0.623–0.677]) had 

modest performance.

Conclusion: Machine learning algorithms may provide a useful tool for predicting readmissions 

after MV-TEER using administrative databases.
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Introduction/Background

Mitral valve transcatheter edge-to-edge repair (MV-TEER) is an effective alternative to 

surgery in patients with severe symptomatic degenerative mitral regurgitation. MV-TEER is 

also recommended as a first-line intervention for patients with severe functional MR who 

remain symptomatic despite maximum guideline-directed medical therapy [1]. However, 

readmissions after MV-TEER remain common. In 2018, readmission rates after MV-TEER 

in the US were 14.7 %, 28.1 %, and 37.4 % at 30-, 90-, and 180- days [2]. Attempts have 

been made to identify predictors of readmissions after MV-TEER, however, those attempts 

were limited to small single-center studies [3,4] or low-performance models [5].

On the other hand, there is a rising interest in utilizing machine learning [ML] to predict 

adverse events after cardiac interventions using large databases [6–10]. ML algorithms 

have achieved remarkable success in cardiac imaging and electrocardiography, where they 

were able to detect or classify subtle myocardial, valvular, or rhythm disorders [6,11–13]. 

This success is partially attributed to the enormous amount of data embedded in the raw 

echo images or electrocardiograms. Whether ML can achieve similar success in analyzing 

electronic medical records (EMR) remains a subject of ongoing debate. Despite the 

enthusiasm about exploring the predictive value of ML algorithms in EMR, concerns remain 

on whether such databases contain adequate ‘granular data’ to improve the discrimination 

of adverse events after an acute illness or a cardiac intervention. Hence, to date, studies 

reporting on the value of ML methods in ‘big data’ analyses in cardiology are sparse.

In this study, we explore whether ML algorithms can improve the prediction of 30-day 

readmission after MV-TEER compared with logistic regression, the most used conventional 

model.

1. Methods

1.1. Data source

We queried the National Readmission Database (NRD.) from October 1st, 2015, through 

December 31st, 2018. The NRD, part of the Healthcare Cost and Utilization Project 

(HCUP), is a nationwide sample that represents ∼60 % of all US hospitalizations across 

28 states. The NRD provides demographics, inpatient diagnoses and procedures, total costs, 

Sulaiman et al. Page 2

Cardiovasc Revasc Med. Author manuscript; available in PMC 2024 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



primary payers, length of stay, and hospital characteristics. Additionally, it contains a patient 

linkage number that identifies discharges belonging to the same individual within the same 

state [14]. The NRD has been used extensively to study trends and outcomes of MV-TEER 

[2,15–17]. Because NRD is publicly available and de-identified, this study was deemed 

exempt by the Institutional Review Board.

1.2. Study population & endpoint

We identified hospital stays for adult patients (≥18 years) who underwent MV-TEER using 

validated the International Classification of Diseases 10th Clinical Modification (ICD-10-

CM) codes (Table S1). We excluded patients transferred to another hospital, those who died, 

and those discharged in December or who had missing information (Fig. 1). The Primary 
Endpoint of the study was 30-day all-cause readmission after MV-TEER.

1.3. Testing and training cohorts

We randomly split the data into sets of training (70 %, 6595 hospitalizations) and testing 

(30 %, 2830 hospitalizations). We did not access the testing set after this stage to ensure 

“never-seen-before” data for testing. Because the training set was slightly imbalanced (15 % 

readmitted), we used bootstrap sampling with replacement to balance the training dataset. 

After oversampling, the training set included 11,220 hospitalizations (50 % readmitted). 

Class imbalance can illusively increase the classifier’s performance in the training set [18]. 

In the training stage, the ML software splits the training set into training and validation sets 

to fine-tune the model’s parameters before testing on the testing set.

1.4. Predictor’s selection process

Our approach was a combination of human and machine contributions, as previously 

described [8]. First, we did an extensive literature review to identify potential predictors 

of readmission after MV-TEER. A prior study showed that the Elixhauser score performed 

the best in predicting 1-year survival after MV-TEER [19]. Therefore, we used the HCUP 

Elixhauser comorbidity software to build all Elixhauser variables [20]. Furthermore, we 

reviewed three readmission assessment tools [LACE index [21], HOSPITAL score [22], and 

the 8Ps screening tool [23]] and included corresponding predictors available in the NRD 

data. In addition, since frailty predicts outcomes post-cardiac procedures [24], we added a 

Hospital Frailty Risk Score to the model [25].

Finally, we used the HCUP Clinical Classification Software to build additional diagnoses 

and procedures variables [26]. HCUP CCS aggregates the entire ICD 10 diagnosis and 

procedure codes into 283 diagnosis and 223 procedure categories that span all body systems. 

The final pool of 561 variables allowed the machine to pick out the codes closely related 

to 30-day readmission rather than depending on our human judgment. Table S2 shows the 

complete list of variables.

1.5. Lasso regression for feature ranking

Irrelevant variables/features result in model overfitting in the training stage, negatively 

affecting its performance in the testing stage. Therefore, we used the lasso regression 

method with 10-fold cross-validation in the training dataset to remove non-informative 
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variables. Out of 561 included variables, lasso regression ranked only 332 variables in 

descending order of importance. We selected the top 50 predictors for our ML models (Table 

S3) [26].

1.6. Machine learning algorithms

Next, we used 4 commonly utilized ML algorithms: ML logistic regression [ML-LR], Naïve 

Bayes [NB], random forest [RF], and artificial neural network [ANN]. ML-LR is a linear 

model whose output is an easy-to-interpret sum of variable values after applying coefficients 

to each variable. NB is a basic non-linear model that examines the probability of an outcome 

given the values of the variables (i.e., conditional probability). Rather than summing, NB 

multiplies probabilities. The independence of variables is a key assumption for NB and 

could be unrealistic occasionally [27,28]. RF is a modestly complex model that combines 

the output of multiple decision trees. ANN uses a network of interconnected units that links 

the variables to the outcome. Random forest and ANN appear as a “black box” because it 

is difficult to discern the exact calculations occurring in the model. We tested ML algorithm 

performance using the top 10/20/30/40/50 predictors ranked by lasso regression. We used 

Weka data mining software (version 3.8.5) for ML algorithms [29].

1.7. Classifier performance evaluation

We used the Receiver Operator Characteristic area under the curve (ROC AUC) as the 

main criteria, followed by precision-recall (PRC) AUC. We prioritized the ROC due to 

its wide use among researchers. While the ROC plots a tradeoff between sensitivity and (1-

specificity), the PRC plots the precision and recall tradeoff. One major difference between 

ROC and PRC is that the PRC baseline moves with class distribution instead of the fixed 

baseline of 0.5 in ROC. Thus PRC might be a better evaluator for imbalanced data [30], 

such as ours, where the readmission rate is not close to 50 %. Additionally, we used other 

measures such as precision (i.e., positive predictive value), recall (i.e., sensitivity), and 

F-measure. The F score is the harmonic mean of precision and recall;

F = 2 × precsion + recall
precision + recall .

1.8. Traditional statistical method

To compare ML performance with the traditional statistical methods, we performed a 

principal component analysis (PCA) followed by logistic regression. PCA decreases data 

dimensionality and is commonly used for outcome prediction [31]. It converted the 561 

predictors to 166 components with an Eigenvalue > 1 (Fig. S1). To distinguish this from 

ML-LR, we used the term (PCA-LR) to describe traditional statistics LR. Next, we ran an 

LR analysis in the testing set, with the 30-day readmission variable as the outcome and the 

166 components as predictors. Stata software was used for all traditional analyses [32].

Categorical variables were compared using the Chi-squared test and presented as 

percentages. Continuous variables with a normal distribution (e.g., age) were compared 

using a t-test and presented as means with standard deviation. Standardized differences in 
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means and proportions were calculated for continuous and categorical variables. We did not 

impute missing data because it represented <2 % of the entire data.

2. Results

2.1. Study cohort and baseline characteristics

A total of 10,659 index hospitalizations for MV-TEER (unweighted) were identified. After 

applying exclusion criteria, 9425 patients were included, of whome1,374 (14.6 %) were 

readmitted within 30 days (Fig. 1). Table 1 shows the differences in baseline characteristics 

between patients who were readmitted within 30 days and those who were not readmitted. In 

addition, baseline differences between the training and testing sets were small (standardized 

< 0.2), suggestive of appropriate randomization (Table 1). The 30-day readmission rate 

was 15 % in the training set and 13.7 % in the testing set. The most common causes of 

readmission were heart failure (32 %), cardiac dysrhythmia (6.5 %), and septicemia (5.8 %) 

(Table S4).

2.2. PCA-LR vs. ML classifiers’ performance

In the testing set, the traditional PCA-LR model had a modest performance ROC AUC 0.615 

(0.587–0.644) (Fig. 2). The predictive performance of ML algorithms varied between the 

models, with NB yielding the best predictive value (ROC AUC 0.724; PRC AUC 0.794) 

followed by ML-LR (ROC AUC 0.692; PRC AUC 0.76), ANN (ROC AUC 0.65; PRC 

AUC 0.747), and RF (ROC AUC 0.62; PRC AUC 0.732) (Table 2, Figs. 3, S2). The best 

performance of ML models was achieved utilizing 40 predictors in all but the RF model 

(Fig. 4, S Table S5).

3. Discussion

This study documents the utility of ML algorithms in building predictive models for 

readmissions after MV-TEER using administrative data. The predictive accuracy of ML 

algorithms in this study was superior to that of traditional risk prediction models, suggesting 

an additive value for ML in interventional cardiology practice. However, several key issues 

warrant further discussion.

The success of the ML algorithm depends on two key elements; the question being asked 

and the type of data being used to train the ML algorithms. Hernandez-Suarez et al. showed 

that an in-hospital mortality score developed using ML algorithms and an administrative 

database was superior to a commonly utilized TAVR risk score (TAVR in-hospital mortality 

score) developed using the TVT registry that contains extensive clinical data on all TAVRs 

performed in the US [8]. Khera et al. showed that XGBoost and meta-classifier ML models 

offered an improved resolution of mortality risk for high-risk individuals suffering an acute 

myocardial infarction [33]. Other investigators suggested the utility of ML in predicting the 

risk of post-TAVR bleeding or permanent pacemaker implantation using clinical databases 

[34,35].

To our knowledge, this is the first study that utilized a publicly available administrative 

database to compare the performance of ML with conventional statistical methods for the 
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prediction of readmission after MV-TEER. Our findings suggest that despite the limitations 

of administrative databases (e.g., the lack of echocardiographic and laboratory data), ML 

provided good predictive models for readmission (graphical abstract). As noted in the 

methodology section, the utilized ML algorithms ranged from simple (e.g., ML-LR) to 

more complex (e.g., ANN). Given the mathematical complexity of the ML models, it is 

difficult to determine why NB outperformed other ML models. However, we could speculate 

possible reasons. First, the underlying relationship between predictors and the outcome may 

be non-linear, and thus, an NB model (non-linear) explained it better than ML-LR (linear). 

Second, NB works well once the assumption of event independence is fulfilled. The Lasso 

regression has likely helped this assumption by removing correlated variables. Finally, RF 

and ANN are more complex models that have been shown to perform better with more 

extensive and complex data [36].

With traditional statistical methods, a large number of predictors of an event may hinder 

the accuracy and scalability of risk prediction models. Hence, the majority of risk scores 

include a limited number of predictors. With ML, although it is important to use certain 

techniques to rank the available variables according to their relevance to the studied event, 

typically, more variables are included in the models than with traditional analyses. Our 

findings suggest that the cutoff of 40 relevant variables was the most appropriate to achieve 

good discriminatory value in 3 out of the 4 ML models. Those variables included a 

mixture of baseline cardiovascular risk factors, non-cardiac comorbidities, procedure-related 

factors, and hospital characteristics. Although many of these variables are non-modifiable, 

identifying high-risk cohorts of patients for readmission might allow the consideration of 

additional measures that would mitigate their risk of readmission and potentially improve 

their clinical outcomes.

4. Limitations

Our study has several limitations. First, although the discriminatory power of the best ML 

model [NB] was good (AUC = 0.724), it may still be less than optimal for routine clinical 

application. However, it is still superior to other commonly utilized risk scores, such as the 

TVT/ ACC TAVR mortality score, which had a discrimination C statistic of 0.67 (95 % 

CI, 0.65–0.69) in the development group and 0.66 (95 % CI, 0.62–0.69) in the validation 

group [37]. Whether ML algorithms would perform even better when applied to the growing 

number of enhanced administrative datasets that contain laboratory and medication data 

remains to be seen. In addition, in our analysis, all 4 ML models had better PRC AUC 

(0.80 for NB) than ROC AUC. Some authors suggest that the PRC area might be more 

informative for binary classifier evaluation in imbalanced data. Hence, the predictive value 

of these models may even be better than what is suggested by the ROC AUC [30]. Second, 

the NRD is an administrative database hindered by the limitations of this type of database, 

such as coding errors and the lack of echocardiographic and laboratory data. Third, this 

study used one conventional method (logistic regression) because it is the most common. 

Therefore, our results should not be extended to other conventional models. However, other 

investigators’ work supports our finding of low LR performance. For example, Ahuja et al. 

used LR to develop a predictive model of 30-day readmission after transcatheter MV repair; 

the c-statistic was 0.628, which is within our 95 % CI (0.587–0.644) [5]. Finally, although 
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MV-TEER is predominantly an inpatient procedure, same-day discharges have also been 

reported [38,39]. Therefore, some outpatient cases may not be captured in our study since 

the NRD includes only inpatient hospital stays.

On the other hand, because NRD is based on standard billing codes, any derived score 

can be implemented directly into hospital EMR across many health systems. The seamless 

integration into EMR is crucial because the risk calculators are suboptimally used by 

clinicians. Additionally, the risk variables are available before discharge, indicating that 

our risk model can identify high-risk patients before their discharge. Moving forward, the 

most crucial next step would be to evaluate targeted interventions such as follow-up calls, 

specifically targeting those identified as high-risk by our tool. Altogether, we believe that 

these data, acknowledging the limitation of the database, remain relevant to the practice. 

Furthermore, our findings may be viewed as hypothesis-generating to inspire further 

research to explore ML applications using widely available databases in cardiovascular 

medicine. Finally, future studies are needed to validate our models in specific patient 

populations.

5. Conclusions

ML algorithms may be helpful in forecasting readmission after MV-TEER using widely 

available administrative databases. Further studies are needed to explore the role of ML in 

the prediction of adverse events across a broad spectrum of cardiovascular interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations:

ANN artificial neural network

LR logistic regression

ML machine learning

NB Naïve Bayes

MV-TEER mitral valve transcatheter edge-to-edge repair

AUC area under the curve

PRC precision-recall curve

RF random forest

ROC receiver operating characteristics

SD standardized difference

D day
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LOS length of stay
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Fig. 1. 
Study flow chart.

MV-TEER; mitral valve transcatheter edge-to-edge repair, ANN; Artificial neural network, 

LR; Logistic regression, ML; Machine learning, NB; Naïve Bayes.
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Fig. 2. 
Prediction of readmission using traditional statistics (logistic regression).

ROC; receiver operator curve.
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Fig. 3. 
Prediction of readmission using machine learning algorithms.

ROC; receiver operator curve, ANN; Artificial neural network, LR; Logistic regression, ML; 

Machine learning, NB; Naïve Bayes.
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Fig. 4. 
Performance of machine learning algorithms stratified by the number of variables included 

in the models.

ROC; receiver operator curve, ANN; Artificial neural network, LR; Logistic regression, ML; 

Machine learning, NB; Naïve Bayes.
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