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Abstract
Background  Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified 
that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and 
men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse 
events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, 
pharmacokinetics, and liver drug metabolism enzymes and transporters.

Methods  We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) 
database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for 
those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these 
known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory 
network properties and predicted regulatory relationships.

Results  We identified liver-specific gene-regulatory differences for drug metabolism genes between males and 
females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we 
found that ~ 85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and 
tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide 
the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research 
community.

Conclusions  Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism 
genes that are differentially expressed and regulated between males and females. These SBAE-associated drug 
metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.
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Background
In the U.S., adverse events (defined by the U.S. Food and 
Drug Administration [FDA] as any undesirable experi-
ence associated with using a medical product) resulted in 
an annually estimated 1.3 billion emergency room visits 
and an approximate 3.5  billion dollar economic impact 
[1–3]. Adverse events that are more likely to occur in 
one sex are called sex-biased adverse events (SBAEs) 
[4]. In 2001, the FDA removed ten drugs from the mar-
ket; eight had female-biased adverse events [5]. Since 
then, several studies have found that women are twice as 
likely to experience an adverse event than men, based on 
adverse event case reports from the FDA Adverse Event 
Reporting System (FAERS) and World Health Organi-
zation (WHO) VigiBase database [6–10]. A retroactive 
review of cancer clinical trial studies found that women 
were more likely to experience adverse events from che-
motherapy and immunotherapies, indicating that adverse 
event reporting bias is not necessarily the sole cause of 
SBAEs [9]. On the other hand, a VigiBase study found 
that men were more likely to experience adverse events 
that resulted in hospitalization or death [7]. Furthermore, 
the gender gap between men and women in the number 
of female-biased SBAEs increased during the coronavirus 
disease 2019 (COVID-19) pandemic [8].

While there are multiple sources of evidence for 
SBAEs, the biological differences that might result in 
SBAEs are still being investigated. Proposed causes of 
SBAEs include, but are not limited to, sex differences 
in body mass, hormones, pharmacokinetics, and liver 
drug metabolism enzymes and transporters [4]. One 
early hypothesis was that body mass differences between 
males and females resulted in SBAEs. While body mass 
differences are a known factor for drug response out-
comes, many SBAEs are not explained by body mass 
differences [11, 12]. Sex hormone differences have also 
been hypothesized to cause SBAEs and found to com-
pete for drug transporters, compete with and inhibit 
enzymes, alter transcription, and interact with receptors 
on target cells [13]. Another previously investigated drug 
response factor is pharmacodynamics and pharmacoki-
netics [11]. Multiple studies have found sex differences in 
several pharmacokinetic metrics, such as the area under 
the curve of the plasma concentration of a drug versus 
time after dose or peak/maximum concentration [11]. 
Other studies have shown that many drug metabolism 
enzymes have differential gene expression and protein 
activity in male and female liver tissue [14–16]. Addi-
tionally, Oliva, et al. showed that in the Genotype-Tissue 
Expression (GTEx) project (n = 16,245 RNA-sequencing 
samples across 44 human tissues), 37% of genes had sex-
biased tissue-specific expression and that these genes 
were enriched in drug metabolism gene sets (i.e., Gene 
Ontology [GO] and Kyoto Encyclopedia of Genes and 

Genomes [KEGG] terms: “Xenobiotic Metabolism, Mito-
chondrial Genes and Fatty Acid Oxidation,” “ Cellular 
Response to Hormones and Drugs,” “Drug Interaction 
and Response,” and “Drug Interaction”) [17].

Other studies have shown that regulatory relationships 
between transcription factors and genes differ between 
males and females in a tissue-specific manner that gene 
expression profiles alone can not identify [18, 19]. Addi-
tionally, other studies have applied gene-regulatory 
networks to investigate drug mechanisms and predict 
drug sensitivity, repurposing candidates, and precision 
medicine [20–22]. In regards to sex differences in gene-
regulatory networks, a previous study in colon cancer 
patients applied gene-regulatory network construction 
to colon cancer gene expression profiles from The Can-
cer Genome Atlas (TCGA) project and found that drug 
metabolism genes were more targeted in the female net-
work than the male network in tumor tissue [23]. Sex-
specific gene-regulatory networks of breast tissue have 
also shown sex differences in network communities (i.e., 
groups of transcription factors and genes that are more 
interconnected than other genes in the network) involved 
in different pathways, such as developmental and signal-
ing pathways [18]. These sex differences in gene-regula-
tory networks across tissues could be potential factors in 
SBAEs.

We hypothesized that drug metabolism enzymes and 
drug targets of drugs associated with SBAEs had sex-
biased gene-regulatory network properties compared to 
other genes and drug targets (Fig. 1). First, we identified 
416 drugs associated with SBAEs (i.e., SBAE-associated 
drugs) from cases reported in the FAERS database. We 
found that 32 drug metabolism enzymes and 84 drug 
targets were more likely to be targets of these SBAE-
associated drugs than non-SBAE-associated drugs. 
KEGG-annotated drug metabolism genes also had sex 
differences in their liver gene-regulatory network neigh-
borhoods and individual transcription factor gene rela-
tionships. For the 84 SBAE-associated drug targets, 
we found that their gene expression was more likely to 
be sex-biased and for those genes to be core genes (i.e., 
essential genes for gene-regulatory network community 
identification). These results support our hypothesis that 
the known drug metabolism enzymes and drug targets of 
drugs associated with SBAE have sex differences in gene 
expression and gene-regulatory networks.

Methods
Scripts, dockers, and conda environment
The scripts for this project are available on Zenodo at 
https://zenodo.org/record/7938613#.ZGKFpdbMIaQ. In 
addition to the scripts there, the Docker images used for 
this analysis are publicly available on Docker Hub (jen-
fisher7/rstudio_sex_bias_drugs) and Zenodo (https://

https://zenodo.org/record/7938613#.ZGKFpdbMIaQ
https://zenodo.org/record/7941598#.ZGOw5tbMKJE
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zenodo.org/record/7941598#.ZGOw5tbMKJE) (R ver-
sion 4.2.2). For Fisher’s exact test calculations, we used a 
conda environment on the University of Alabama’s high-
performance system, Cheaha, in an array format (SR_
TAU_CELL_environment.yml) (R version 4.0.5).

Comprehensive computer environment and package 
version information is included in Supplemental File 1.

Data download and exploration
Medical dictionary for regulatory activities (MedDRA)
We downloaded the MedDRA database in July 2022 (Ver-
sion 25.0) [24]. This database contains a 5-level hierarchy 
of medical terminology from lowest-level terms (e.g., 
”abnormal EEG”) to preferred terms (e.g., “electroen-
cephalogram abnormal”), and finally to their highest-level 
terms, the system organ class terms (e.g., “investiga-
tions”). FAERS case reports contain MedDRA lower-level 

and preferred terms to annotate adverse events. We 
mapped all the lower-level terms to the system organ 
class terms to investigate groups of preferred terms and 
system organ class terms in the context of SBAEs.

The MedDRA database is a subscription database. We 
provide the workflow we used to format the downloaded 
database to the mappings used for the rest of this study 
in the provided scripts above. To request a subscription, 
please refer to https://www.meddra.org/subscription/
process.

FAERS
We downloaded curated FDA Adverse Event Report-
ing System (FAERS) data from the Zhang et al. study [8]. 
The FAERS database contains case reports of reported 
adverse events. We filtered the curated cases by coun-
try (i.e., “US”), qualification of the reporting party (i.e., 

Fig. 1  Graphical abstract of the study
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“1” = physician, “2” = pharmacist, “3” = other health 
professionals), and cases that contained information for 
both sex (i.e., “gender”) and drugs. We also converted 
any lower-level MedDRA adverse event terms to their 
preferred terms via the MedDRA mappings described 
above. We only retained the newest case report for the 
three duplicated cases we identified. This database can 
be accessed at https://fis.fda.gov/extensions/FPD-QDE-
FAERS/FPD-QDE-FAERS.html.

GTEx
We downloaded preprocessed RNA-Seq count tables 
and metadata for the GTEx project with the Recount3 R 
package (version 1.8.0; accessed March 2022). Raw RNA-
Seq data for the GTEx project is available at https://www.
gtexportal.org/home/downloads/adult-gtex#bulk_tis-
sue_expression. We removed the sample GTEX-11 ILO, 
identified in previous literature as an individual who 
completed a gender-affirming surgery [25]. We also fil-
tered samples to only those sequenced with the TRUSeq.
v1 chemistry. We removed the following tissues due to 
being a sex-specific tissue or there being less than five 
samples in one sex: cervix-ectocervix, cervix-endocervix, 
fallopian tube, kidney-medulla, ovary, uterus, vagina, 
prostate, and testis. We also removed samples with a RIN 
score less than or equal to five. We recorded the final 
number of samples by sex for each tissue in Supplemental 
File 2.

In addition, we used the base R prcomp function to per-
form a principal component analysis (PCA) of the GTEx 
liver tissue samples to determine potentially confound-
ing variables (i.e., age, RIN score, and ischemic time) that 
may affect gene expression and downstream results. We 
transformed the gene counts via DESeq2 (version 1.38.2) 
variance stabilizing transformation (vst). Then, we visu-
ally inspected PCA one through five, which had a cumu-
lative percent variation of 41.4%, for clustering of samples 
based on age, RIN score, and ischemic time. We found 
samples clustered by ischemic time and RIN score with 
PC 1 (19.09% of variance explained) and PC 2 (8.916% of 
variance explained). These had a negative Spearman cor-
relation with one another (rho= -0.5652864).

The methodology used to construct gene-regulatory 
networks, Passing Attributes between Networks for 
Data Assimilation (PANDA), required gene expression 
profiles. Before normalizing the GTEx data above, we 
filtered out genes with less than one count per million 
across all samples. We normalized the gene expression 
counts with a quantile shrinkage normalization via the R 
package YARN qsmooth function (version 1.24.0) [25] to 
remove variation due to technical variables in an unsu-
pervised manner but with the “group” parameter to nor-
malize the filtered counts data in a sex-aware manner to 
maintain the biological signal related to sample sex [25].

Protein-protein interaction and transcription factor motif 
information for gene-regulatory networks
The gene-regulatory network analysis required protein-
protein interaction, transcription motif information, and 
RNA-Seq profiles. We downloaded the human protein-
protein interaction network from the STRING database 
(accessed date: Jan. 2023; version 11.5). The website 
for downloading the human STRING database can be 
accessed at https://string-db.org/cgi/download?sessionId
=bTf7SC5ubWIq&species_text=Homo+sapiens. In prior 
studies, researchers applied protein-protein interaction 
networks to investigate the downstream effects of drugs 
and predict drugs for diseases as well as adverse events 
[26–28]. We adjusted the STRING network of known and 
predicted protein-protein interactions, including direct 
and indirect associations, for downstream gene-regula-
tory network construction by transforming edge weights 
to be between zero and one and focusing on highly con-
fident interactions. To achieve this data transformation, 
we divided the raw interaction scores by 1000 and filtered 
for interactions greater than 0.7. We converted protein 
Ensembl IDs to HGNC gene symbols with the protein 
metadata in STRING. Additionally, we downloaded pre-
processed transcription factor motif mapping (accessed 
date: Jan. 2023) [29]. We adjusted the TF-to-motif map-
pings to TF-to-gene mappings by mapping motifs to tar-
get genes to generate TF-gene-regulatory networks.

DrugBank
We downloaded DrugBank’s complete database (Ver-
sion 1.5.8) in Jan. 2021. This database can be accessed 
at https://go.drugbank.com/releases/latest. This data-
base contains information about drugs, including drug 
approval, drug targets, drug metabolism genes, and 
indications. We also used and modified functions to 
access drug metabolism enzyme information from the 
drugbankR R package (version 1.5) to identify drug tar-
gets and metabolism enzymes of all drugs in the FAERS 
dataset.

Fisher’s exact test and reporting odds ratio of FAERS 
database
To determine if drug and adverse event pairs were more 
likely to occur in one sex, we conducted a Fisher’s exact 
test and calculated the reporting odds ratio (ROR). We 
constructed contingency tables for each drug-adverse 
event combination for females compared to males. These 
tables included the following groups: A = the number 
of female patients with target drug-adverse event pairs, 
B = the number of female patients with the drug but not 
the same adverse event, C = the number of male patients 
with target drug-adverse event pairs, and D = the number 
of male patients with the drug but not the same adverse 
event. In addition, based on these contingency tables, we 

https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html
https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html
https://www.gtexportal.org/home/downloads/adult-gtex#bulk_tissue_expression
https://www.gtexportal.org/home/downloads/adult-gtex#bulk_tissue_expression
https://www.gtexportal.org/home/downloads/adult-gtex#bulk_tissue_expression
https://string-db.org/cgi/download?sessionId=bTf7SC5ubWIq&species_text=Homo+sapiens
https://string-db.org/cgi/download?sessionId=bTf7SC5ubWIq&species_text=Homo+sapiens
https://go.drugbank.com/releases/latest
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filtered to focus on more commonly used drugs-adverse 
event pairs in both sexes via the following thresholds:

 	• 30 cases of the drug-adverse event pair in at least one 
sex (A > = 30 or C > = 30).

 	• 50 cases of drug-adverse event pair across both sexes 
(A + C > = 50).

 	• 1000 cases for a drug across all four groups 
(A + B + C + D > = 1000).

 	• More than five adverse events in both sexes (A > 5 
and C > 5).

Our approach was similar to the previous Yu et al. 2016 
study [6]. We used the Beniamini-Hochberg (BH) pro-
cedure to adjust for multiple hypothesis testing. The 
calculated ROR from the Fisher’s exact test described if 
females (i.e., positive ROR) or males (i.e., negative ROR) 
were more likely to report the drug-adverse event com-
bination. These ROR values were log-base2 transformed 
(i.e., logROR). A threshold of absolute logROR greater 
than one and the BH-adjusted p-value less than 0.05 
identified sex-biased drug-adverse event pairs in the 
FAERS database. We determined if there were shared or 
different drugs and adverse events between the male- and 
female-biased drug-adverse event pairs via hypergeomet-
ric test for both drugs and adverse events.

Identifying SBAE-associated drug target and drug 
metabolism genes
We annotated the 416 drugs identified as associated with 
an SBAE (i.e., SBAE-associated drugs) with their drug 
targets and drug metabolism enzyme genes from Drug-
Bank [30]. To evaluate if drug targets were enriched in 
the drug target list of the 416 SBAE-associated drugs 
compared to randomly selected drugs, we performed 
permutation testing for all the drug targets of drugs in 
the FAERS database. We randomly selected the same 
number of drugs (i.e., 416) from FAERS and identified 
the number of drugs with that target, repeating the pro-
cess 1,000 times. We performed a one-sample Wilcoxon 
signed rank test to determine if the number of SBAE-
associated drugs with that drug target was higher than 
those for the randomly selected drugs. We applied a BH 
p-value adjustment. We filtered our top SBAE-associated 
drug targets by BH-p-value < 0.001. To focus our down-
stream analysis on SBAE-associated drug targets across 
SBAE-associated drugs, five SBAE-associated drugs had 
to have that known drug target. We also applied these 
same processing and filtering methods to drug metabo-
lism genes.

Sex-specific tissue gene-regulatory network construction 
and sex-specific community analysis
We applied the PANDA methodology to construct sex-
specific gene-regulatory networks by tissue. PANDA 
integrates regulatory (TF Motif mappings from DNA-
motifs curated by the Glass Lab [29]), protein-protein 
interaction (STRING Database [31]), and qsmooth nor-
malized gene expression profiles from one sex and tis-
sue via the pandaR package (version 1.30.0) [25]. We 
compared each tissue’s sex-specific network community 
structures via ALtered Partitions Across Community 
Architectures (ALPACA)’s differential modularity func-
tionality (netZooR version 1.2.1). This algorithm deter-
mines if genes and transcription factors are differentially 
connected between networks, in this case, between the 
female and male networks. To determine the sex-specific 
communities, we used this approach to calculate the dif-
ferential modularity score for each node (i.e., genes and 
transcription factors) in the sex-specific network, which 
was then used by the Louvian algorithm to assign a com-
munity for each node. This differential modularity score 
describes how important a node was to the resulting 
community assignment. We made the comparison twice: 
once to determine female-specific communities and once 
to determine male-specific communities. To determine 
female-specific communities, we assigned the female 
network as the perturbed network and the male as the 
baseline network. Then, to identify male-specific com-
munities, we assigned the male network as the perturbed 
network and the female network as the baseline network.

Sex-specific community core genes
Based on the differential modularity scores from our 
ALPACA sex-specific community results, we identified 
the core genes for each sex-specific community for each 
GTEx tissue included in our study. For each sex-specific 
community in a tissue, we identified the 100 genes with 
the highest differential modularity scores as core genes 
for that tissue sex-specific community based on [18]. 
After identifying these core genes, we conducted func-
tional enrichment analysis via gprofiler2 (version 0.2.1) to 
determine enriched pathways for each sex-specific com-
munity across the GTEx tissues [32]. We used gprofiler2 
to conduct cumulative hypergeometric probability tests 
to determine if there is an enrichment of the core genes 
in gene sets from Gene Ontology (GO) [33], KEGG [34], 
Reactome [35], WikiPathways [36], TRANSFAC [37], 
miRTarBase [38], Human Protein Atlas [39], and The 
Comprehensive Resource of Mammalian Protein Com-
plexes (CORUM) [40].
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Drug metabolism genes’ sex-specific gene-regulatory 
relationships
To determine the network property differences between 
male and female gene-regulatory networks around 
drug metabolism genes, we downloaded the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)’s drug 
metabolism gene list (KEGG_DRUG_METABOLISM_
CYTOCHROME_P450.v2022.1.Hs.gmt) from MSigDB 
via Gene Set Enrichment Analysis (GSEA)’s website in 
Jan 2023 (https://www.gsea-msigdb.org/gsea/msigdb/
human/collections.jsp) [34, 41, 42].

Weighted in-degree difference
We used the default parameters for the calcDegree func-
tion from the pandaR package to calculate the weighted 
in-degree for each drug metabolism gene for each sex-
specific tissue network. By using the default parameters, 
we did not transform or filter the Z-Scores from the 
PANDA networks, as previously reported [21, 23]. Then 
we compared weighted in-degree between the sexes by 
conducting a Wilcoxon rank sum test with continuity 
correction applied across each tissue and then made a 
Bonferroni-corrected p-value adjustment [43]. We also 
calculated the median of the weighted in-degree dif-
ference between the male and female drug metabolism 
genes for each tissue.

Sex-biased edges and targeting
We examined if genes had different proportions of sex-
biased edges (i.e., predicted transcription factor and 
gene regulatory relationship z-score > 2 and only present 
in one sex’s network) between the male and female liver 
gene-regulatory networks. We defined each targeted gene 
as sex-divergent (i.e., the proportion of sex-biased edges 
in the male- and female-biased directions is between 0.4 
and 0.6), female-biased (i.e., the proportion of sex-biased 
edges in the female direction is greater than 0.6), or male-
biased (the proportion of sex-biased edges in the male 
direction is greater than 0.6) as previously reported by 
Lopes-Ramos et al. [19].

Specific edges activator and repressor relationships
For the liver sex-specific gene-regulatory networks, we 
determined the predicted regulation of the transcription 
factor and targeted drug metabolism genes by finding the 
Pearson correlation between a given transcription factor 
gene’s qsmooth normalized expression and the targeted 
drug metabolism gene’s qsmooth normalized expression. 
The Pearson correlation has been applied to PANDA 
network regulatory relationships in Kuijer et al. [44]. If 
the Pearson correlation was significant after Benjamini-
Hochberg (BH) p-value adjustment and positive, we 
defined these edges as activator edges. If the Pearson cor-
relation was significant after BH p-value adjustment and 

negative, we described these edges as repressor edges. If 
the correlation was not significant, we defined these rela-
tionships as undefined. We applied this in a sex-specific 
manner where we only correlated the transcription fac-
tor and target gene’s expression by sex and in a non-sex-
specific manner.

Once we identified these predicted regulatory relation-
ships, we determined which relationships (i.e., edges) dif-
fered or were the same between the male and female liver 
gene-regulatory networks for drug metabolism genes. 
Then, we used functional enrichment analysis via gpro-
filer2 to determine enriched pathways and annotated 
gene sets for sex-specific relationships (i.e., male activa-
tors, male repressors, female activators, male repressors) 
[32]. We compared the enriched Biological Process GO 
terms across these sex-specific relationships by semantic 
similarity based on the method proposed by Wang 2007 
[45], which considers the relationship of GO terms in 
the GO hierarchy via the GOSemSim R package (version 
2.24.0) [45, 46]. We used functions from rrvgo (version 
1.10.0) (getGoTerm, loadOrgdb, getGoSize, reduceSim-
Matrix) to create GO term common parent terms from 
the enriched pathways based on the parent term in the 
GO hierarchy and the Wang semantic similarity [47]. We 
plotted the enriched pathway results in a heatmap and 
clustered them using ComplexHeatmap (version 2.14.0) 
[48].

To determine if there are more activator- or repressor-
predicted gene-regulatory relationships impacting drug 
metabolism genes in sex-specific networks, we deter-
mined the difference in the sum of the activator edge 
weights and the sum of the repressor edge weights for 
each sex. If this value for a drug metabolism gene is posi-
tive, there are more activator edges than repressor edges. 
If this value for a drug metabolism gene is negative, then 
more predicted repressor relationships exist. We applied 
a Wilcoxon rank sum test with continuity correction to 
determine if there was a difference in the targeting rela-
tionships between male and female liver gene-regulatory 
networks of drug metabolism genes.

Permutation testing of sex-biased gene expression and 
sex-biased core genes of SBAE-associated drug targets and 
core genes of sex-specific communities
In a previous study with the GTEx project, Oliva et al. 
identified sex-biased expressed genes for 44 different tis-
sues [17]. We downloaded the sex-biased gene expression 
results in March 2023 from the GTEx portal (https://
www.gtexportal.org/home/datasets). We assessed SBAE-
associated drug targets and drug metabolism enzyme 
genes for sex-biased gene expression across each tis-
sue (i.e., the GTEx sex-biased gene sets). We performed 
permutation testing by randomly selecting 84 drug tar-
gets (the same number of SBAE-associated drug targets 

https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp
https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp
https://www.gtexportal.org/home/datasets
https://www.gtexportal.org/home/datasets
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we identified) 1,000 times with a one-sample Wilcoxon 
signed rank test and a BH-multiple hypothesis test cor-
rection. We applied the same approach for the drug 
metabolism genes but with 71 or 64 for drug metabolism 
genes expressed in the liver tissue or the liver gene-reg-
ulatory networks, respectively. We repeated this permu-
tation approach with the core genes of the sex-specific 
gene-regulatory communities for both SBAE-associated 
drug targets and drug metabolism genes.

Results
SBAE-associated drugs are enriched for known drug 
metabolism genes and drug targets
We first used the FAERS database to identify drug-
adverse event pairs more likely to occur in one sex by 
requiring that each drug-adverse event pair have at least 
five cases for both sexes to ensure selection for sex-biased 
and not just sex-specific adverse events (i.e., where the 
condition occurs in one sex such as prostate cancer). 
Similar to previous studies with the FAERS database [6, 
8, 10], we identified more drug-adverse event pairs with 
a female bias than a male bias (2132, female; 748, male) 
(Fig. 2A and Supplemental File 3). When we investigated 
the most common SBAEs based on the number of sig-
nificant drug-adverse event pairs, malignant neoplasm 
progression, acute kidney injury, and death were the top 
three male-biased adverse events. The top female-biased 
adverse events were alopecia, urinary tract infection, and 
drug hypersensitivity (Supplemental Figs. 1 & 2). Some of 
these adverse events are known to have higher incidents 
in one sex, for example, male-biased malignant neo-
plasm progression and female-biased alopecia and uri-
nary tract infection [6, 10]. In accordance with previous 
literature using FAERS and other independent databases 
and studies, we identified drugs for both male-biased and 
female-biased drug-adverse event pairs that were identi-
fied as sex-biased, such as warfarin [49], cholecalciferol 
[50], prednisone [51], methotrexate [52], and denosumab 
[53], which were in the top three male and female-biased 
adverse events (Supplemental Figs. 3 & 4).

Across the 2,880 significant sex-biased drug-adverse 
event pairs, we identified 610 male- or female-biased 
adverse events (i.e., the biological symptom). Of those, 77 
adverse events were shared by male-biased and female-
biased drug-adverse event pairs, which was not a signifi-
cant overlap (p-value = 0.293085, hypergeometric test) 
(Fig.  2B). However, there was a significant enrichment 
of shared SBAE-associated drugs between male-biased 
and female-biased drug-adverse event pairs. We found 
that 208 of the 416 unique SBAE-associated drugs from 
those drug-adverse event pairs were significantly asso-
ciated with male and female drug-adverse event pairs 
(p-value = 2.524481e-11, hypergeometric test) (Fig.  2C). 
When we clustered the 50 most common drugs and the 

50 most common adverse events from those 2,880 signif-
icant drug adverse-event pairs by their logROR, we found 
they clustered most strongly based on the SBAE (Sup-
plemental Fig.  5). This suggests that particular adverse 
events are more susceptible to SBAEs compared to par-
ticular drug mechanisms.

After identifying these sex-biased drug-adverse event 
pairs, we determined drug metabolism genes and tar-
gets enriched in the known drug metabolism enzymes 
and targets of SBAE-associated drugs via permutation 
testing of a matched number of random drugs. From 
this, we identified 32 known drug metabolism genes 
enriched in the known targets of SBAE-associated drugs 
(Fig.  2D). The most prevalent known drug metabolism 
enzyme across our identified SBAE-associated drugs, 
CYP3A4, is also the most prevalent drug metabolism 
enzyme for FDA-approved drugs overall, as an esti-
mated 50% of FDA-approved drugs are metabolized by 
this enzyme [54]. For drug targets, we identified 84 drug 
targets enriched in the known drug targets of our iden-
tified SBAE-associated drugs compared to random drug 
selection (Fig. 2E). Two of the top three SBAE-associated 
drug targets were adrenergic receptors (i.e., ADRA1A & 
ADRA2A). These receptors are already known to have sex 
differences in locus coeruleus (LC)-norepinephrine (NE) 
arousal activity in different brain regions due to higher 
estradiol presence in females compared to males, which 
has been hypothesized to increase norepinephrine (NE) 
arousal in females [55].

The gene-regulatory network neighborhoods around drug 
metabolism genes differ between males and females in the 
liver
Previous studies have identified that many drug metabo-
lism genes have sex-biased gene expression in the liver 
[14–17], so we chose to investigate sex-specific liver 
gene-regulatory networks to determine if there are 
potential gene regulation differences of drug metabo-
lism genes between males and females in the liver. There-
fore, we constructed sex-specific liver gene-regulatory 
networks via the PANDA network methodology, repre-
senting the predicted regulatory relationship between 
transcription factors and target genes [56]. To investi-
gate the immediate node neighbors (i.e., the network 
neighborhoods), we calculated the weighted in-degree 
(describes the magnitude of the predicted transcription 
factor regulation of a gene) of drug metabolism genes 
(as annotated by KEGG, n = 64) in the sex-specific liver 
networks [41]. We found that drug metabolism genes 
had a higher weighted in-degree (i.e., more targeted) 
in the female network compared to the male network 
(median of the degree difference of drug metabolism 
genes = 34.15683) (Fig.  3A). To confirm if this relation-
ship is specific to drug metabolism genes, we compared 
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the degree difference of drug metabolism genes to other 
genes in these liver networks. We found a significant 
difference via a Wilcoxon rank sum test with continuity 
correction (W = 663,550, p-value = 1.48 × 10− 8) (Fig.  3A). 
Additionally, we determined that this relationship is spe-
cific to only a few tissues by comparing male and female 
PANDA networks in 42 of the other GTEx tissues and 

applying the same Wilcoxon test followed by a Bonfer-
roni correction (Fig.  3B). Six other tissues besides the 
liver (“Brain Hypothalamus,” “Artery Coronary,” “Brain 
Anterior Cingulate Cortex [BA24],” “Heart Left Ven-
tricle,” “Brain Nucleus Accumbens [basal ganglia],” and 
“Small Intestine-Terminal Ileum”) had more transcrip-
tion factor targeting in female networks. In comparison, 

Fig. 2  Sex-biased drug-adverse event pairs in FAERS. (A) Volcano plot of the log-transformed reporting odds ratio (ROR) and the negative log-transformed 
Benjamini-Hochberg p-values from Fisher’s exact test of overlap of drug and SBAEs. (B) Overlap of drugs from male- and female-biased drug-adverse 
event pairs. (C) Overlap of adverse events from male- and female-biased drug-adverse event pairs. (D) Boxplot of the number of randomly selected drugs 
with SBAE drug targets. (E) Boxplot of the number of randomly selected drugs with SBAE drug enzyme. Green dot is the number of SBAE-associated drugs 
with drug target or drug enzyme
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Fig. 3  The neighborhood of sex-specific liver gene-regulatory networks around drug metabolism genes. (A) Degree difference distributions of the sex-
specific liver networks for drug metabolism genes compared to all other genes. (B) Bar plot of the negative log-transformed p-value from the Wilcoxon 
test with colored bars showing the degree difference of drug metabolism genes between female and male sex-specific networks by tissue. For the bar 
plots, purple is a higher degree in female networks, and teal is a higher degree in male networks. The black dotted line is the p-value cutoff for the Bonfer-
roni hypothesis test correction
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three other tissues (“Pancreas,” “Minor Salivary Gland,” 
and “Artery Aorta”) had more transcription factor tar-
geting in male networks. However, the liver is the most 
significantly different tissue based on the Wilcoxon 
rank sum test with continuity correction with a Bonfer-
roni correction (Fig.  3B), and our results indicate that 
more transcription factors are predicted to regulate drug 
metabolism in the female liver gene-regulatory network 
compared to the male.

We were also interested in determining groups of tran-
scription factors and genes that are more interconnected 
in their edge relationships in one sex-specific network 
than the other sex-specific network (i.e., sex-specific 
communities) in the liver. We identified eight female-
specific communities and 11 male-specific communities. 
When we investigated which communities contained the 
most drug metabolism genes, we determined that female 
community number two included 41 of the 64 drug 
metabolism genes, and the other drug metabolism genes 
were contained in four other female-specific commu-
nities (Supplemental Fig.  6). However, in the male net-
work, we found that drug metabolism genes were divided 
between two male-specific communities (communities 
four and five), which contained 19 and 17 of the 64 drug 
metabolism genes, respectively (Supplemental Fig.  6). 
The eight other male-specific communities contained 
the remaining 28 drug metabolism genes. We conducted 
functional enrichment analysis on the core genes (core 
genes have the highest differential modularity score, a 
score used to determine the sex-specific communities) of 
all the liver sex-specific communities. Several transcrip-
tional pathways from KEGG and Reactome were similar 
between the female and male drug metabolism enzymes 
communities, such as the RUNX protein-associated 
pathways and nuclear receptor transcription pathway 
(i.e., liver female-specific community number two and 
male-specific communities numbers four and five). How-
ever, male-specific community number four had several 
pathways associated with FOXO transcription activities 
(i.e., “FOXO-mediated transcription of cell death genes,” 
“FOXO-mediated transcription,” “Regulation of FOXO 
transcriptional activity by acetylation,” “Regulation of 
localization of FOXO transcription factors,” and “FOXO-
mediated transcription of cell cycle genes”) that were not 
shared with female-specific community number two and 
male-specific community five (i.e., the sex-specific liver 
communities with the most drug metabolism genes). 
Interestingly, previous aging studies have found that 
sex-dependent single nucleotide polymorphisms (SNPs) 
in FOXO1A (a protein important for regulating energy 
metabolism in the liver) are associated with increased 
longevity in females [57, 58] (Supplemental File 4).

For each community, we found differing transcription 
factor and gene differential modularity scores, which 

describe how important that transcription factor or gene 
is to community integrity (i.e., if the node was removed, 
would the community structure still be present). We 
found that four drug metabolism genes, CYP2E1, 
CYP3A43, GSTM4, and UGT2B17, were also core genes 
in the male-specific liver communities (i.e., these genes 
had the highest differential modularity score). There 
was no significant enrichment of core genes in the drug 
metabolism gene set compared to randomly selected 
genes for sex-biased, female-biased, and male-biased 
liver core gene lists (Supplemental Fig. 7).

Liver sex-specific networks have different drug metabolism 
gene-regulatory relationships
We next investigated the network edges representing 
the predicted regulatory relationship between a given 
transcription factor-gene pair that involved a drug 
metabolism gene (Fig.  4A). Across all the known drug 
metabolism enzyme genes, we identified three female-
biased targeted genes, GSTO2, CYP2D6, and ALDH3A1 
(i.e., the proportion of sex-biased edges in the female 
direction was greater than 0.6), and four male-biased tar-
geted genes, MAOA, AOX1, MGST1, and ALDH3B1 (i.e., 
the proportion of sex-biased edges in the male direction 
was greater than 0.6). When we compared the sex-biased 
targeted genes and the SBAE-associated drug metabo-
lism enzymes, both CYP2D6 and MAOA were drug 
metabolism genes of SBAE-associated drugs.

We calculated the Pearson correlation between tran-
scription factors and drug metabolism genes and sig-
nificance to identify types of potential regulatory 
relationships (i.e., BH p-value < 0.05). A significant posi-
tive correlation was an activator relationship, and a sig-
nificant negative correlation was a repressor relationship. 
About 52% of these edge relationships were unique to 
one sex (Fig. 4B). Interestingly, the only edge to have an 
opposite relationship between males and females was 
ONECUT1_GSTM3. While it was predicted to have 
an activator relationship in the female liver network 
(rho = 0.3511445), it was predicted to have a relatively 
weaker repressor relationship in the male liver network 
(rho = -0.1877166). Altogether, these results highlight 
that 1453 of the 2801 edges (~ 51.87%) involving drug 
metabolism genes were unique to either sex. However, 
when the edges were present in both sexes, they had the 
same edge relationship (i.e., activator or repressor). Only 
1 of the 1348 shared edges (~ 0.07%) had an opposite rela-
tionship between males and females.

Given that about half of the drug metabolism gene 
edges were unique to one sex, we determined which GO 
Biological Processes were enriched between the distinc-
tive male and female edges. We applied semantic similar-
ity analysis to determine how similar the enriched GO 
terms were between the female and male activator and 
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Fig. 4  Predicted gene-regulatory relationships of drug metabolism genes in the sex-specific networks of the liver differ. (A) Heatmap of the male and 
female associated liver gene-regulatory edges of drug metabolism genes (x-axis) and transcription factors (y-axis). The coloring on the heatmap indicates 
the network(s) where an edge was present. The y-axis is annotated with the transcription factors with the most male or female edges. (B) Upset plot 
showing the intersection of activator and repressor transcription factor-gene edges in the female and male-specific liver networks. (C) A dendrogram of 
the enriched GO Biological Process terms of unique female and male activator/repressor edges. The “Common Parent GO Term[s]” clustering and selection 
were based on Wang’s semantic similarity. (D) A heatmap of the difference in activator and repressor edges of drug metabolism genes in the sex-specific 
liver networks (i.e., if the difference is positive, the drug metabolism gene is activator-targeted; if it is negative, it is repressor-targeted)
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repressor edges and the common parent GO term of all 
the enriched GO terms (Fig. 4C and Supplemental File 5). 
For all the unique sex-specific edges, “regulation of tran-
scription by RNA polymerase II” (unsurprising given the 
abundance of transcription factors due to the examina-
tion of gene-regulatory relationships) and “lipid meta-
bolic process” common parent GO terms were enriched. 
Male activator and repressor gene sets had more GO 
terms enriched for the following common parent GO 
terms than the female activator and repressor gene sets: 
“T-cell activation,” “nervous system development,” “glu-
cose homeostasis,” “cellular response to lipopolysaccha-
ride,” “cell differentiation,” “female pregnancy,” “positive 
regulation of cell population proliferation,” and “response 
to xenobiotic stimulus”. The parent term “female preg-
nancy,” which had more enriched GO terms with the 
male repressor and activator edges, included the fol-
lowing GO terms that relate to reproduction: “female 
courtship behavior,” “reproductive process,” “reproduc-
tion,” “developmental process involved in reproduction,” 
“multi-organism reproductive process,” and “female preg-
nancy” ​​(Supplemental File 5). Overall, the number of 
male-biased common parent GO term groups (i.e., 8 of 
10 common parent GO terms across all enriched path-
ways) indicates that liver male-specific edges of drug 
metabolism genes are potentially involved in more bio-
logical programs than female-specific edges.

For each drug metabolism enzyme gene, we determined 
if it had more activator or repressor targeting in the sex-
specific networks (similar to the degree difference analy-
sis in Fig.  3A). In the female-specific liver network, we 
found 30 activator-targeted drug metabolism genes (i.e., 
a positive difference of activator and repressor edges of 
drug metabolism genes in the sex-specific liver networks) 
and 33 repressor-targeted drug metabolism genes (i.e., 
a negative difference of activator and repressor edges of 
drug metabolism genes in the sex-specific liver networks) 
(Fig. 4D). However, in the male-specific liver network, we 
identified 24 activator-targeted and 39 repressor-targeted 
drug metabolism genes (Fig.  4D). In addition, 16 drug 
metabolism genes had opposing targeting relationships 
between males and females. GSTM1, UGT1A8, CYP1A2, 
ADH1B, and ADH1A were more activator-targeted in 
the male liver network, while they were more repressor-
targeted in the female liver network. However, ADH4, 
CYP2C19, CYP2D6, FMO3, FMO5, GSTA1, GSTK1, 
GSTZ1, UGT2B10, UGT2B11, and UGT2B7 were more 
activator-targeted in the female liver network and more 
repressor-targeted in the male liver network. Five of the 
11 differentially targeted drug metabolism genes were 
SBAE-associated drug metabolism enzyme genes, which 
might explain some SBAEs, including those associated 
with CYP2D6, which metabolizes 25% of drugs currently 
on the market (Fig.  2D) [59]. However, we determined 

that the activator and repressor targeting of the drug 
metabolism genes in males and females was not signifi-
cantly different (Wilcoxon rank sum test with continuity 
correction, W = 2347, p-value = 0.07735).

SBAE-associated drug targets were more likely to have sex-
biased gene expression and be core genes in sex-specific 
gene-regulatory networks than other drug targets
Building on previously identified sex-biased gene expres-
sion in GTEx, we determined if the SBAE-associated 
drug targets we identified above also had sex-biased 
gene expression (Fig.  5A) [17]. We found that 52 of the 
84 (~ 62%) SBAE-associated drug targets had sex-biased 
gene expression in at least one tissue (29 had higher male 
gene expression in at least one tissue, and 35 had higher 
female gene expression in at least one tissue). We con-
ducted permutation testing to determine if our identified 
SBAE-associated drug targets were more likely to have 
sex-biased gene expression than random sets of drug tar-
gets (Supplemental Fig. 8). Across the GTEx tissues, we 
found that our identified SBAE-associated drug targets 
were significantly enriched (BH-adjusted p-value < 0.05) 
for sex-biased gene expression compared to randomly 
selected drug targets with respect to both female-biased 
(24 of 44 tissues) and male-biased (7 of 44 tissues) gene 
expression gene sets. The enrichment of SBAE-associated 
drug targets with sex-biased gene expression indicates 
that SBAEs could be due to drugs perturbing genes with 
sex-biased gene expression.

Furthermore, we explored ADRA1A, DRD1, and 
ADRA2C, the top three male-biased SBAE-associated 
drug targets based on the Euclidean distance clustering 
of sex-biased gene expression across tissues (Fig.  5A) 
[48]. 26, 13, and 18 SBAE-associated drugs had ADRA1A, 
DRD1, and ADRA2C as a drug target, respectively. Both 
ADRA1A and ADRA2C are adrenergic receptors and 
are important for locus coeruleus (LC)-norepinephrine 
(NE) arousal activity [55]. While the adrenergic α2C-
receptors (ADRA2C) have been shown to influence 
aggression behaviors in male mice, neither study investi-
gated female mice in their study design [60, 61]. Of the 
52 male-biased drug-adverse event pairs with SBAE-
associated drugs with ADRA1A as a drug target, 20 
male-biased adverse events were related to psychiatric 
disorders (Supplemental Fig.  9A). In contrast, only one 
of the 126 female-biased ADRA1A adverse events was a 
psychiatric disorder (Supplemental Fig. 9B). The highest 
male-biased adverse event preferred term was aggres-
sion which has the system organ class assignment of psy-
chiatric disorder (Supplemental Fig.  9C). ADRA1A had 
male-biased gene expression in five GTEx brain regions 
compared to females (“Brain Substantia Nigra,” “Brain 
Nucleus Accumbens Basal Ganglia,” “Brain Putamen 
Basal Ganglia,” “Brain Amygdala,” and “Brain Spinal Cord 
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Cervical c.1”) (Fig. 5A). Additionally, 18 SBAE-associated 
drugs had ADRA2C as a drug target. 17 of 31 male-biased 
drug-adverse event pairs of SBAE-associated drugs with 
ADRA2C as a drug target were male-biased for psychi-
atric disorder adverse events (Supplemental Fig. 10A). In 
contrast, only one of the 63 female-biased adverse events 
was a psychiatric disorder (Supplemental Fig.  10B). 
Aggression was the highest preferred term for male-
biased drug-adverse event pairs with ADRA2C as a drug 
target (Supplemental Fig.  10C). This gene’s expression 

is only sex-biased in the hypothalamus (male-biased) 
(Fig. 5A). Lastly, DRD1, a D1 dopamine receptor-coding 
gene, is the most abundant dopamine receptor subtype in 
the central nervous system [62]. 12 of the 21 male-biased 
drug-adverse event pairs of SBAE-associated drugs with 
DRD1 as a drug target also had male-biased psychiatric 
disorder adverse events (Supplemental Fig.  11A). How-
ever, only one female-biased psychiatric disorder adverse 
event was associated with a drug that targets DRD1 
(Supplemental Fig. 11B). However, DRD1 does not have 

Fig. 5  Most SBAE-associated drug targets have sex-biased gene expression or are sex-specific community core genes. (A) Sex-biased gene expression 
of SBAE-associated drug targets across tissues. (B) SBAE-associated drug targets were sex-specific gene-regulatory network core genes across tissues. 
Euclidean distance clustering with ComplexHeatmap’s complete algorithm was used for both heatmaps
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sex-biased gene expression in GTEx brain tissue RNA-
Seq data (Fig.  5A). Additionally, aggression had three 
male-biased adverse events, the highest along with hallu-
cination, for SBAE-associated drugs with DRD1 as a drug 
target (Supplemental Fig.  11C). DRD1 genetic variation 
and gene expression in different brain regions has been 
implicated with aggression, cognitive impulsivity, and 
psychosis [63–67]. It is currently unclear from the litera-
ture if there is documentation of sex-biased DRD1 gene 
expression affecting aggressive phenotypes.

The top three female-biased drug targets with the high-
est number of tissues with female-biased gene expres-
sion were FCGR2B, AR, and CACNA1S [48]. 6, 28, and 6 
SBAE-associated drugs had FCGR2B, AR, and CACNA1S 
as drug targets, respectively. 7 of the 45 female-biased 
drug-adverse event pairs with SBAE-associated drugs 
targeting FCGR2B had female-biased adverse events 
related to general disorders and administration site con-
ditions, and six female-biased drug-adverse event pairs 
were infections and infestations (Supplemental Fig.  12). 
FCGR2B is expressed by many immune cells, and previ-
ous literature identified that macrophages have higher 
Fcgr2b expression in female mice [68, 69]. In addition, 
many SNPs of FCGR2B are associated with an increased 
risk of systemic lupus erythematosus, an autoimmune 
disease known to be more prevalent in females than 
males [69–71]. AR is the androgen receptor that interacts 
with androgens, including testosterone, and this recep-
tor is important for sex differences in neural circuitry 
and metabolism [72]. Its expression was female-biased 
in 26 tissues, including 9 of 13 brain regions (Fig.  5A). 
However, its expression was also male-biased in the tib-
ial nerve and the subcutaneous adipose tissue (Fig. 5A). 
While this gene’s expression was female-biased across 
26 GTEx tissues, perturbing AR is associated with both 
male- and female-biased adverse events related to psy-
chiatric disorders and nervous system adverse events, 
respectively (Supplemental Fig. 13A & B). 11 of the 110 
female drug-adverse event pairs we identified with AR as 
a drug target had female-biased nervous system adverse 
events, and 11 of the 60 male drug-adverse event pairs 
were related to male-biased psychiatric disorders (Sup-
plemental Fig.  13A & B). Lastly, CACNA1S has female-
biased expression in 11 of the 13 GTEx brain regions 
(Fig.  5A), and 9 of the 58 female-biased drug-adverse 
event pairs with CACNA1S as a drug target were related 
to the nervous system (the second highest number of 
female-biased drug-adverse events) (Supplemental 
Fig. 14). Overall, these cases highlight a potential connec-
tion between a drug target’s sex-biased gene expression 
and their most common adverse events.

We also hypothesized that SBAEs might be due to drug 
targets that are core genes of sex-specific communities. 
We built sex-specific tissue networks for 43 different 

tissues based on the gene expression data from the GTEx 
project. We identified sex-specific communities within 
each tissue using the same process for the liver gene-
regulatory network analysis above. We selected 100 core 
genes for each sex-specific community from the top 
100 highest differential modularity score genes in each 
sex-specific community. In total, 58 of the 84 (~ 69%) 
SBAE-associated drug targets were a core gene of a sex-
specific gene-regulatory network in at least one tissue 
(Fig. 5B). 41 of the 84 (~ 49%) SBAE-associated drug tar-
gets were male core genes in at least one tissue, and 43 
of the 84 (~ 51%) drug targets were female core genes in 
at least one tissue. In total, SBAE-associated drug targets 
were enriched for female sex-specific community core 
genes in 34 tissues and for male sex-specific community 
core genes in 32 tissues (permutation testing with BH-
p-value < 0.05) (Supplemental Fig. 15). We found that the 
nuclear receptors PPARA, PGR, PPARG, AR, and NR3C1, 
known to be regulated by hormone signaling (including 
sex hormones [73]), were drug targets and core genes to 
more than half of the tissues analyzed [73]. Additionally, 
PPARA is not differentially expressed between males and 
females in the GTEx dataset, while the other core genes 
had sex-biased gene expression in at least one tissue. 
We found one study where a PPARα agonist treatment 
before a stroke was neuroprotective in male mice but not 
females, suggesting that perturbation of PPARα might be 
sex-dependent [74]. Therefore, PPARA is an example of 
a gene that was a sex-biased gene-regulatory core gene 
without sex-biased gene expression, but where there was 
literature evidence of a sex-dependent PPARα agonist 
treatment drug response.

Overall, we found that 71 of the 84 (~ 85%) drug targets 
had either sex-biased gene expression (~ 62%) or high dif-
ferential modularity in sex-specific communities (~ 49%) 
(Supplemental File 6). 39 of 71 drug targets overlapped 
between the sex-biased gene expression list and the core 
gene list, and 13 and 19 drug targets were only identified 
by sex-biased gene expression or core genes, respectively. 
We found that 194 of the 389 (~ 50%) SBAE-associated 
drugs we identified had at least one of the 71 drug tar-
gets we identified as having sex-biased gene expres-
sions or core genes of sex-specific communities. These 
SBAE-associated drug target sex-biased differences in 
gene expression and gene-regulatory networks support 
our hypothesis that SBAE-associated drug targets are 
enriched for sex differences in gene expression.

Discussion
Prior pharmacovigilance studies have identified SBAEs, 
and multiple studies have investigated sex differences in 
gene expression and gene-regulatory networks, implicat-
ing their role in drug metabolism and response [6–11, 14, 
18, 23]. In this study, we sought to identify if there are sex 
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differences in gene expression and the gene-regulatory 
networks of the drug targets of SBAE-associated drugs. 
We first identified 32 drug metabolism enzymes and 84 
drug targets enriched for SBAE-associated drugs. The 
liver gene-regulatory neighborhood and edges differed 
for drug metabolism enzymes between male and female 
gene-regulatory networks. Additionally, we found that 
SBAE-associated drug targets were more likely to be sex-
biased expressed genes and the core genes of sex-specific 
gene-regulatory communities than randomly selected 
drug targets. Our findings support the hypothesis that 
some SBAEs may be due to drugs perturbing genes with 
sex-biased gene expression or gene-regulatory network 
properties.

Like previous pharmacovigilance studies with similar 
methods, we identified more than twice as many female 
SBAEs as male SBAEs [6, 8, 10]. Additionally, we identi-
fied 610 male- or female-biased adverse events, and the 
top three male- and female-biased drugs associated with 
SBAEs were also identified previously [49–53]. These 
findings are clinically relevant. For example, the second 
most common male-biased adverse event we identified 
was acute kidney injury (AKI). It is known that drug-
induced AKI is a common cause of AKI, accounting 
for approximately 19% of AKI in hospital settings [75, 
76]. We also identified drug hypersensitivity as female-
biased, supported by previous reviews of pharmacovigi-
lance studies [77] and evidence suggesting multifactorial 
explanations for why females are more likely to have drug 
hypersensitivity, including potential genetic and epi-
genetic causes [78]. Our results highlight the need for 
more research investigating causal relationships between 
adverse events, drug mechanisms, and sex differences.

In this study, we also expanded upon previous stud-
ies examining sex differences in drug metabolism genes 
in the liver. CYP3A4 has higher gene expression, pro-
tein expression, and activity in females and was the most 
common drug metabolism enzyme across the SBAE-
associated drugs we identified [79]. We also found that 
CYP3A43 was a male core gene. In addition, two of the 
SBAE-associated drug targets, CYP2D6 and MAOA, were 
female- and male-biased targeted in the sex-specific liver 
gene-regulatory networks. While MAOA was the 24th 
most common SBAE-associated drug metabolism gene, 
CYP2D6 was the second most common SBAE-associated 
drug metabolism gene, and it was estimated 25% of drugs 
on the market use the CYP2D6 enzyme [59]. We identi-
fied two common drug metabolism enzymes enriched in 
SBAE-associated drugs with sex differences in liver gene-
regulatory networks.

We further applied gene-regulatory network method-
ology to explore if there are predicted sex differences in 
gene regulation in the liver. We found that drug metabo-
lism genes in the liver female gene-regulatory network 

are targeted more than in the male network via the 
weighted in-degree difference.In addition, the unique 
male liver network edges were involved in multiple bio-
logical processes, including “T-cell activation,” “nervous 
system development,” and “glucose homeostasis.” Our 
results support a potential female neighborhood struc-
ture where drug metabolism genes are more targeted 
than in the male liver network, and the transcription fac-
tors that regulate drug metabolism genes are involved in 
fewer biological programs than in the male network. This 
network structure further underscores that the influence 
of sex is complex for liver drug metabolism gene expres-
sion. For example, multiple biological processes utilize 
the same transcription factors as drug metabolism genes 
in the male-specific liver network. One common parent 
GO term from our GO semantic similarity analysis of the 
unique sex-specific edges of the drug metabolism genes 
was “glucose homeostasis.” Male repressor and activator 
edges were enriched for “glucose homeostasis,” “carbohy-
drate homeostasis,” “regulation of hormone levels,” “cel-
lular glucose homeostasis,” “homeostasis of number of 
cells,” and “cellular response to glucose stimulus.” A prior 
study found that long-term exposure to abnormal glucose 
levels affected the activity of drug metabolism enzymes 
in primary hepatocytes, but unfortunately, it did not state 
the donor sex of the cells used in the experiment or dis-
cuss the impact of sex [80]. Future studies are needed to 
delineate the role of gene-regulatory sex differences in 
drug metabolism to determine the relative contribution 
of gene expression, protein expression, and protein activ-
ity to SBAE.

In this study, we sought to evaluate our hypothesis that 
drugs associated with SBAEs are perturbing sex-biased 
gene expression and gene-regulatory networks. The 84 
enriched SBAE-associated drug target genes we iden-
tified were more likely to be expressed in a sex-biased 
manner and to be core genes than other drug targets 
across several tissues. In addition, we found that some of 
the SBAE-associated drug targets with sex-biased gene 
expression were associated with a common adverse event 
and associated sex-biased gene expression in the tissue 
manifesting that adverse event. For example, ADRA1A 
and ADRA2C were both associated with the male-biased 
adverse event of aggression. We found that these genes 
have higher expression in many brain regions in males 
than in females. However, we identified other SBAE-
associated drug targets with more complicated expres-
sion and network patterns. For example, AR, which codes 
for the androgen receptor, is known to be influenced 
by the sex hormone testosterone, which is dynamically 
secreted over hours and decades [81]. AR was among the 
top three female-biased expressed genes and sex-biased 
core genes in all 43 tissues (Fig. 5). We found that it had 
common female-biased adverse events of nervous system 
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disorders and male-biased adverse events of psychiat-
ric disorders, suggesting AR may contribute to different 
SBAEs for each sex.

There are some limitations to the current study. First, 
these results are associations and not causal relationships, 
so future studies are needed to investigate their causal-
ity. We have provided our computational workflows and 
complete results to facilitate their use as a resource for 
future studies. Also, we acknowledge that FAERS is based 
on case reports susceptible to reporting biases and miss-
ing data, and GTEx samples are skewed toward male sub-
jects and older individuals, with ~ 79% of the subjects at 
age 40 or above. Additionally, we found that RIN score 
and ischemic time are potentially confounding variables 
in the GTEx gene expression data. This technical varia-
tion could not be incorporated into the PANDA meth-
odology. Still, the sex-biased gene sets from Oliva et al. 
included RIN score and ischemic time as covariates in 
their analyses [17]. As we previously reviewed [4], other 
pharmacokinetic, pharmacodynamic, biological, socio-
economic, and environmental factors can influence drug 
response in combination with sex, such as solubility of 
the drug, body fat percentage, diet, ancestry, and age. 
Additionally, with respect to age, it has been noted in the 
literature that males experience more adverse events than 
females before puberty, but this changes after puberty 
[4]. Our study used the GTEx dataset in which ~ 79% of 
the samples are 40 and above; therefore, we were limited 
in investigating SBAEs that occur before puberty. This 
highlights another study limitation, since menopause 
occurs at an average age of around 50 and therefore, 
many of our female GTEx samples are likely post-meno-
pausal (though this was not reported). There are many 
hormonal and gene expression changes that occur during 
and after menopause, which may be related to the occur-
rence of sex-biased adverse events and could be followed 
up in future studies [82]. Other potential complexities of 
SBAEs could be due to drug delivery and/or dosing. That 
information is limited in the FAERS dataset due to lack 
of reporting. Additionally, a drug could disrupt one tissue 
which then affects multiple other tissues or multiple tis-
sues could be impacted by a drug directly. These potential 
complexities could be further explored in future studies.

Lastly, one critical limitation of this study is that we 
relied on bulk tissue RNA-Seq profiles from GTEx. With 
the invention of single-cell and spatial sequencing tech-
nology, the research community has determined gene 
expression differences between cell populations within a 
tissue sample [83–85]. For example, single-cell technol-
ogy was recently used to detect sex-biased gene expres-
sion and gene-regulatory networks in mouse brain and 
heart tissues [86]. Concerning our study, for example, 
because FCGR2B is associated with the immune sys-
tem, which was difficult to investigate with bulk gene 

expression profiles, other literature sources were added 
to help clarify our association of female-biased infections 
and infestations adverse events and FCGR2B female-
bias expression in immune cells [68–71]. Another limi-
tation of bulk tissue profiles was highlighted by tissues 
with multiple tissue regions sequenced by GTEx, like the 
brain. Because of this, we could associate more neuro-
logical and psychiatric disorder adverse events with drug 
targets than other tissues and adverse events. Therefore, 
future studies using a similar methodology applied to 
additional tissue subregions and single-cell profiles, par-
ticularly for organs involved in drug metabolism like the 
kidney and liver, are critical.

Conclusions
Here, we used data mining and network approaches to 
investigate not only the gene expression of both drug 
metabolism genes and drug targets of drugs associated 
with SBAEs but also examined network properties of sex- 
and tissue-specific gene-regulatory networks. While pre-
vious studies have focused on drug metabolism enzymes, 
we also investigated the known drug targets of SBAE-
associated drugs. Overall, we found supporting evidence 
that SBAEs could be caused in part by sex differences in 
drug metabolism enzyme and drug target gene expres-
sion and gene-regulatory network properties. These 
results are a valuable resource for future studies deter-
mining SBAE mechanisms to predict and prevent SBAEs 
and for sex-aware drug development and repurposing.
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