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Background: Idiopathic normal pressure hydrocephalus (iNPH) is a common
disease among the elderly, which brings great harm to the health of patients
and imposes a huge economic burden on the healthcare system. Research has
shown that it is possible to prevent iNPH through nutritional and dietary
interventions. Intake of omega-3 and omega-6 polyunsaturated fatty acids
(PUFAs) can reduce the risk of many diseases. In this study, we aimed to
explore the association between omega-3/6 PUFAs and iNPH.

Methods: We conducted a two-sample Mendelian randomization (MR) study
using summary data from publicly available genome-wide association studies
(GWAS) to evaluate the potential impact of omega-3 and omega-6 PUFAs on the
risk of iNPH in European populations. Inverse variance weighting was used as the
mainmethod for MR analysis, withWald ratio, weightedmedian, MR-Egger, simple
mode, and weightedmode as supplementary methods. In addition, we performed
a series of instrument variable strength evaluations and sensitivity analyses to test
the reliability of the study results. Finally, we also conducted a linkage
disequilibrium score regression (LDSC) analysis to assess the genetic
correlation and distinguish between causal associations and shared genetic
variants between PUFAs and iNPH.

Results: One SD increase in genetically predicted levels of total omega-3 PUFAs
(OR: 0.748; 95% CI: 0.597–0.937; p = 0.012; IVW), DHA (OR: 0.709; 95% CI:
0.532–0.945; p = 0.019; IVW), ALA (OR: 0.001; 95% CI: 1.17E-06–0.423; p =
0.026; Wald ratio), and DHA (OR: 0.709; 95% CI: 0.532–0.945; p = 0.019; IVW)
were associated with a reduced iNPH risk. LDSC did not reveal any significant
genetic correlations.
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Conclusion:Higher genetically predicted levels of total omega-3 PUFAs, ALA, DHA,
and DPA are associated with a reduced risk of iNPH. These findings have important
implications for preventing iNPH and future nutritional guidance.
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Introduction

Idiopathic normal pressure hydrocephalus (iNPH) is a
neurological disorder characterized by an enlarged ventricle in
the brain with normal cerebrospinal fluid pressure. Up to date,
there was no reason to explain the specific pathophysiology
(Bräutigam et al., 2019). Patients often exhibit the classic triad of
symptoms, including gait and balance disturbances, urinary
incontinence, and cognitive impairment. Because of an age-
related disease, the incidence of iNPH will double with increasing
age. According to previous research reports, the incidence rate in the
population aged 65 and above is approximately 3.7%, increasing to
5.9% in those aged 80 and above, and sometimes even rising to 8.9%
in some areas, which is about four times of incidence rate (2.1%) in
the population aged 65–79 (Jaraj et al., 2014). Clearly, iNPH patients
are common in the elderly population. So far, ventriculoperitoneal
shunt is the main treatment method, but the invasiveness of the
surgical process and postoperative complications are emerged
(Israelsson et al., 2020). According to recent research, the NPH
vascular hypothesis, which has obtained important empirical
evidence, suggests that prevention of iNPH may be possible
through nutritional and dietary interventions (McGirr et al., 2015).

Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs)
play an important role in human health and various diseases
(Kapoor et al., 2021). They can not be synthesized endogenously
by the human body but can only be obtained from the diet. As a
result, they are also called essential fatty acids. Omega-3 PUFAs
include alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA),
docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA).
They can be directly obtained from fatty fish or seaweed. Meanwhile,
EPA, DPA, and DHA can also be indirectly supplemented by
consuming plant oils rich in ALA, then converted into EPA,
DPA, and DHA (Dyall et al., 2022). Linoleic acid (LA) belongs
to omega-6 PUFAs, which are mainly gained from consuming
vegetable oils and converted into arachidonic acid (AA) in the
human body (Dyall, 2017). In the past few decades, the effects of
PUFAs on inhibiting inflammation, reducing obesity, lowering
blood pressure, preventing cardiovascular diseases and
autoimmune diseases have been effectively verified (Russo, 2009;
Marion-Letellier et al., 2015; Li et al., 2019). Inflammatory reactions
and high blood pressure play important roles in the occurrence or
development of iNPH (Wang et al., 2020). Therefore, in theory,
PUFAs may have the potential to reduce the incidence and delay the
progression of iNPH. Unfortunately, there have been no relevant
studies on this so far.

To fill this gap, we applied Mendelian randomization (MR) on
the basis of genome-wide association studies (GWAS) data to
evaluate the potential relationship between omega-3 and omega-6
PUFAs and the risk of iNPH. The MR method is an epidemiological

approach that uses genetic variations as instrumental variables (IVs)
to infer underlying associations between exposures and outcomes
(Davies et al., 2018). Because genetic variation is randomly assigned
to a given allele during conception (similar to a randomized trial)
and remains constant after conception, the MR study can overcome
the influence of confounding factors and reverse causality on causal
inference (Smith and Ebrahim, 2003). In addition, to determine if
MR findings could be influenced by genetic similarity, we conducted
linkage disequilibrium (LD) score regression (LDSC) analysis
(Bulik-Sullivan et al., 2015a).

Methods

Study design

We employed a two-sample MR design in this study. As publicly
available research data from genome-wide association studies
(GWAS) were used, which have been approved by relevant
institutional review boards, no additional informed consent or
ethical approval was required. The three core assumptions of
effective Mendelian randomization (MR) analysis are: 1) The
genetic instrumental variables (IVs) are strongly associated with
PUFAs (associational assumption); 2) The genetic IVs do not affect
the outcome through the confounders (independence assumption);
3) The genetic IVs do not affect iNPH directly, but only via indirect
exposure (exclusivity assumption) (Burgess et al., 2019). the
overview of the study design is shown in Figure 1.

Data sources for PUFAs

In order to ensure high effectiveness and full repeatability of
our MR analysis, our study collected publicly available GWAS
summary data. First, we extracted single-nucleotide
polymorphisms (SNPs) related to total omega −3 PUFAs and
total omega-6 PUFAs from the latest GWAS on circulating
PUFAs, which included 114,999 individuals of European
ancestry and can be accessed at https://gwas.mrcieu.ac.uk/.
Summary-level data related to specific types of omega-3 and
omega-6 PUFAs mentioned above could also be obtained from
the CHARGE (Cohorts for Heart and Aging Research in Genomic
Epidemiology) consortium. Among them, data on the summary
level of AA came from a meta-analysis of a GWAS by the
CHARGE consortium in 2014, which included 8,631 Caucasian
adults from five prospective studies (Guan et al., 2014). Data on the
summarized levels of ALA, DPA, and EPA came from a meta-
analysis of a GWAS in 2011, including 8,866 participants of
European ancestry from five population-based cohort studies
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(Lemaitre et al., 2011). In addition, data on the summarized levels
of DHA and LA are both from a large-scale GWAS in the UK
Biobank. For more detailed information regarding these GWAS
samples used in this analysis, please refer to Table 1.

Data sources for iNPH

The GWAS data for iNPH were based on the ninth round of
FinnGen research released in 2023. The FinnGen study is an
unprecedented global research project launched in Finland in the
fall of 2017 that combines genomic information with digital
healthcare data (Kurki et al., 2023). The ninth round of the
FinnGen study involved 767 patients defined as NPH and
350,251 controls, all of whom had European ancestry. The
diagnosis of NPH is based on the International Classification of
Diseases, 10th Revision (ICD-10) standard, with the code G91.2.
Details of the INPH outcome GWAS meta-analysis are described in
Table 1.

In this study, there was no significant sample overlap between
the exposure and outcome groups in the summary data of genome-
wide association studies (GWAS). This suggests that our results are
more reliable and accurate. Additionally, both the exposure and
outcome groups had European ancestry, which is more closely
related genetically, helping to reduce biases due to differences in
genetic background. Therefore, we can have more confidence in
interpreting and using these research findings.

Two-sample mendelian randomization

IV selection
The screening criteria for SNPs include significant genome-wide

association between the instrumental variable SNPs and the
corresponding exposure (P < 5E-08), as well as no linkage
disequilibrium block between the instrumental variable SNPs and
the corresponding outcome data (r2 = 0.001, strand alignment =
10,000 kb) (Burgess and Thompson, 2011). In addition, if

FIGURE 1
The flow diagram of the MR study. (1) The genetic instrumental variables (IVs) are strongly associated with PUFAs (associational assumption); (2) The
genetic IVs do not affect the outcome through the confounders (independence assumption); (3) The genetic IVs do not affect iNPH directly, but only via
indirect exposure (exclusivity assumption).

TABLE 1 Sources and sample size of genetic IVS for exposures and outcome.

Traits SNPs Data sources Sample size (case/control) Ancestry

ω-3 PUFAs 46 UK Biobank 114,999 European

DHA 41 UK Biobank 114,999 European

DPA 3 CHARGE 8,866 European

EPA 4 CHARGE 8,866 European

ALA 1 CHARGE 8,866 European

ω-6 PUFAs 50 UK Biobank 114,999 European

LA 43 UK Biobank 114,999 European

AA 93 CHARGE 8,631 European

iNPH - FinnGen 767/376,377 European
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instrumental SNPs are not found in the outcome data or if they have
a palindromic sequence, they will also be removed. At the same time,
the F-statistic of SNPs is calculated to estimate the strength of IVs,
meeting the first MR assumption (Burgess and Thompson, 2011).

Statistical analysis
We harmonized the statistical data for SNP-PUFAs and SNP-

iNPH to ensure that the allele frequencies for each SNP were
consistent between PUFAs and iNPH. Six Mendelian
randomization (MR) methods were employed: Wald ratio,
inverse-variance weighted (IVW), MR-Egger, weighted median,
weighted mode and simple mode. If only one SNP was used as
the genetic instrumental variable, we performed MR analysis using
the Wald ratio method (Bautista et al., 2006). The Wald ratio
method (i.e., the beta coefficient for the SNP’s effect on the
outcome divided by the beta coefficient for the SNP’s effect on
the exposure) was used to infer causal relationships between
exposure and outcomes with only one SNP as the genetic
instrumental variable (Bautista et al., 2006). For multiple SNPs as
genetic instrumental variables, we used other methods for MR
analysis. IVW is the traditional standard method for
summarizing data in MR, which can directly calculate the size of
the causal effect using summary data without requiring individual-
level data (Lawlor et al., 2008). It uses inverse variance as weights,
giving smaller weights to SNPs with larger standard errors when
combining effect estimates, thereby reducing their impact on the
overall result. The IVW method can be used not only for binary
outcome analysis but also for continuous outcome analysis, making
it highly versatile. Median estimation includes weighted median,
simple mode, and weighted mode. The difference between the
weighted median, simple mode and weighted mode lies in the
way they consider the weights and frequencies of the data.
Weighted median considers the weight of each data point, simple
mode only considers the most frequently occurring data, while
weighted mode considers both weight and frequency. Using the
weighted median method to estimate the effect allows us to find the
weighted empirical distribution function of all selected SNPs. By
using the weighted median method, SNPs with stronger effects
contribute more to the causal estimate, and the bias is smaller
when fewer SNPs are effective instruments (Bowden et al., 2016).
The basic idea of MR-Egger is to use Egger regression to fit a linear
regression model on the effect estimates of all SNPs in order to
estimate the true causal effect and test for the presence of genetic
directional pleiotropy bias (Bowden et al., 2015). The MR-Egger
method allows for a certain degree of bias in the influence of
genotypes on outcomes, making it more accurate and reliable in
exploring causal relationships (Lin et al., 2022).

Sensitivity analysis
To ensure the robustness of our results, we conducted a series of

sensitivity analyses. The MR-PRESSO method detects the presence
of pleiotropy by testing for correlation between genotypes and
outcomes, and corrects for bias caused by correlation between
genotypes and outcomes using regression methods (Verbanck
et al., 2018). The MR-PRESSO method can also detect and
correct for the influence of outliers on MR estimation results,
thereby improving the accuracy and reliability (Bowden et al.,
2019). In addition, in heterogeneity testing of MR results,

MR-Egger and IVW methods also play important roles. The MR-
Egger regression method can not only detect the heterogeneity of the
results but also provide anMR-Egger intercept, which can be used to
assess the presence of pleiotropic effects (Burgess and Thompson,
2017). In the leave-one-out analysis, we will remove each individual
genetic variant used in the MR analysis one by one, and then
recalculate the MR effect estimate to evaluate the influence of
each variant on the final effect estimate. Finally, to better display
and understand the results of MR analysis, we plotted leave-one-out
analysis plots, forest plots, scatter plots, and funnel plots based on
the results of MR analysis. All results were presented as the odds
ratio (OR) with their 95% confidence interval (CI), and p < 0.05 was
considered statistically significant. All statistical analyses were
performed using R version 4.2.1 and the MR packages
(TwoSampleMR and MR-PRESSO) (Yavorska and Burgess,
2017). The power calculation was performed using an online
power calculator (mRnd) (https://cnsgenomics.com/shiny/mRnd/)
(Brion et al., 2013).

We used LDSC to assess overall genetic correlation in order to
investigate whether the clear associations between PUFAs and iNPH
are due to shared causal genetic variants (Bulik-Sullivan et al.,
2015a). LDSC is an advanced method that does not require
individual genotypes, genome-wide significant SNPs, or LD
pruning (which can result in loss of information if the causal
SNP is located in LD), but instead uses all available SNPs. In
addition, this approach can greatly reduce biases due to sample
overlap. Following the publicly released LDSC protocol (available
from https://github.com/bulik/ldsc), we used the LD-score
regression software in Python to estimate genetic correlation
(Bulik-Sullivan et al., 2015b; Zheng et al., 2017). The resulting
estimates represent the genetic covariance between GWA traits
based on all polygenic effects captured by SNPs.

Results

IV selection

Ultimately, there are 46 independent SNPs for total omega-3
PUFAs, 50 independent SNPs for total omega-6 PUFAs, 1 SNP for
ALA, 3 SNPs for DPA, 41 SNPs for DHA, 4 SNPs for EPA, 93 SNPs
for AA, and 43 SNPs for LA as instrumental variables
(Supplementary Table). The F-statistics for all the instruments
are greater than 10, which helps to effectively eliminate the bias
from weak instruments (Freeman et al., 2013). The instrument
strength and MR power are available in Supplementary Tables.

Causal effects of PUFAs on iNPH

In the two-sample MR analysis, we evaluated the potential
effects of PUFAs on the development of INPH, including omega-
3 PUFAs, omega-6 PUFAs, and some specific types of them. Scatter
plots are shown in Supplementary Figures. The results are presented
in Table 2 and Figure 2 and Figure 3. According to the random-
effects IVW analysis, one standard deviation (SD) increase in
genetically predicted levels of total omega-3 fatty acids (OR:
0.748; 95% CI: 0.597–0.937; p = 0.012; IVW), DHA (OR: 0.709;
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95% CI: 0.532–0.945; p = 0.019; IVW) and ALA (OR: 0.001; 95% CI:
1.17E-06–0.423; p = 0.026; Wald ratio) were associated with a
decreased risk of iNPH per unit increase. Scatter plot (Figure 4)

also indicates a negative correlation between total omega-3 PUFAs
and DHA with iNPH, while Scatter plots of genetic associations
between other PUFAs and iNPH are shown in Supplementary

TABLE 2 The MR results of the relationship between PUFAs and iNPH.

Exposures Method SNP Beta SE OR OR_lci95 OR_uci95 p

ω-3 PUFAs MR Egger 46 −0.293 0.159 0.746 0.546 1.020 0.073

Weighted median 46 −0.337 0.149 0.714 0.533 0.957 0.024

IVW 46 −0.290 0.115 0.748 0.597 0.937 0.012

Simple mode 46 0.007 0.426 1.007 0.437 2.321 0.986

Weighted mode 46 −0.323 0.149 0.724 0.541 0.969 0.035

DHA MR Egger 41 −0.521 0.209 0.594 0.394 0.895 0.017

Weighted median 41 −0.396 0.175 0.673 0.478 0.949 0.024

IVW 41 −0.343 0.146 0.709 0.532 0.945 0.019

Simple mode 41 −0.351 0.513 0.704 0.257 1.926 0.498

Weighted mode 41 −0.409 0.166 0.664 0.480 0.919 0.018

DPA MR Egger 3 −1.221 2.907 0.295 0.001 87.834 0.747

Weighted median 3 −0.959 0.651 0.383 0.107 1.374 0.141

IVW 3 −0.961 0.969 0.382 0.057 2.555 0.321

Simple mode 3 −2.057 1.155 0.128 0.013 1.230 0.217

Weighted mode 3 −1.284 0.708 0.277 0.069 1.110 0.212

EPA MR Egger 4 0.187 0.274 1.206 0.704 2.064 0.565

Weighted median 4 0.005 0.200 1.005 0.679 1.486 0.982

IVW 4 −0.120 0.174 0.887 0.631 1.247 0.490

Simple mode 4 −0.021 0.255 0.979 0.594 1.613 0.940

Weighted mode 4 −0.007 0.216 0.993 0.651 1.516 0.977

ALA Wald ratio 1 −7.260 3.265 0.001 1.17E-06 0.423 0.026

ω-6 PUFAs MR Egger 50 0.001 0.383 1.001 0.473 2.120 0.997

Weighted median 50 0.018 0.277 1.018 0.592 1.752 0.948

IVW 50 −0.067 0.191 0.935 0.644 1.360 0.727

Simple mode 50 0.236 0.531 1.267 0.448 3.584 0.658

Weighted mode 50 0.054 0.403 1.055 0.479 2.327 0.894

LA MR Egger 43 0.514 0.412 1.672 0.746 3.748 0.219

Weighted median 43 0.090 0.287 1.094 0.624 1.919 0.754

IVW 43 0.082 0.197 1.086 0.738 1.597 0.675

Simple mode 43 0.183 0.533 1.201 0.423 3.412 0.733

Weighted mode 43 0.141 0.406 1.151 0.519 2.552 0.731

AA MR Egger 93 0.003 0.004 1.003 0.995 1.011 0.465

Weighted median 93 −0.004 0.005 0.996 0.987 1.005 0.392

IVW 93 0.002 0.003 1.002 0.996 1.008 0.461

Simple mode 93 −0.006 0.009 0.994 0.976 1.012 0.518

Weighted mode 93 0.002 0.004 1.002 0.995 1.009 0.504
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Figures. ALA (OR: 0.001; 95% CI: 1.17E-06–0.423; p = 0.026; Wald
ratio) was favorably with iNPH.Moreover, DPA (OR: 0.382; 95% CI:
0.057–2.555; p = 0.321; IVW), EPA (OR: 0.887; 95% CI: 0.631–1.247;
p = 0.490; IVW) and omega-6 PUFAs, including total omega-6
PUFAs (OR: 0.935; 95% CI: 0.644–1.360; p = 0.727; IVW), LA (OR:
1.086; 95% CI: 0.738–1.597; p = 0.675; IVW) and AA (OR: 1.002;
95% CI: 0.996–1.008; p = 0.461; IVW) were found to be unrelated
to iNPH.

Results of sensitivity analysis

Pleiotropy and heterogeneity test were also shown in Table 3.
The MR-PRESSO global test did not observe any outliers or
horizontal pleiotropy in the MR analysis results. In addition, two
methods, IVW and MR-Egger, were used to detect heterogeneity,
and there was no evidence of heterogeneity. Meanwhile, MR-Egger
regression can also be used to analyze the horizontal pleiotropy of
genes. Based on the intercept value of the MR-Egger regression, no

horizontal pleiotropy was detected for the causal effect of PUFAs on
hydrocephalus. A leave-one-out stability test was conducted by
excluding one SNP at a time (see Supplementary Figure). After
excluding one SNP at a time, the potential association estimates
between genetic predictions of various types of PUFAs and the risk
of iNPH did not change significantly, indicating that the potential
driving SNP is unlikely to cause bias in the causal
relationship. Funnel plots are listed in Supplementary Figures.

Results of LDSC

To investigate alternative explanations for the shared genetic
components, we conducted LDSC to examine whether the genetic
associations behind PUFAs and iNPH could be due to shared
causal genetic variants (Table 4). We did not find significant
genetic correlations between them (rg = 0.002 and p =
0.984 between total omega-3 PUFAs and iNPH; rg = 0.006 an
p = 0.947 between DHA and iNPH; and rg = 0.354 and

FIGURE 2
Forest plot of the genetic associations between ω-3 PUFAs and iNPH.CI, confidence interval; IVW, inverse variance-weighted; MR, Mendelian
randomization; OR, odds ratio.
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FIGURE 3
Forest plot of the genetic associations between DHA and iNPH. CI, confidence interval; IVW, inverse variance-weighted; MR, Mendelian
randomization; OR, odds ratio.

FIGURE 4
Scatter plot of the effects of SNPs on PUFAs and iNPH. The horizontal and vertical axes represent the effect of each genetic variation on (A) ω-3
PUFAs (B) DHA and iNPH. The gray line around the black solid point indicates the corresponding 95% CI for the effect. The slopes of the solid lines show
the effect estimates of the 5 MR methods. MR, Mendelian randomization; SNP, single nucleotide polymorphism.
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p = 0.328 between DPA and iNPH; and rg = 0.003 and p =
0.972 between total omega-6 PUFAs and iNPH; and rg =
0.004 and p = 0.966 between LA and iNPH; and rg = 0.071 and
p = 0.895 between AA and iNPH). However, due to small sample size
or low heritability, we were unable to complete the LDSC analysis
between EPA, ALA, and iNPH.

Discussion

To our knowledge, this is the first large-scale MR study to
evaluate the relationship between PUFAs and iNPH. Based on the
summary data of GWAS, we used various statistical methods to
evaluate the causal relationship between many types of PUFAs and

iNPH. We found that omega-3 PUFAs (including DHA and ALA)
were significantly negatively associated with iNPH. For other
exposure factors such as EPA, DPA and omega-6 PUFAs
(including LA and AA), there was not enough genetic evidence
to demonstrate any potential relationship between them and iNPH.
These results suggested that higher levels of total omega-3 PUFAs,
ALA, and DHA can significantly reduce the risk of iNPH in the
population, indicating that they are potential protective factors for
iNPH. Despite the lack of evidence for genetic correlation between
PUFAs and iNPH from the LDSC analysis, a series of sensitivity
analysis results confirmed that the above findings are reliable and
robust.

To date, no authoritative studies on the association between
PUFAs levels and the risk of iNPH have been published, and it is still

TABLE 3 Pleiotropy and heterogeneity test of the PUFAs IVs from iNPH GWAS.

Exposures Heterogeneity Pleiotropy

Method Q Q_df p Intercept SE p

ω-3 PUFAs MR Egger 44.963 44 0.431 0.000 0.014 0.982

IVW 44.964 45 0.473

DHA MR Egger 44.919 39 0.238 0.020 0.017 0.243

IVW 46.537 40 0.221

DPA MR Egger 5.167 1 0.023 0.015 0.146 0.936

IVW 5.220 2 0.074

EPA MR Egger 0.055 2 0.973 −0.095 0.066 0.285

IVW 2.149 3 0.542

ALA - - - - - - -

ω-6 PUFAs MR Egger 62.774 48 0.075 −0.004 0.021 0.838

IVW 62.830 49 0.089

LA MR Egger 51.594 41 0.124 −0.028 0.024 0.240

IVW 53.380 42 0.112

AA MR Egger 66.735 91 0.974 −0.004 0.015 0.797

IVW 66.801 92 0.978

TABLE 4 Genetic correlations between PUFAs and iNPH by LD score regression (LDSC).

Trait rg SE_rg p_rg h2_observed h2_observed_se h2_int h2_Z h2_p

W3 0.002 0.085 0.984 18.623 0.391 14.952 47.636 <0.001

DHA 0.006 0.087 0.947 18.604 0.387 15.105 48.065 <0.001

DPA 0.354 0.361 0.328 0.055 0.051 1.013 1.08 0.28

EPA - - - - - - - -

ALA - - - - - - - -

W6 0.003 0.086 0.972 18.646 0.386 15.005 48.301 <0.001

LA 0.205 0.1 0.041 0.102 0.014 1.026 7.48 <0.001

AA 0.071 0.535 0.895 0.028 0.059 1.021 0.472 0.637

rg = genetic correlation; SE_rg = standard error of rg; P_rg = p-value for rg. h2_int = heritability intercept; h2_Z = Z score of heritability; h2_p = p-value of heritability.
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unknown whether PUFAs can reduce the risk of iNPH. However,
our MR study results found that high levels of omega-3 PUFAs
(including ALA and DHA) could effectively decrease the risk of
iNPH in the population. The reasons for this may be as follows.

It is widely recognized that changes in cerebrospinal fluid (CSF)
dynamics are the initiating factor of iNPH (Wang et al., 2020). In
1965, Hakim and Adams proposed the hypothesis that iNPH was
caused by an increase in CSF-volume and compensatory ventricular
enlargement (Hakim and Adams, 1965). Some research results have
shown that iNPH patients have significantly reduced white matter
volume, while cerebrospinal fluid volume, cerebrospinal fluid ratio,
and total intracranial volume are significantly increased, supporting
this hypothesis (Li et al., 2023). Currently, the main causes of CSF-
volume increase are believed to be CSF absorption disorders and
increased CSF production (Wang et al., 2020). First, according to the
theory of reduced cerebral blood flow, CSF reflux obstruction is
often caused by decreased blood flow to small vessels in the deep
white matter of the brain (Kristensen et al., 1996; Chang et al., 2009).
Research has shown that omega-3 PUFAs can improve endothelial
dysfunction by reducing the production of inflammatory cytokines
and promoting the release of nitric oxide to increase endothelial
dependent vasodilation, which may be one of the reasons why
omega-3 PUFAs can reduce the risk of iNPH (Schini et al., 1993;
He et al., 2009). In addition, according to the pulsatile vector theory,
CSF circulation is caused by blood flow pulsations (Preuss et al.,
2013). The blood flow pulsations generated by arterial and venous
blood flow can be divided into three vector forces: interstitial fluid
impulsive force, subarachnoid CSF impulsive force, and centrifugal
brain expansion force. When these three vector forces reach
equilibrium, cerebrospinal fluid can be reabsorbed into the
venous system across the blood-brain barrier. This theory implies
that an increase in interstitial fluid impulsive force is a potential
cause of iNPH. Risk factors for arterial atherosclerosis such as
obesity and hypertension can cause an increase in arterial blood
flow pressure, which is directly proportional to interstitial fluid
impulsive force (Israelsson et al., 2017; Lechner et al., 2020).
However, numerous research results have shown that omega-3
PUFAs reduce arterial blood flow pressure by decreasing
triglycerides, low-density lipoprotein (LDL), and very low-density
lipoprotein (VLDL), increasing high-density lipoprotein (HDL),
directly activating the large-conductance Ca2⁺-dependent K⁺
channel and improving arterial endothelial function and
elasticity. This can ultimately reduce interstitial fluid impulsive
force and play a beneficial role in reducing the risk of iNPH
occurrence (Harris and Bulchandani, 2006; Hoshi et al., 2013;
Chen et al., 2019).

In the occurrence and development of iNPH, pro-inflammatory
factors produced by microglia due to ischemia and hypoxia and
accumulation of toxic substances produced by cell metabolism due
to damage to the glymphatic system play crucial roles (Castañeyra-
Ruiz et al., 2016; Huang et al., 2021). Microglia are important
immune cells in the brain, and when ischemia and hypoxia
occur, microglia are activated and proliferate, releasing
neurotoxic substances (especially amyloid beta and tau proteins)
and inflammatory cytokines (such as TNF-α, interleukin-1β, etc.) to
rapidly mount an immune response (Sosvorova et al., 2014). These
inflammatory factors and toxic substances further damage
oligodendrocytes and neuronal axons, leading to a vicious cycle.

Additionally, due to glymphatic system damage in iNPH patients,
there is an obstacle to the clearance of toxic substances, resulting in
further accumulation of toxic substances (Tan et al., 2021). Research
has found that omega-3 PUFAs can regulate the body’s
inflammatory response and immune function through various
mechanisms (Calder, 2015; Calder, 2017). First, omega-3 PUFAs
significantly increase the content of EPA and DHA in immune cell
membrane phospholipids, competitively reducing the content of
AA, and omega-3 PUFAs (EPA, DHA) can competitively inhibit the
oxidation of AA by cyclooxygenase, reducing the generation of AA
products, which helps to inhibit inflammation and immune
response. Second, omega-3 PUFAs incorporated into the lipid
bilayer of lymphocytes and endothelial cells can significantly alter
the composition of their membranes, affecting membrane fluidity
and the spatial conformation of membrane receptors, thereby
affecting the synthesis of functional molecules and cell function.
In addition, omega-3 PUFAs inhibit the body’s immune response by
affecting signal transduction and cytokine expression. Furthermore,
omega-3 PUFAs improve cerebrovascular regulation by reducing
inflammatory responses and increasing the number of perivascular
macrophages, thereby enhancing the clearance capacity of the
glymphatic system (Liu et al., 2020).

Our study has several strengths (Smith and Ebrahim, 2004).
First, by using genetic variations as surrogate markers for PUFAs
and iNPH, potential confounding and reverse causality can be
reduced. Second, the IVs of exposure and outcome are both
derived from existing large-scale GWAS, which makes the
assessment of effect sizes more accurate than results from
individual-level data or studies with limited sample sizes. Finally,
in addition to the primary IVW method, we also used
supplementary methods such as MR-Egger, Wald ratio, and so
on. Moreover, multiple sensitivity analysis methods were
performed to validate the results.

Of course, we should also note that our study has certain
limitations. First, although the iNPH GWAS dataset was sourced
from FinnGen and represented a relatively isolated population,
which can effectively reduce the impact of sample overlap, both
the exposures and outcome GWAS datasets were primarily derived
from individuals of European ancestry, with very similar genetic
backgrounds, which can greatly reduce biases caused by population
stratification; however, caution should be exercised when applying
our findings to other populations, as their reliability may be affected.
Second, for some PUFAs, we only used 1-3 SNPs as instrumental
variables. Therefore, regression estimates, such as the multi-
effectiveness test of MR-Egger regression, may not be robust.
Third, we used the latest and largest iNPH GWAS dataset from
FinnGen (including 767 cases and 375,610 controls). Although we
tried our best to avoid potential low power issues, they may still
occur. To address this issue, we used the mRnd online tool to
calculate the MR power. Although some PUFAs had low statistical
power, we found that there was 100% statistical power between
DPA, ALA and iNPH. However, in order to further enhance the
reliability of our research results, it is necessary for us to use a larger
GWAS dataset for MR analysis, which will be the focus of our future
research. Fourth, the potential biological mechanisms underlying
the relationship between omega-3 PUFAs and the risk of
hydrocephalus remain unclear, and the MR method can only
make preliminary judgments about their potential associations.
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Fifth, we cannot exclude the possibility of secondary NPH cases
among the NPH cases studied in this research. The conclusions
drawn from secondary NPH and idiopathic NPH may differ in their
application. Therefore, when we emphasize iNPH, there may be bias
in the results. Sixth, the LDSC analysis did not reveal substantial
genetic correlations. This could be attributed to false-negative results
due to either a small sample size in the GWAS dataset or weak
associations between genes and phenotypes. Finally, in practical
applications, it is difficult to fully satisfy the three key assumptions of
MR studies, which may lead to bias in causal inference. Fortunately,
a series of sensitivity analyses, including MR-Egger regression, MR-
PRESSO and leave-one-out analysis, were conducted in our MR
study, and no obvious heterogeneity or horizontal pleiotropy was
found.

Conclusion

Overall, although the LDSC analysis did not find substantial
genetic correlations, our MR analysis provided strong genetic
evidence suggesting that ω-3 polyunsaturated fatty acids
(particularly DHA and ALA) play a significant role in reducing
the risk of iNPH. However, EPA, DPA and omega-6 PUFAs
(including LA and AA) had no apparent effect on iNPH. These
findings have important implications for preventing iNPH and
future nutritional guidance. In addition, further studies and
researches are needed to elucidate the potential mechanisms
underlying the relationship between omega-3 PUFAs and iNPH.
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