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Abstract

Macroglia (astrocytes and oligodendrocytes) are required for normal development and function of 

the central nervous system, yet many questions remain about their emergence during development 

of the brain and spinal cord. Here, we used single-cell/single-nucleus RNA sequencing (sc/sn-

RNAseq) to analyze over 298,000 cells and nuclei during macroglia differentiation from mouse 

embryonic and human induced pluripotent stem cells. We computationally identify candidate 

genes involved in fate specification of glia in both species, and report heterogeneous expression 

of astrocyte surface markers across differentiating cells. We then used our transcriptomic data 

to optimize a previous mouse astrocyte differentiation protocol, decreasing the overall protocol 

length and complexity. Finally, we used multiomic, dual single nuclei (sn)RNAseq/snATACseq 

analysis to uncover potential genomic regulatory sites mediating glial differentiation. These 

datasets will enable future optimization of glial differentiation protocols and provide insight into 

human glial differentiation.
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Macroglia, like astrocytes and oligodendrocytes, are among the last cells to emerge 

during the self-organization of the mammalian brain. Mapping the molecular mechanisms 

underpinning their development is integral for understanding the complex physiological 

heterogeneity of glia, and for understanding how developmental processes may go awry 

in disease states. Small subgroups of glia respond to insults very differently than other 

cells1,2; thus, understanding developmental processes that may inform this specialization 

is critical3. Single cell RNA sequencing (scRNAseq) has enabled identification of rare 

cells that play key roles in development and disease, which were previously impossible 

to observe with methods such as bulk sequencing4. The widespread implementation of 

scRNAseq has produced massive developmental cell atlases of mouse neurodevelopment5, 

early human developmental stages6, and has been used to track heterogeneity during 

the differentiation of stem cells7. These analyses have identified genes underpinning key 

moments in neurodevelopment, such as the emergence of the earliest astrocytes during the 

“gliogenic switch”5. In mice, this switch to astrocyte production seems to be controlled by 

a combination of various transcription factors (TFs) including Nfia8, Nfib9, Sox910,11, and 

signaling pathways like Notch12 (reviewed in13,14). Studies have begun to uncover regional 

specifications to this process15,16 in line with a recent focus on identifying brain-area 

specific astrocyte subtypes17,18.

In humans, much less is understood about the mechanisms directing gliogenesis19 and 

neurogenesis more broadly. The development of protocols to generate human astrocyte from 

pluripotent stem cells (PSCs) has enabled the transcriptional characterization of in vitro 
(differentiated) astrocytes in comparison with acutely isolated human fetal astrocytes, at bulk 

and single cell level20. Conversely, mouse astrocytes have been differentiated from mouse 

PSCs21–23 and characterized through bulk RNA sequencing21,24, but the time course of this 

differentiation in vitro has not yet been analyzed with scRNAseq.

Here, we present scRNAseq analysis of intermediate changes in astrocyte differentiated 

from both mouse embryonic stem cells (mESCs) and human induced pluripotent stem cells 

(hiPSCs). We analyzed ~56,000 cells at 3 timepoints from a previously-verified20 human 

astrocyte differentiation, and further analyzed another ~129,000 nuclei across 9 distinct 

hiPSC lines to ensure consistency across differentiations. In parallel, we prepared and 

analyzed ~113,000 cells and nuclei from 15 timepoints across multiple mouse astrocyte 

differentiation protocols22. We computationally identified intermediate and precursor cells 

in both mouse and human differentiation programs, as well as genes likely to inform fate 

specification for both species. We used insights from this dataset to shorten and simplify the 

mouse astrocyte differentiation protocol, and then used the shortened protocol to compare 

the effects of two different astrocyte differentiation paradigms (BMP4/FGF1 versus CNTF) 

on gene expression. We also used multiomic sequencing (dual single nuclei (sn) RNAseq/

snATACseq) to catalog noncoding genomic regions important for the acquisition of a glial 

fate, via associations between open chromatin signals and gene expression. Importantly, 

we report that our rapidly emerging mouse astrocytes demonstrate properties of mature 

astrocytes: transcriptomic and morphological responses to an inflammatory stimulus, and 

wound repopulation, measured using a scratch assay. Overall, understanding glia fate 
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specification will facilitate efforts to use these models to understand glial gene expression 

changes in neurodegeneration.

Results

Analysis of in vitro human astrocyte differentiation

To better understand gliogenesis in hiPSC cultures, we leveraged a serum-free differentiation 

protocol that generates a mixed culture of astrocytes, neurons, and oligodendrocyte lineage 

cells, mimicking a more physiological environment in which neural and glial cells grow 

together. We selected two intermediate timepoints, day 30 and day 50, corresponding to 

the completion of neurogenesis and the beginning of gliogenesis, respectively20, (Fig 1A, 

Extended Data Fig. 1A) to analyze with scRNAseq. We analyzed a total of 56,446 cells 

from 6 samples: 33,152 cells were collected from day 30 and day 50, with two independent 

replicates for each timepoint, and these data were integrated with the data from 23,294 

cells at the end of the differentiation (d74) sequenced in a previous study (two technical 

replicates)20. To confirm the robustness of our protocol and address potential inter-line 

variabilities, we performed independent differentiations using 9 iPSC lines from a collection 

derived from people with Alzheimer’s disease and unaffected controls, generated using the 

NYSCF automated reprogramming platform25. We then compared gene expression across 

lines at the single-nucleus level (128,830 nuclei total; see Methods). After integration, there 

were no major differences in gene expression or cell type representation between lines 

(Extended Data Fig. 2), corroborating the validity of the in vitro human differentiation to 

investigate gliogenesis. Cells differentiated from each line were also immunostained for 

cell-type marker genes, with similar staining patters noted across all 9 lines (Extended Data 

Fig. 2E). Following quality-control processing via the Muscat26 software package, 43,506 

cells from the time series dataset remained for analysis (Extended Data Fig. 1B,C). We used 

Harmony27 to integrate for data integration (Extended Data Fig. 1D), and then visualized 

the output using a force-directed graphical dimensional reduction (FLE28; Fig 1B,C). Using 

this approach, we identified clusters of mature neurons, astrocytes, and oligodendrocytes –as 

expected from our protocol– (Fig 1C), based on expression of canonical cell-type marker 

genes (Extended Data Fig. 3).

To explore intermediate stages of astrocyte development, we computed RNA velocities29 

for each cell using the ScVelo30 Python software package (Fig 1D). RNA velocity 

streamlines depict flow of the velocity vectors over time towards more mature clusters 

(Fig 1D arrowheads; neuron, astrocyte, oligodendrocyte). This temporal ordering is further 

reinforced by velocity-based pseudotime analysis (Supplemental Fig. 1A), and is consistent 

with labeling of the samples based on known experimental/differentiation time (Fig 1B). 

Finally, we observed a clear increase in expression over time for astrocyte marker genes 

(CLU, SPARC) when analyzing all cells per timepoint via pseudobulk (Supplemental Fig. 

2B), further underscoring the presence of intermediate glial cells in our dataset.

To better model changes in intermediate cell states we analyzed the data using Waddington 

Optimal Transport (WOT), an algorithm designed for time-series analysis of scRNAseq 

data7. Implementation of WOT within the CellRank software package31 uncovered 4 stable 

macrostates (Supplemental Fig. 1F), corresponding to two different clusters of mature 
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astrocytes (clusters 0, 2; Fig 1D), and one cluster each of neurons and oligodendrocytes 

(clusters 6 and 3 respectively; Fig 1D). Marker gene expression for both astrocyte clusters 

(clusters 0 and 2) are presented in Supplemental Fig. 1H. While cluster 0 expresses standard 

astrocytic marker genes like SPARCL1 and CLU, cluster 2 marker genes are harder to 

interpret, suggesting a potential culture artifact (although the top marker gene for Cluster 

2 is SPON1, a gene enriched in purified human astrocytes). For simplicity, we focused 

our subsequent analysis on astrocytes from cluster 0, which represent the majority of the 

astrocytes detected using these methods (15,993 cells in cluster 0; 8,136 cells in cluster 2).

Inspection of the WOT coarse transition matrix confirmed the extreme stability of these 3 

macrostates (Supplemental Fig. 1E; see Methods). The CellRank package was then used to 

calculate the probability for each cell to enter one of the three computationally identified 

macrostates (astrocytes cluster 0, oligodendrocytes, or neurons). These probability maps 

suggest that, in vitro, astrocytes and neurons share a common set of early progenitor cells 

that are likely to enter either state (Fig 1E,F, orange arrowhead; clusters 4 and 9 in Fig 

1C,D). These early neural/astrocytic progenitors are also transcriptionally distinct from 

precursor cells that are likely to become oligodendrocytes (Fig 1G). Cluster 4 potentially 

represents a multipotent radial-glia-like state, as it persists throughout the differentiation 

(Extended Data Fig. 3E). Genes enriched in cluster 9 include markers of neurogenesis like 

HES632 and ASCL133. This cluster had low cell cycle/proliferation scores (Supplemental 

Fig. 2B) and decreased in number over time (Extended Data Fig. 3E), suggesting its role 

as a very early progenitor (i.e. temporally prior to the return to cell cycling that defines 

early astrogenesis34). Consistent with this classification, cells from the proliferative cluster 

(Fig 1C, cluster 5; see also Extended Data Fig. 4B for proliferation/mitotic scoring) are also 

very likely to become either astrocytes or oligodendrocytes based on WOT probability maps 

(Fig 1E–G), but are not likely to become neurons. Finally, these cells also express NHLH1 
(Extended Data Fig. 4C), an understudied TF recently denoted as a neuroblast marker in 

mouse neurogenesis5. In this human dataset, cells that express NHLH1 are fated to become 

either neurons or astrocytes, in contrast to the recent finding in mouse5.

Based on RNA velocity and fate probability maps, cells from cluster 5 are likely to form 

both astrocytes and oligodendrocytes, suggesting that this cluster may represent an early 

group of cells that are committed to gliogenesis. In addition to cell cycle genes like CENPF 
and MKI67, enriched genes for this cluster included HMGB2, known to be critical for 

astrogenesis in mice35; and published bulk RNA datasets report enrichment for HMGB2 
in acutely purified fetal human astrocytes36. We next investigated cells within this cluster 

that were more likely to become astrocyte versus oligodendrocytes, and similarly attempted 

to identify putative oligodendrocyte precursor cells (OPCs). Accordingly, the data were re-

clustered at a higher resolution (1.2 reclustered versus 0.3 original) to see if cluster 5 would 

splinter into separate astrocyte- and oligodendrocyte-fated clusters (Extended Data Fig. 4). 

The resulting cluster (cluster 13, pink arrow) is partially OLIG1+ (Extended Data Fig. 4D), 

but it has low probability of reaching the oligodendrocyte fate (Fig 1G); it is also positive 

for OLIG2 (Extended Data Fig. 3C), a key gene in mouse oligodendrogenesis19. Thus, 

these observations are consistent with identifying cluster 13 as a putative pre-OPC state in 

human cells, potentially similar to a purported pre-OPC state identified recently in a major 

scRNAseq analysis of mouse neurogenesis5. The two clusters directly adjacent to cluster 
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13 (clusters 4 and 6; green and orange arrows) also have high probability of becoming 

oligodendrocytes, and express both EGFR and DLL3 (Extended Data Fig. 4C), consistent 

with identifying these clusters and cluster 13 as pre-OPCs37. Pseudobulk analysis of gene 

expression for these genes reflects this pattern (Supplemental Fig. 3), where expression of 

OPC genes peaks and then declines during differentiation.

Identification of genes correlated with fate decisions

To further investigate intermediate stages in glial development we searched for genes most 

highly correlated with fate probabilities for a given macrostate. For each cell in the dataset, 

the odds were computed to reach a given macrostate versus the odds of differentiating into 

other cell types (Fig 1H–J). Consistent with the known order of emergence of cell types 

during brain development5, the overall odds for cells to become neurons decreased over time 

(Fig 1H), while the inverse was true for astrocytes and oligodendrocytes (Fig 1I,J). This 

observation suggests that human CNS cell types are specified in a similar order during both 

in vitro differentiation and normal development.

To determine how gene expression impacts the likelihood for early cells to differentiate 

into different types of CNS cells, we plotted cells highly expressing DCX (normalized gene 

expression > 3) in red to trace how decreasing DCX expression over the differentiation 

correlates with decreasing odds to acquire a neuronal cell fate (Fig 1H). Across all 

three time points, DCX-high cells (red) had consistently higher probability of becoming 

neurons compared to other cells (black). We then used the CellRank package to calculate 

a Fisher transformation of the correlation coefficient between gene expression and fate 

probability to identify genes highly correlated with neuronal fate acquisition. STMN2, 

a critical gene for neuron development and maintenance38, was most highly correlated 

with neuronal fate acquisition (r2=0.8789). Other genes highly correlated with neuronal 

fate acquisition included DCX (r2=0.6602), and two genes implicated in neuron-specific 

alternative splicing39, ELAVL4 (r2=0.7009) and ELAVL2 (r2=0.6452).

When we applied the same analysis to glia, we first found that the gene most correlated with 

the probability to become an astrocyte was TTYH1 (r2=0.7104), visualized by marking cells 

with high TTYH1 expression on the astrocyte-fate log odds plot (normalized expression 

> 3, Fig 1I). TTYH1 was not previously implicated in astrocyte differentiation, although 

recent reports suggested roles for the gene in murine neural stem cell differentiation40 

and in glioma41. Published bulk RNAseq datasets on purified primary astrocytes report 

TTYH1 expression is restricted to astrocytes, and increases with age36. Interestingly, both 

SPARC and SPARCL1 expression had similarly strong correlations with astrocyte fate 

acquisition probability (r2=0.6081 and 0.5509 respectively; Fig 1I). This finding supports 

a recent report42 suggesting opposing roles for these two genes during mouse astrocyte 

development, but with a convergence of mature astrocyte phenotype regardless of the prior 

SPARC/SPARCL1 status.

Finally, we examined acquisition of oligodendrocyte fate analysis, and identified UGT8 
(r2=0.7794) and MBP (r2=0.7638) as the genes most correlated with oligodendrocyte fate. 

Accordingly, the log odds graph was labeled for cells highly expressing MBP (normalized 

expression > 3), which marked the cells most likely to become oligodendrocytes at 50 days, 
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and then marked many more cells at 73 days (Fig 1J). This is consistent with the model that 

oligodendrocytes develop later in differentiation compared to other brain cell types.

Given the important role of TFs in specifying cell fates, we sought to identify TF activities 

differing between groups of cells. We opted to use BITFAM43, a recently developed 

algorithm for TF activity detection with improved accuracy and speed. Applying BITFAM 

to the human scRNAseq data revealed multiple TFs with high cluster-specific activity 

(Extended Data Fig. 5). TFs detected with putative activity in astrocytes included POU2F2 
in the cluster 2 astrocytes, which was recently identified as a potential driver of glioma 

formation from human astrocytes44, in addition to PAX2, which plays a key role in 

astrogenesis in mice45. Interestingly, in one of the neuron clusters we identified activity 

of ARID3B, a TF understudied in the brain, although one report highlights increased 

expression in fetal compared to adult mouse brain46. ID1 was highly enriched in two 

populations of glial progenitors, fitting with its recent identification as an astrocyte-subtype 

marker in mice47. BITFAM also detected ID3 activity specifically in the oligodendrocyte 

cluster, even though gene expression of this TF was higher in astrocytes, in line with 

observations from a recent scRNAseq analysis of human iPSC-derived oligodendrocytes48.

In sum, we used scRNAseq to analyze differentiating human brain cells in a mixed culture 

system. Using computational tools we uncovered several genes correlated with cell fate 

decisions, some of which have not been previously implicated in glial differentiation. These 

data suggest pathways and genes (e.g., TTYH1) that could be targeted during intermediate 

stages of human glial differentiation to optimize differentiation protocols and/or skew their 

output towards particular preferred cell types.

Optimization of a mouse astrocyte differentiation protocol

Next, we leveraged the insights obtained from the human differentiation analyses to better 

understand and to optimize the differentiation of astrocytes from mESCs. Much work over 

the past decade has implicated individual TFs19 and signaling molecules in mouse astrocyte 

differentiation from mESCs, so we sought to exploit the high fidelity afforded by scRNAseq 

to expand on previous studies. Moreover, a recent report suggested that current murine 

astrocyte differentiation protocols are unable to produce mature astrocytes23, in contrast 

to the thoroughly verified20 human differentiation protocol analyzed above. Other groups 

have also revealed a similar lack of maturity in astrocytes differentiated without critical 

developmental cues from neurons12,21, underscoring the benefit of the mixed cell-type 

cultures used in the human dataset, and further emphasizing the need to understand cell fate 

decisions in order to better optimize murine glial differentiations.

Starting from a serum-free astrocyte differentiation protocol22 that produces immature 

astrocytes from mESCs, we developed a modified protocol aimed at producing CNS 

astrocytes (Fig 2A; Extended Data Fig. 6A). Modifications initially included: 1) removing 

CNTF as a growth factor due to recent reports that it induces a reactive state in 

astrocytes21; 2) coating plates with poly-d-lysine and laminin during later protocol stages; 

and 3) removing retinoic acid and smoothened agonist to avoid induction of spinal cord 

identity49,50. We tested that this modified protocol eventually produces astrocytes by 

stimulating cells with CNTF and measuring Gfap expression, as astrocytes upregulate 
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Gfap in response to many reactive signals1. Robust GFAP staining levels were observed 

in cells differentiated from two distinct mESC lines after 12 days total using the modified 

differentiation: 4 days of embryoid body (EB) expansion, 4 days of adherent differentiation, 

then 4 days of differentiation with CNTF (Fig 2B). This was significantly faster than the 

onset of Gfap expression at 21 days, as noted for the original differentiation protocol22, 

although the modified differentiation also replicated the finding of lower GFAP levels in 

FGF/BMP4-treated cells (Extended Data Fig. 6E,F). This difference in Gfap expression 

timing are likely due to protocol modifications discussed above, although additionally, in 

the original study timepoints prior to 21 days were not analyzed. To ensure that the rapid 

Gfap induction was not caused by the use of a different mESC line compared to the 

original protocol22, a second mESC line was differentiated and also displayed robust GFAP 

immunostaining (Fig 2B). This high level of Gfap after stimulation with CNTF further 

supports the decision to exclude CNTF (at first) due to concerns of producing reactive 

cells1,51.

Early stages of mouse astrocyte differentiation

To better understand early astrocyte development, we analyzed gene expression during the 

first 12 differentiation days using scRNAseq, examining a total of 58,268 mouse cells 

after preprocessing with Muscat for quality control (Extended Data Fig. 6B,G–I). The first 

mouse dataset spans 9 timepoints (Fig 2A,C): from mESCs to embryoid bodies (EBs), 

through the intermediate adherent differentiation (AD) stage, and finally through exposure 

to FGF1/BMP4 (Fig 2A). As with the human data, batch effects were corrected using 

Harmony (Extended Data Fig. 6G). RNA velocity demonstrated a clear velocity flow away 

from the mESC and EB stages towards the intermediate stages (AD and FGF1/BMP4 

exposure; Fig 2D). Similar to the velocity results in the human dataset (Fig 1D), the velocity 

vectors for many of the intermediate stages were incoherent, which is a known aspect of 

velocity analysis52. Further, even though computed RNA velocity was high (Supplemental 

Fig. 4B), and the velocity streamlines aligned with known external timepoints (Fig 2D), 

the calculated velocity pseudotime was inaccurate based on the known order of the time 

series (Supplemental Fig. 4A). Calculating latent time based on the dynamic model of RNA 

velocity also failed to produce an accurate pseudotime (Supplemental Fig. 4C).

To employ non-RNA velocity modeling, the mouse dataset was analyzed with the WOT 

time series algorithm. The algorithm detected multiple macrostates consistent with the 

samples’ known temporal order, including one neuronal macrostate (state 4) and several 

non-neuronal states (Fig 2E). State 4 was assigned as neuronal given its high expression of 

Stmn2, Dcx, and Tubb3 (Extended Data Fig. 7A), while state 5 is likely an early astrocytic 

progenitor based on enrichment for genes like Vim, Sparcl1, and Clu (Extended Data 

Fig. 7B). Identification of only two macrostates by the WOT algorithm was unsurprising, 

as this mouse astrocyte differentiation is not expected to produce a third cell type 

(oligodendrocytes), in contrast to the human protocol (Fig 1 and Discussion).

We next calculated the probability for each cell to enter either of the two macrostates 

(Fig 2F,G) in addition to genes correlated with probability to enter each state (Fig 2H, I). 

Consistent with the overall arc of the differentiation towards astrocyte production, most cells 
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in the dataset had a low chance of entering the neuronal state (Fig 2F), and instead had high 

odds to reach the non-neuronal state (Fig 2G). To investigate how the probability of reaching 

each state changes over the differentiation, the log odds to reach one state versus the other 

across all 9 timepoints were plotted and analyzed (Fig 2H, J). There was an overall decrease 

in the odds of reaching the neuronal state (state 4) over time, consistent with pseudobulk 

data demonstrating dramatic decreases in overall expression of neurogenic genes like Dcx, 

Tubb3, and Stmn2 across the span of the differentiation (Supplemental Fig. 5A).

We focused on the relationship between Dcx expression and neuronal fate acquisition by 

marking cells red if they expressed Dcx above a normalized threshold of 1 (Fig 2H, J). 

Mirroring findings from the human dataset, Dcx expression was clearly associated with 

higher odds to reach the neuronal state versus nonneuronal (Fig 2H), and conversely was 

anticorrelated with a cells’ chances to reach the nonneuronal fate (state 6; Fig 2J). Consistent 

with these observations, Dcx was one of the top 10 genes whose expression was most 

correlated with odds to reach state 4 (neuronal) versus state 6 (Supplemental Fig. 4I). Nhlh1 
and Nhlh2 were enriched in cells with high neuronal fate probability (Extended Data Fig. 

7C), two TFs recently suggested to mark a neuroblast population that exclusively generates 

neurons5. Finally, gene ontology (GO) analysis of the genes most correlated with neuronal 

fate (macrostate 4) was enriched for terms associated with neurogenesis (Fig 2I).

After examining genes likely to decide cell fate early in the differentiation, we next 

investigated how gene expression changes upon exposure to commonly used astrocyte-

specifying growth factors (FGF1/BMP4). We subset our mouse data with both days of 

AD and the three timepoints of exposure to FGF1/BMP4 (Fig 3A; Supplemental Fig. 6), 

performing dimensional reduction and clustering as per above (Fig 3B, C). This subset 

data was analyzed via WOT, identifying cluster 1 as a macrostate (Fig 3D, E) in addition 

to again recovering a neuronal state (cluster 3; Fig 3F). Cluster 1 expressed a host 

of genes implicated in astrocyte development, including the RNA-binding protein Qk53, 

Hmgb2, and the canonical astrocyte marker gene Slc1a3 (GLAST), in addition to cell cycle 

genes. Cluster 0 expressed Tgln and Tgln2, genes shown to promote migration and slow 

proliferation in other developmental systems54. These are also two well-known TGF-β target 

genes55, consistent with exposure to BMP4 during the differentiation, which is a major 

member of the TGFβ signaling family56.

Putative cell surface marker genes and transcription factors

Many groups are interested in cell surface markers as a means to purify glial and neuronal 

subtypes20,57. Accordingly, the early mouse differentiation data was compared with a 

scRNAseq dataset of early astrocytes acutely purified from 3-day-old mice using the cell 

surface marker ACSA-2 (Atp1b2)23. Data from the last five differentiation timepoints (AD 

and FGF1/BMP4 exposure) were integrated with the 3 replicates of P3 ACSA-2+ astrocytes 

(Fig 4A,B). RNA velocity analysis of this integrated datasets highlights flow from the 

putative pre-astrocyte differentiated cell cluster (cluster 0, Fig 4B) towards some of the 

cells from the P3 dataset (green arrowhead in Fig 4B). Particularly, this cluster (cluster 

0) expresses high levels of Mki67 (Fig 4C), which is consistent with the identification 

of Mki67+ cells as astrocytic precursors in the original P3 dataset23. Unlike in the P3 
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cells, there was minimal expression of Atp1b2 (ACSA-2) in the differentiated neuronal 

clusters and intermediate astrocyte clusters (Fig 4D). To investigate alternative candidates 

for purification of early astrocytes we examined expression of Slc1a3/GLAST, the original 

commercialized astrocyte cell surface marker (ACSA-1; Fig 4E). While heterogenous 

within P3 cells (Fig 4E), Slc1a3/GLAST expression was specific for cells that avoided 

the neuronal fate (red arrowhead in Fig 4B). Finally, we assessed cells for expression of 

Gfap, a traditional astrocyte marker gene (Supplemental Fig. 7D). While we did not observe 

any Gfap expression within our differentiating mouse cells, we did observe heterogeneous 

Gfap expression within the putatively pure P3 astrocyte population (Supplemental Fig. 7D). 

These observations are consistent with the known variability of Gfap expression across 

astrocytes, and with the lack of Gfap expression in the majority of differentiated mouse 

astrocytes21. We next applied BITFAM to these integrated data, and noted cluster-specific 

TF activity as with the human data (Fig 4F). Sox9 was active in primary astrocytes (cluster 

1), but not in any clusters from differentiated cells; this is consistent with higher Sox9 gene 

expression levels detected in primary cells compared to differentiated cells (Supplemental 

Fig. 7E). Overall, the integrated mouse data reveal potential drawbacks to using the popular 

ACSA-2 antibody for sorting immature astrocytes as Atp1b2 (ACSA-2) is induced later 

during the differentiation compared with Slc1a3, in line with the recent identification of 

Atp1b2/ACSA-2 negative glial progenitors in the murine cerebellum58.

Multiomic analysis of astrocyte differentiation protocols

We next analyzed two different growth factor combinations used to produce astrocytes 

from mESCs. To begin, we eliminated the EB stage of the differentiation protocol as there 

were minimal transcriptional changes during this stage (Fig 2C,D). With this faster, no-EB 

protocol, we then set up a time series experiment to compare the gene expression changes 

caused by CNTF exposure versus BMP4/FGF1. Samples were collected every 2 days for 6 

days to focus on early changes caused by these growth factors (Fig 5A).

To study TF activity and chromatin accessibility changes associated with astrocyte fate 

acquisition, we processed 55,137 nuclei across 6 time points (Fig 5A; Extended Data Fig. 

8) using the 10X Genomics multiomics assay, which allows simultaneous single-nucleus 

ATAC-seq (snATACseq) and single-nucleus RNAseq (snRNAseq) from the same nucleus 

(Fig 5B). The data were first analyzed for gene expression and RNA velocity as described 

above (Fig 5C; Extended Data Fig. 8C,D). Separately, we analyzed gene expression from 

each differentiation time series on its own (Supplemental Fig. 8), and identified genes 

correlated with fate acquisition via the WOT algorithm (Supplemental Fig. 8D,E,I,J). We 

also compared gene expression between the two conditions at the final (6 day) time point, 

separate from the earlier and thus more immature timepoints (Extended Data Fig. 9).The top 

marker gene for the CNTF condition at the final, most mature timepoint was S100a6 (Fig 

5D; Extended Data Fig. 9A;C–E), which was recently identified as a marker of a subtype of 

diencephalic astrocytes in the mouse brain17. Overall, this analysis identified differentially 

expressed genes between two major sets of growth factors used in astrocyte differentiation.

In parallel with gene expression analysis via snRNAseq, we analyzed snATACseq data from 

the same nuclei. snATAC data were grouped into peaks using the Signac software, then 
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peaks were identified that were enriched in one growth factor condition versus the other. 

With this list of differentially accessible (DA) peaks, we then applied TF motif analysis 

to identify TFs specifically active in each growth factor set (Extended Data Fig. 8F,G). 

Interestingly, in our CNTF condition we noted enrichment of motifs associated with the 

Smad family of TFs (Extended Data Fig. 8G), in line with a recent report implicating Smad4 
in mouse astrogenesis17.

To directly connect the gene expression and accessible chromatin analyses, chromatin 

accessibility was examined at two loci highly correlated with fate acquisition in each growth 

factor (S100a6 for CNTF, Fabp7 for BMP4/FGF1; Fig 5D–F, Extended Data Fig. 8E). 

Many peaks had significantly different levels of snATAC signal between the conditions 

(single asterisks in Fig 5F, S15E), and some peaks were fully absent in one condition 

versus the other (double asterisks in Fig 5F, S15E). Using the Signac software package, 

we calculated a correlation score between accessibility of a peak and expression of the 

gene of interest. We then plotted the peak-gene links and shaded these links based on the 

strength of the accessibility-expression correlation. Coverage plots for these genes show 

significant differences in chromatin signatures at each locus between CNTF and BMP4/

FGF1 conditions, mirrored by significant differences in gene expression levels for the two 

genes (p < 0.01; Fig 5D,E). We next selected a putative DA enhancer peak to delete from 

the genome and measure whether the absence of the peak altered S100a6 gene expression 

(see Methods). We deleted peak #2 (Fig 5F; Extended Data Fig. 8H–J) as it had a high 

Signac-computed correlation of gene-peak linkage and was located 14,345 bp upstream from 

the S100a6 gene body, and thus far away from the promoter. This peak also contained two 

enhancers previously identified from the ENCODE project based on DNase and H3K27ac 

scores59 (E0736200 and E0736201). Deletion of peak #2 did not significantly affect S100a6 
expression in differentiated cells (Extended Data Fig. S8J). We note that noncoding regions 

often act in tandem to enhance gene expression, and that deletion of just one peak may not 

impact gene expression at a detectable level.

Thus, we computationally linked chromatin peaks with gene expression for these genes, and 

identified areas of open chromatin that may drive glia-specific fate acquisition. Although 

deleting one of these putative enhancers did not lead to a measurable decrease in gene 

expression, future studies may be able to test for interactions between multiple noncoding 

regions that tune gene expression.

Integration with mouse cell atlas and functional testing

We next integrated our multiomic gene expression data with a subset of data from a mouse 

brain development atlas5. Samples included: the final two multiomic timepoints (BMP or 

CNTF day 9), cells from the final timepoint of the differentiation with EBs, and cells from 

Lattke et. al. 2021 (7,042 cells/nuclei total), together with 109,700 cells from the mouse 

cell atlas spanning e15.5 to e17.5 (Fig 6A–C). After clustering and integration via Harmony, 

at low resolution the differentiated cells and nuclei clustered together with groups of cells 

from the primary mouse atlas cells (dashed boxes; Fig 6B and Fig 6C). Higher resolution 

clustering uncovered marker genes that separated the primary cells from the differentiated 

cells, although many marker genes were still shared between differentiated and primary 
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cells at higher resolution (e.g. Sparc; Extended Data Fig. 10B–G). Differentiated cells 

mainly clustered with glioblasts and pineal gland cells from the primary atlas (Extended 

Data Fig. 10E), suggesting that the new differentiation protocol produces cells that are 

transcriptionally similar to early (e15.5-e17.5) primary mouse astrocytes.

Given the transcriptional similarity between the differentiated cells and primary mouse 

cells, the functional properties of differentiated cells were tested using two in vitro assays 

(Fig 6D). To begin, we examined whether the differentiated astrocytes could respond to an 

inflammatory cocktail that induces reactivity in astrocytes60. After 24 hours of exposure to 

TNF, IL1a, and C1q (TIC), the differentiated cells dramatically and significantly upregulated 

reactive astrocyte marker genes Cxcl10, C3, and Serping1 (Fig 6E). In contrast to previous 

work from our group, the differentiated cells down-regulated Fbln5 after 24 h of stimulation, 

unlike primary astrocytes collected 24 h after systemic injection of the bacterial cell wall 

endotoxin lipopolysaccharide (Fig 6F). This gene is thought to promote cell-cell adhesion61, 

so given its downregulation we measured cell motility in response to TIC. Chronic imaging 

of TIC-treated cells compared to PBS-treated controls showed an increase in cell motility 

and cellular process motility, which we quantified using an automated image tracking 

software (Fig 6G,H; see Methods). We further assessed cell motility through a scratch assay 

using the same chronic imaging methods (Movie S1, Fig 6I,J, Extended Data Fig. 8E,F; 

see Methods). The mESC differentiated astrocytes are able to rapidly migrate and extend 

processes across the scratch wound (Fig 6I,J). Thus, our differentiated astrocytes display 

at least two functions of mature astrocytes: changes in gene expression and motility in 

response to reactive factors, and successful repopulation following a scratch wound.

Discussion

Here, we report complementary bioinformatic analyses of sc/snRNAseq data to parse the 

temporal order of gene expression during glial development in both mouse and human 

glial differentiation protocols. We provide a set of hypotheses about gene expression in 

progenitor cells and the order of events during differentiation to test in future lineage tracing 

experiments, both in vitro and in vivo. Bioinformatic analysis of a rich scRNAseq dataset 

(~298,000 cell/nuclei transcriptomes newly sequenced, and ~120,000 published cells from 

other groups) enabled us to identify likely glial-lineage-committed precursors, and generally 

to explore the genes involved in specification of neurodevelopmental fate in mice and 

human.

In our human scRNAseq dataset, we identified final, stable macrostates and calculated 

probabilities for each intermediate cell to reach one of the macrostates. This approach 

revealed that astrocytes and neurons likely share common progenitor cells in this 

differentiation model, and that oligodendrocytes are produced after astrocytes; both 

observations are consistent with the progression of development in vivo. Additionally, we 

were able to identify genes highly correlated with high probabilities for cells to enter a 

given macrostate over the others. We suggest that TTYH1 is a strong candidate for a driver 

of astrocyte fate specification, given its high correlation with astrocyte probability and its 

purported ability to signal through the Notch pathway40, thought to be important for the 

acquisition of astrocyte identity19. Past work has localized TTYH1 to cytoskeletal processes 
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in glioma cells, and shown that its presence leads to tighter networks of tumor cells41; 

perhaps the same phenomenon occurs normally during astrocyte development.

In our mouse differentiation data, we found an early “off-ramp” fate for a subset of cells 

that will become neurons, consistent with past reports of transient progression through 

neuronal fate during astrocyte differentiation21. We observed heterogenous expression of 

popular astrocyte sorting markers during differentiation, suggesting caution when designing 

experiments using these markers. In many cases, gene expression was similar in both the 

human and mouse differentiations, including early expression of Dcx/DCX followed by 

shared expression of putative astrocyte precursor genes like Hmgb2/HMGB2 and Slc1a3/
SLC1A3 across both species. There was some species divergence, for example with Nhlh1/
NHLH1, which is suggested to define neuron-committed progenitors in mouse but was 

expressed in human astrocyte progenitors, and also divergence in the absence of Gfap 
expression during early mouse differentiation. This is a major difference between in vivo 
and in vitro progression of astrocyte differentiation first noted by others21 and replicated 

in our dataset. Overall, the lack of early Gfap expression in differentiation is a striking 

difference between in vivo and in vitro neural development, given the historical emphasis 

on the study of Gfap+ radial glia as the earliest mammalian neural progenitors62. In 

order to better compare in vitro versus in vivo glial fate acquisition, in Fig 6 we 1) 

integrated our data with a mouse developmental brain atlas, and 2) tested select astrocyte 

functions in cell culture assays to show that our differentiated immature astrocytes partially 

recapitulate primary cells. Similar functions have already been demonstrated for the human 

differentiation protocol in past work20,57.

Although the measurement of gene expression is clearly a useful tool for analyzing 

the progression of glial differentiation, TFs are ultimately the key determinants of cell 

fate choices63. Thus, we applied the BITFAM algorithm to our datasets and examined 

mechanisms underlying gene expression differences during glial development via multiomic 

analysis, where we identified regulatory sequences correlated with glia fate selection. It 

will be important to compare these genomic areas involved in astrocyte differentiation with 

those areas identified in states of astrocyte reactivity and disease, as a baseline to uncover 

specific mechanisms driving health-relevant transcriptional changes in astrocyte states. This 

dataset, which to our knowledge is the first single-cell/single-nuclei time series analysis of 

directed glial differentiation in either rodents or humans, will provide a valuable resource 

for researchers interested in studying these processes. The genes identified as key drivers 

of specific lineages may also guide groups interested in further optimizing differentiations, 

either to improve purity of differentiation protocols (e.g., minimizing the production of cells 

from non-desired lineages) or to differentiate specific subtypes of astrocytes for functional 

testing, a burgeoning area of interest. We also characterized areas of the genome that may 

be critical for regulation of astrocyte fate acquisition, in addition to genomic regions that are 

associated with expression of reactive genes like those seen in CNTF treatment. Disruption 

of these genomic areas might block the expression of reactive genes in astrocytes, a topic of 

enormous interest and importance.
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Methods.

Cell culture and differentiation

Human iPSC culture—This research complies with all relevant ethical regulations; ROS 

and MAP studies were approved by an Institutional Review Board of Rush University 

Medical Center. All participants signed an informed consent, an Anatomical Gift Act, and 

a repository consent to allow their data and biospecimens to be repurposed as detailed in 

previous studies. IPSC lines were generated following IRB review and approval through 

Partners/BWH IRB (#2015P001676). Human iPSCs for all experiments, except the one 

displayed in Fig. S2, were from a single line originally reprogrammed at NYSCF from 

skin fibroblasts of a healthy female individual (age 52 at collection), using the fully 

automated NYSCF Global Stem Cell Array® platform25. Following our published protocol, 

we maintained human iPSCs in mTeSR1 medium in a 37 °C incubator with 5% CO2
88. 

To prepare for induction, we performed enzymatic digestion using Accutase and plated 

1.5×105 iPSCs per well on Geltrex-coated 6-well plates, in maintenance medium with 10 

μM Y27632 for 24 hours. For astrocyte differentiation, we used serum-free medium with 

patterning agents as previously described20,64 and schematized in Extended Data Fig. 1A. At 

day 20, we plated 50 neurospheres per well into poly-ornithine/laminin-coated 6-well plates. 

Spheres attached to the matrices within a few hours and neural progenitors migrated out and 

spread across the surface area of the well. At days 30 and 50, we collected single cells using 

papain (Worthington LS003126) digestion and prepared cells for scRNAseq analysis. For the 

final time point corresponding to mature astrocytes, we used transcriptomic data from the 

same iPSC line generated in our previous study64.

For our multi-line experiment, we used 9 iPSC lines from an iPSC collection recently 

generated at NYSCF to enable large scale studies on Alzheimer’s disease65. Peripheral 

blood mononuclear cells from individuals enrolled in the Religious Order Study (ROS) 

or the Rush Memory and Aging Project (MAP) were reprogrammed using Sendai virus. 

iPSC line generation and quality controls were performed using the NYSCF fully automated 

Global Stem Cell Array technology. iPSCs from each line were differentiated in parallel 

following the same protocol as above. At day 73, we collected nuclei for processing with 

10X multiome as follows: Cells were dissociated with TrypLE (Gibco 12–605-010) for 

15min at room temperature, then resuspended in 1 mL EZ lysis buffer (Sigma (NUC101–

1KT)). Cells were triturated ten times with a P1000, then left on ice for 10 min. EZ buffer 

was washed out with 3 washes in PBS + 0.5% BSA, then filtered through a Flowmi 40 μm 

pipette tip filter (VWR H13680–0040) before counting.

Mouse ESC culture and differentiation—Mouse ESC experiments were performed 

on two separate mESC lines previously validated elsewhere: A17iCre66 and BL6/CAST 

ΔPiga67. Cells from both lines were maintained in 80/20 media for expansion and freezing, 

in a 37 °C incubator with 5% CO2. This media contains 80% 2i mESC media49, and 20% 

general mESC media. Specifically, this 80/20 media contains 40% Advanced DMEM/F12 

(Gibco 12–634-010), 40% Neurobasal (Gibco 21103049), 10% Knockout DMEM (Gibco 

10829018), in addition to 2.5% fetal bovine serum (Corning 35–075-CV), 0.75x N2 nutrient 

mix (Thermo 17502048), 0.75x B27 nutrient mix (Thermo 17504044), 0.75x L-Glutamine 
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(2mM; Gibco 25–030-081), 1X beta-mercaptoethanol (Gibco 21985023), 1x non-essential 

amino acids (Gibco 11140050), 1x nucleosides (Millipore ES-008-D). This media also 

contained leukemia inhibitory factor (LIF) at 1000 units/mL (Millipore ESG1107), 3 uM 

CHIR99201 (Biovision 1991–1), and 1 μM PD0325901 (Sigma PZ0162–5MG) to maintain 

pluripotency during the mESC stage.

Mouse differentiation was performed with a protocol derived from22, and is schematized in 

Fig 2A, S9A. On day 1 of the main differentiation (with EBs), mESCs were trypsinized 

with TrypLE Express (Gibco 12–605-010) for 2 min, quenched with 80/20 media, then 

replated in low-adherence 10 cm tissue culture dishes (Corning 3262) at densities of 1.5 

million cells per dish in AK media (50% Neurobasal (Gibco 21103049), 50% Advanced 

DMEM/F12 (Gibco 12–634-010), 1X L-Glutamine (Gibco 25–030-081), 13% Knockout 

Serum Replacement (Gibco 10–828-028)). At days 3 and 5 of the differentiation, embryoid 

bodies were collected in a 50 ml tube and allowed to settle via gravity for 20 min. AK 

media was refreshed and cells were replated back into the same low-adherence 10 cm dish. 

At day 6, embryoid bodies were collected via gravity, then trypsinized in 4 mL TrypLE 

for 5 min with intermittent swirling by hand. TrypLE was quenched with AK media, and 

cells were filtered through a pre-wet 70 μM nylon cell filter. Filtered cells were replated 

on poly-d-lysine (50μg/mL; Sigma, P6407)- and laminin (10μg/mL; Sigma, 11243217001)- 

coated 10 cm tissue-culture dishes at 1 million cells/dish, and murine EGF (Peprotech 

315–09, 20 ng/mL), murine FGF1 (Peprotech 450–33, 10 ng/mL), and laminin (Sigma 

11243217001, 1 μg/mL) were added to AK media when plating cells for the adherent 

differentiation phase. Media was replaced every other day until day 11, when cells were 

switched to differentiation media, AK with FGF1 (Peprotech 450–33, 10 μg/mL) and BMP4 

(Peprotech 315–27, 10 μg/mL). Cells were replated once more onto PDL+laminin dishes 

upon reaching 70% confluency (~day 15), and maintained in differentiation media (AK plus 

FGF1, BMP4) replaced every other day. CNTF (Peprotech 450–50, 10 μg/mL) was used as 

an alternate to FGF1/BMP4 where indicated.

For the non-EB differentiations, the differentiation was as follows. For the adherent 

differentiation (AD) stage, cells were plated (15,000 cells/well) on gelatin- coated 6-well 

TC dishes in AK media + EGF (Peprotech 315–09, 20 ng/mL), FGF1 (Peprotech 450–33, 

10 ng/mL), and laminin (Sigma 11243217001, 1 μg/mL). Media was refreshed the day after 

plating, and then replaced every other day following. After 5 days total, media was changed 

to astrocyte growth factor media, AK + FGF1 (Peprotech 450–33, 10 μg/mL) and BMP4 

(Peprotech 315–27, 10 μg/mL), with replacement every other day for another 6 days until 

harvesting for 10X scRNAseq. Cells were replated at 100,000 cells/well on gelatin-coated 

6-well dishes with growth factors and laminin once they reached 80% confluency.

Engineering Δpeak #2 mESC line—We designed guide RNAs targeting PAM sites 

for Cas9 bordering the left and right sides of peak 2 (chr3:90597589–90598549, mm10) 

from Fig 5F. A repair ssODN was designed with homology arms to each of the cut sites. 

We cloned these guide RNAs into vectors expressing SpCas9 and either a puromycin- or 

a blasticidin- resistance marker gene, and applied dual selection to 1.5×106 cells 24 h 

after transfection using the Lonza 2b nucleofector. Selection was performed for 48 h total, 
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then we isolated individual surviving colonies for genotyping using previously published 

methods67. Genotyping was confirmed by Sanger sequencing.

Reactive stimulus imaging and qRT-PCR—Astrocytes from the final 9-day 

differentiation timepoint BMP/FGF4 differentiation were stimulated using a cytokine 

cocktail previously shown to induce reactivity in astrocytes60. After addition of TIC 

(TNF, IL1a, and C1q,) cultures were imaged every 30 min at 20x for 24 h using an 

Incucyte S3 incubator microscope. Still images were exported and analyzed in ImageJ, with 

quantification schematic outlined in Fig 6F. Thresholds were applied across all images in 

ImageJ v2.1.0 and movement was analyzed with the Trackmatev6.0.3 plugin68. A Laplacian 

of Gaussian filter was applied to recognize spots with a 15-pixel blob diameter. Spots 

were then tracked through frames using a Linear Assignment Problem tracker and maximal 

velocities per spot were extracted.

Quantitative Real-time PCR (qRT-PCR)—RNA was extracted using the RNEasy Plus 

kit (Qiagen) with gDNA removal columns, reverse transcription was performed on 100 

ng of RNA using the Qscript mastermix (Quanta Biosci 101414–108), and qRT-PCR 

was performed on a Roche 480 Lightcycler with KAPA SYBR FAST (Kapa Biosystems 

KK4610) after plate loading with an Echo 550 liquid handler. qRT-PCR was data was 

collected from 3 wells from at least 2 separate differentiations, and run in technical 

triplicates in 384 well plates. Expression was calculated using the ΔCt method; Ct values for 

each gene were subtracted from the housekeeping gene (Gapdh) Ct value for that sample. 

ΔCt values for each condition were averaged, and experimental (TIC or CNTF treated) 

values were subtracted from control (untreated) to produce ΔΔCt. This final value was 

converted to fold change relative to untreated by taking 2 raised to the - ΔΔCt.

All qRT-PCR primers were designed to span exon-exon junctions, and no-RT and water 

controls were run for all reactions to ensure full removal of gDNA.

S100a6 primers: F CGACACATTCCATCCCCTCG, R CACTGGGCTAGAAGAAGCGCA; 

Fbln5 primers: F CTTCAGATGCAAGCAACAA, R AGGCAGTGTCAGAGGCCTTA; 

C3: F TCACTATGGGACCAGCTTCA, R TGGGAGTAATGATGGAATACATGGG; 

Cxcl10: F CCCACGTGTTGAGATCATTG, R CACTGGGTAAAGGGGAGTGA; Timp1: 

F AGTGATTTCCCCGCCAACTC, R GGGGCCATCATGGTATCTGC; Serping1: 

F ACAGCCCCCTCTGAATTCTT, R GGATGCTCTCCAAGTTGCTC; Igtp1: F 

GTAAGGCTTCTGAGCAGGTTCT, R TATGGAGTATGAAGGTCTATGTCTG; Lcn2: 

F CCAGTTCGCCATGGTATTTT, R CACACTCACCACCCATTCAG; Gapdh: F 

AGAACATCATCCCTGCATCC, R CACATTGGGGGTAGGAACAC

Scratch assay—A monolayer of astrocytes from the final 9-day rapid differentiation 

timepoint were scratched using a P200 pipette tip. Cultures were imaged every 30 min for 24 

h using an Incucyte S3 incubator microscope. Images were stitched together in the Incucyte 

software to create Movie S1. Still images were exported and analyzed in ImageJ, with 

quantification schematic outlined in Extended Data Fig. 10E. For Fig 6J, scratch distance 

was quantified for three separate wells scratched concurrently, with 3 areas measured per 

scratch; a t-test was run in Prism 9 (GraphPad Inc.) to test for significant changes.
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10X scRNAseq data collection & sequencing—For collection of 10X scRNAseq 

samples, media was replaced 3 hours prior to 10X processing for all cultures. Mouse cells 

were trypsinized for 10min with TrypLE, then quenched with appropriate media. Cells were 

triturated with a 10 mL serological pipette, filtered with a 40 μM filter, and diluted to 

1000–1200 cells/μl. Human samples were dissociated according to a modified papain-based 

protocol (Worthington), then filtered through a 40 μM filter before counting and dilution for 

scRNAseq.

17,400 cells were loaded onto 10X chip G (mouse samples) or chip B (human samples), and 

run with v3.1 3’ chemistry (mouse samples) or v3.0 3’ chemistry (human samples). Library 

preparation was performed according to manufacturer’s instructions, and sequenced using a 

NOVASeq6000 sequencer (Illumina).

10X multiomic data collection & sequencing—For collection of 10X multiomic 

samples, media was replaced 3 h prior to nuclei collection. Mouse cells were trypsinized 

for 10 min with TrypLE, quenched, and spun as for scRNAseq collection. The pellet was 

washed with 5 mL PBS once, then spun again. The washed pellet was then resuspended in 

500 μL ice-cold Sigma EZ Nuclei Extraction Buffer (Sigma-Aldrich), pipetted 10X with a 

P1000 pipette, then left on ice for 10 min. Nuclei were pelleted at 500 rcf for 5’, washed 

once with 500 μL PBS+0.5%BSA, then resuspended in 10X Genomics Nuclei Buffer. 

17,400 nuclei per sample were used as input for scATAC, snRNAseq and ensuing library 

prep, which were performed according to manufacturer’s instructions and then sequenced on 

a NOVASeq6000 sequencer (Illumina).

Bioinformatic analysis

10X scRNAseq data processing and quality control—All analyses were executed 

locally on a laptop computer, except for Cell Ranger, which was performed on NYU 

Grossman School of Medicine’s Ultra Violet Cray supercomputer cluster. Fastq files from 

sequencing were demultiplexed, then used as input for Cell Ranger (v6.0.1) for assignment 

of reads to single cells. Filtered count matrices from Cell Ranger were then used as 

input to the Muscat quality control pipeline in R26. After doublet detection using scds 
(v1.1.2) and calculation of the mitochondrial gene contribution using scater (v1.13.23) 

within the SingleCellExperiment library (v1.7.11), cells were filtered using the median 

absolute deviation (MAD) module where cells containing a greater than 2.5 MAD in feature 

counts, number of expressed features and percentage of mitochondrial genes were discarded. 

Between 65 and 85 percent of cells were kept post-filtering, see Extended Data Fig. 1B and 

Supplemental Fig. 3E for details and numbers for each sample.

Barcodes of cells that passed Muscat quality control were used to filter the .loom file 

produced by the velocyto python package29, which analyzes the .bam file output of 

CellRanger for splicing to prepare for RNA velocity analysis. This filtered .loom file was 

used as input to the Scanpy69 pipeline, implemented as part of the scvelo pipeline30. All 

samples were normalized and filtered according to standard Scanpy parameters: genes 

were filtered to only retain genes with number of spliced counts >20, and then the 

most variable remaining genes were identified by the pp.filter_and_normalize command. 
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For our human data, we kept the top 2000 most variable genes for further analysis; for 

mouse, we kept the top 4000 genes. We performed principal component analysis (PCA) 

on the most variable genes via the pp.pca command, then data were integrated along the 

‘batch’ variable via implementation of the Harmony algorithm in the Scanpy external API 

(pp.harmony_integrate); neighbors were found via pp.neighbors using 40 PCs, 40 neighbors, 

and using X_pca_harmony; cells were clustered using the Louvain algorithm implemented 

in scvelo (scv.tl.louvain) at resolution values ranging from 0.3 to 1.6, then dimensionality 

reduction was performed via scv.tl.umap or using a force-directed graph (sc.tl.draw_graph); 

and finally, marker genes (i.e., top-positively-enriched genes) for each Louvain cluster were 

found using sc.tl.rank_genes_groups with a Wilcoxon rank-sum algorithm. For pseudobulk 

analysis, python objects were converted into Seurat objects using the SeuratDisk package 

(v0.0.0.901). Samples were then split into individual timepoints using the Seurat (v4.1.0) 

SplitObject() command. Pseudobulk data was calculated for pre-normalized expression data 

for each of the overall most variable genes using the AverageExpression() command, as 

recommended in Seurat documentation.

RNA velocity analysis—The .loom file from velocyto was used to compute RNA 

velocities for each cell according to standard parameters for the software. ScVelo produces 

both stochastic and dynamic models of RNA velocity, which we compared by computing a 

consistency score for each cell, for each modeling method, as recommended by the authors. 

Pseudotime was then computed based on RNA velocity results, and latent time was inferred 

via dynamic velocity results.

Waddington Optimal Transport (WOT) analysis—The WOT algorithm7 was used via 

its implementation in CellRank. Batch names were changed to sequential numbers, and then 

a WOT kernel was initialized via the WOTKernel command. Growth rates were calculated 

by compute_initial_growth_rates, which uses the scanpy growth score (a gene module score 

for cell cycle genes). A transition matrix was calculated partially using these growth rates as 

a basis via compute_transition_matrix with 3 growth iterations. We found that the transition 

matrix was nearly identical whether or not we included growth rates. We then computed 

a connectivity kernel using the ConnectivityKernel command, which calculates a diffusion 

pseudotime score for each cell. These kernels were combined at weight of 0.9 for WOT, 

0.1 for the connectivity kernel, as recommended by the original authors. We saw minimal 

differences between our outcomes whether or not we included the 0.1 weighted connectivity 

kernel. We then used a Generalized Perron Cluster-Cluster Analysis (GPCCA) estimator to 

define macrostates, i.e. cell states with metastability. We then used a Schur decomposition 

to compute a coarse transition matrix that enabled us to compare the stability and likely 

temporal order of the various macrostates. We selected macrostates for further analysis 

based on prior knowledge of expected cell types (humans: oligodendrocyte, astrocyte, 

neuron; mouse: astrocyte-precursor, neuron), and then produced absorption probability 

plots/fate maps for these macrostates with the plot_absorption_probabilities command. We 

took the logarithm of these probabilities to compute log-odds for each macrostate, and 

compare across states for the log-odds plots; in these plots, we colored cells red based on 

normalized expression of a gene of interest as explained in the text/figure legend. Finally, 

we computed genes correlated with high probability to become a certain macrostate via 
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the compute_lineage_drivers command. This correlation is a Fisher transformation of the 

Pearson’s coefficient between gene expression and macrostate probability, as discussed in 

the CellRank manuscript.

BITFAM algorithm—We exported the count matrices from our Scanpy objects for use 

with the BITFAM algorithm (v1.0) implemented in R, using standard settings. BITFAM 

results were first visualized as a t-SNE using the Rtsne R package (v0.15). Finally, cluster 

IDs were exported from Scanpy and used to create a heatmap of inferred TF activity for each 

cluster, following sample code from the BITFAM package.

Analysis of Lattke et. al. 2021 and La Manno et. al. 2021 published scRNAseq 
data—Raw .fastq files were downloaded from P3 ACSA-2 purified astrocytes published 

by Lattke and colleagues23 from the NCBI GEO under accession #GSE152223, and for 

mouse developmental datasets published by La Manno and colleagues5 from Sequence 

Read Archive (https://www.ncbi.nlm.nih.gov/sra) under accession #PRJNA637987. The 

fastq files for the raw data were analyzed via CellRanger v6.0.1, and then count matrices 

were imported into muscat for processing (see above). We used the published raw data 

to produce .loom files via Velocyto splice calling, which was not done in the original 

analyses. We then processed these .loom files for RNA velocity as above, filtered for quality 

control with Muscat, and then we combined both published datasets with our later mouse 

timepoints via the Harmony algorithm. For integration with the primary mouse brain atlas5, 

we downloaded .loom files from the Linnarsson lab website and then used Harmony to 

integrate with our datasets.

Multiomic analysis—Multiomic data was preprocessed by CellRanger ARC software 

(v4.0.5), then initially the scATAC and snRNAseq datasets were processed separately, in 

Seurat70/Signac71 and ScVelo/CellRank respectively. For scATAC, nuclei QC was based 

on thresholds on the following QC metrics: nCount_ATAC < 120000, nCount_ATAC > 

500, nCount_RNA < 50000, nCount_RNA > 500, TSS.enrichment > 1 (Extended Data Fig. 

8A). scATAC signal was transformed into peaks by the MACS2 peaks calling algorithm, 

as suggested by Signac authors, then added to the Seurat object as an assay. Peaks were 

analyzed for transcription factor motif enrichment (Extended Data Fig. 8F,G) after finding 

differentially accessible peaks with logistic regression (FindMarkers with ‘LR’ option for 

test.use), and based on analysis with the JASPAR2020 dataset. Peaks were also linked to 

gene expression using the Signac software, which generates a z-score for each peak within 

500kB of a gene’s TSS compared to a background set of correlation coefficients for 200 

peaks randomly selected from a different chromosome. Gene coverage plots for Fig 5F, 

Extended Data Fig. 8E were generated using the CoveragePlot() command, which plots 

pseudobulk scATAC coverage.

Immunohistochemistry

Immunofluorescence analysis was performed at the end of the human differentiation to 

assess the presence of astrocytes (GFAP), oligodendrocyte lineage cells (SOX10) and 

neurons (MAP2) within the cultures from all 9 ROS/MAP lines, as previously described57. 

Briefly, cells were fixed in 4% paraformaldehyde for 10 minutes and then washed 3 times 
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in DPBS. Next, cells were incubated for 1 hour in blocking solution (5% donkey serum, 

0.1% Triton-X-100 in DPBS) and overnight with the following primary antibodies: goat 

SOX10, 1:100 (R&D system, #AF2864); chicken MAP2, 1:1000 (Abcam #Ab5392; mouse 

GFAP, 1:1000 (EMD Millipore #MAB360). The morning after, cells were incubated 1 hour 

in secondary antibodies (Anti-goat 555, Invitrogen #A21432, anti-chicken 647, Jackson 

ImmunoResearch #703605155, anti-mouse 488, Invitrogen #A32766; all secondaries used at 

1:2000), washed 3x in DPBS and then incubated with Hoescht 33342 (1:1000 dilution) for 

10 minutes. Images were acquired using a Zeiss scanning confocal microscope (LSM800).

Mouse cultures were fixed in 4% paraformaldehyde (Electron Microscopy Services) for 

15 min at room temperature (RT), then plates were washed 3x with phosphate-buffered 

saline (PBS) before blocking in PBS + 0.1% Triton-X and 3% goat serum for 1 h at 

RT. Primary monoclonal antibodies to GFAP (ThermoFisher #13–0300, 1:500) or S100A6 

(Abcam #ab181975, 1:2000) were applied in blocking solution overnight at 4 °C with 

rotation. One well per plate was processed without primary antibody as a negative control. 

The next day, plates were washed quickly 3x with PBS, then washed 3x more with 10 

min rotation. Secondary antibodies (Invitrogen, 1:2000) with 4′,6-diamidino-2-phenylindole 

(DAPI; ThermoFisher, 1:5000) were applied in blocking solution for 1h at RT on an 

orbital shaker. Plates were washed again as with the primary antibody, then imaged using a 

Keyence BZ-X700 fluorescent microscope. Channels were separated to make figures using 

Fiji/ImageJ software.

Statistics

Clustering was calculated by the Louvain algorithm. Marker genes for each cluster were 

calculated using the Wilcoxon rank-sum algorithm implemented in Scanpy. Statistical tests 

used in the WOT and BITFAM algorithms are discussed in those sections of methods. 

Student’s t-tests for Figure 6 were run in Prism 9 (GraphPad). Sample sizes were determined 

based on previous publications, and independent biological replicates range from 1 to 3 for 

all experimental modalities used in this study. All statistical tests used are highlighted in the 

legend of each figure. No data were excluded from the analyses, except when performing 

quality control filtering as discussed above. The experiments were not randomized. The 

investigators were not blinded to allocation during experiments and outcome assessment.

Reproducibility

For human data, we separately loaded single-cell suspensions from two adjacent wells of 

a 6-well plate in individual 10X lanes, processed each lane as a separate library, then 

combined the lanes for analysis bioinformatically after checking for any batch effect; the 

30-day and 50-day timepoints were from two separate cultures differentiated on separate 

dates. For mouse data, EB timepoints were collected from two independent cultures 

first, to check for replicability/batch effects (Extended Data Fig. 1E). Once convinced of 

minimal batch effects, we then collected all remaining time points on the same day and 

processed each condition in its own 10X scRNAseq lane. Accordingly, each time point 

is from an independent differentiation culture (i.e., each timepoint began from frozen 

mESC vials on a different day, staggered for collection on the same day). Further, we 

compared immunostaining between two mouse stem cell lines under the same differentiation 
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conditions (Supplemental Fig. 3G). We performed all of our human scRNAseq experiments 

in one cell line for Fig 1 and associated supplements (except the multi-line comparison in 

Extended Data Fig. 2), and performed mouse scRNAseq experiments in two different cell 

lines as detailed above.

Extended Data

Extended Data Fig. 1. Differentiation overview and scRNAseq analysis metrics.
a) Detailed human differentiation overview, with phase contrast micrographs of cells 

at the timepoints analyzed via scRNAseq. Representative images from 3 independent 

differentiations. b) Table of quality control processing statistics for the data produced in 

this study and for the reanalyzed data from20. c) Number of genes identified for each 

cell and number of unique molecular identifier data for each cell. d) Harmony integration 
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of two independently harvested and processed samples from the same human timepoint 

(30day) shows no evidence of batch effect. SB = SB431542, LDN = LDN193189; SAG = 

smoothened agonist; RA = retinoic acid; AA = ascorbic acid.

Extended Data Fig. 2. Survey of differentiation cell type heterogeneity across 9 iPSC lines.
a) UMAP of 128,839 nuclei from 9 different iPSC lines (see Methods for line information). 

b) Clustering of nuclei from a based on gene expression. c) Cell type proportion for each 

cluster identified in b) for each of the 9 iPSC lines tested suggest broad representation of 
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each cell type in each iPSC line. d) Dot plot for the top 2 genes enriched in astrocytes 

from 9 different iPSC lines; differential expression analysis performed using the Wilcoxon 

ranked-sum test via Seurat. e) Normalized expression of STMN2 and TTYH1 shows similar 

expression of both genes across all 9 cell lines. f) One well of differentiated cells from each 

of the 9 lines were immunostained in parallel for cell type marker genes: GFAP (astrocytes; 

green), MAP2 (neurons; red), and SOX10 (oligodendrocytes; yellow) plus Hoescht 33342 

nuclear stain (blue). Representative image from 2 independent wells.
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Extended Data Fig. 3. Cell type feature plots.
a) Feature maps for neuron cell-type marker genes (SNAP25, STMN2, SYT1). b) Feature 

maps for astrocyte cell-type marker genes (CLU, ID3, SPARC). c) Feature maps for 

oligodendrocyte cell-type marker genes (MBP, MOG, OLIG1). d) Dot plot of top enriched 

genes for each cluster as determined by Scanpy (clusters correspond to those numbered in 

Fig. 1d). e) Number of cells per cell-type at each time point.

Extended Data Fig. 4. Reclustering and analysis of transient states in human glial differentiation.

Frazel et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a) FLE reduction of the same data from Fig. 1, reclustered at higher resolution (1.2). 

Marker genes for each of the clusters of interest are listed in the table to the right (see 

Results for further discussion), and the clusters are labeled with arrows on the FLE plot. b) 

Feature maps for mitotic scores from Scanpy70 (‘Scanpy growth rates’) and from scVelo30 

(‘S phase score’ and ‘G2M phase score’). c) Feature maps for genes enriched in shared 

neuron/astrocyte precursors (NHLH1, DLL3, EGFR). d) Feature maps for genes enriched in 

astrocyte/oligodendrocyte precursors (OLIG2, ASCL1).
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Extended Data Fig. 5. Inferred transcription factor (TF) activity in differentiating human glia 
detected using BITFAM.
a) Heatmap of BITFAM detected activities for each cluster from Fig. 1c (all human data 

timepoints). Clusters are numbered and labeled on the x-axis, and detected TFs are on the 

y-axis. Pink arrowheads: TFs with gene expression plotted below, green arrowheads: TFs 

with gene expression plotted in earlier supplemental figures. b) gene expression plots for 

genes highlighted with purple arrowheads in the BITFAM heatmap from a.

Extended Data Fig. 6. Differentiation overview and scRNAseq analysis metrics.
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a) Mouse differentiation overview, with comparison across protocols. Quality control and 

pre/post filtering numbers for each mouse timepoint from the various protocols in table. 

b–d) Micrographs of cells during the embryoid body (EB), adherent differentiation (AD), 

and astrocyte growth factor stages. e, f) GFAP staining after protocol including EB stage. 

As expected based on published results22, (e) minimal GFAP staining is visible following 

treatment with FGF and BMP4 but (f) robust staining is visible after CNTF treatment. All 

images are representative from 3 independent differentiations g) Harmony integration of two 

independently harvested and processed samples from the same mouse timepoint (2 day EB) 

shows no evidence of batch effect. h) Number of genes identified for each cell and i) number 

of unique molecular identifier data for each cell from each timepoint.
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Extended Data Fig. 7. Cell type feature plots.
a) Feature maps for neuron cell-type marker genes (Dcx, Tubb3, Syt1). b) Feature maps for 

astrocyte cell-type marker genes (Vim, Sparcl1, Clu). c) Feature maps for putative astrocyte 

precursor genes (Nhlh1, Nhlh2, Hmga2). d) Scanpy growth were calculated for each cell.
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Extended Data Fig. 8. Multiomics quality control and genomic accessibility analyses.
a) Violin plots of genes and counts per nucleus (top row), ATAC counts pre/post filter 

(middle row), and nucleosome signal and transcription start site enrichment scores (bottom 

row) for each timepoint. b) Table of each sample included in dataset analyzed for Fig. 5. 

Nuclei were filtered based on the following cutoffs (see Methods): nCount_ATAC < 120000, 

nCount_ATAC > 500, nCount_RNA < 50000, nCount_RNA > 500, TSS.enrichment > 1. 

c) Pseudotime calculated based on the stochastic model of RNA velocity. d) Confidence 

in RNA velocity calculated for each cell based on local coherence of velocity vectors. e) 
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Annotated coverage plot for Fabp7 locus. See Fig. 5f legend for detailed description of 

plot. f, g) Transcription factor motifs detected as enriched in peaks that were differentially 

accessible in BMP4/FGF1 (f) or CNTF (g) conditions. h) Approach for peak deletion 

for multiomic validation. i) Agarose gel demonstrating successful deletion of peak #2 

and replacement with single-stranded oligo-donor nucleotide (ssODN) template. j) No 

differences in S100a6 gene expression between the unedited (Ai17iCre) and the edited, 

peak #2 deleted (Δp2) mESC lines as measured by quantitative PCR. N = 6 biologically 

independent wells from 2 separate differentiations, two-sided t-test with no multiple 

comparisons, data are plotted as mean ± s.e.m.
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Extended Data Fig. 9. Analysis of gene expression final timepoint from each growth factor time 
series.
a) (Left) Dimensional reduction of gene expression data from final timepoints. (Right) Top 

10 genes positively enriched in cells belonging to one growth factor versus the other, as 

calculated in Scanpy. b) Louvain clustering of data from (a) identifies multiple clusters 

of cells based on gene expression that are either shared by both growth factor conditions 

(clusters 0,4), unique to BMP4/FGF1 condition (clusters 3,6), or unique to the CNTF 

condition (clusters 1,2). Top 10 marker genes for the above clusters are listed to the right. 
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c–e) Validation of gene expression results with S100A6 immunostaining in cells from the 

final CNTF timepoint. Representative images from 3 independent differentiations.

Extended Data Fig. 10. Primary atlas integration, marker genes, and functional testing quality 
controls.
a) Cell class annotations were plotted from cell atlas metadata, and plotted for all 93,894 

cells from the atlas. b) Cells were initially clustered at low resolution (0.1); reprint of Fig. 

6c for ease of comparison. c) Cells were clustered at higher resolution (0.3). d) Top marker 

genes for select clusters (dashed lines) from Extended Data Fig. 10b,c that contain both 
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primary cells and differentiated cells. Marker genes for subclusters emerging from either 

Cluster 3 (left) or Cluster 4 (right) as part of re-clustering at higher resolution. e, f) Pie 

chart of percentage of cells from the BMP or CNTF 9 day timepoints (BMP: 7445 total, 

CNTF: 8361 total) that belong to each cluster from (b). g) Feature plots for major marker 

genes in panel (d). h) Top: Still image from Supplementary Video 1 with example of scratch 

quantification. Bottom: Graph of scratch closure over time from one well. i) Graphical 

summary of findings from the human datasets (top) and mouse datasets (bottom).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. scRNAseq of human glial differentiation uncovers lineage-specific precursors and 
transient states.
A) Human differentiation schematic. B) Dimensional reduction of gene expression for all 

human data (43,506 cells) shown via force-directed graph (FLE). Each timepoint represents 

two independent replicates. C) FLE graph with cells clustered by gene expression using the 

Louvain algorithm (resolution: 0.3); mature cell types are identified with arrowheads. D) 
FLE graph with RNA velocity streamlines overlain, to depict flow of cell states over time 

based on splicing ratios for each gene. E-G) Probability maps for each mature cell type 
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based on Waddington Optimal Transport (WOT) algorithm, scale represents the probability 

for each cell to eventually enter a given state. Orange arrowheads in E-F represent cells 

likely to become astrocytes or neurons; orange arrowhead in G represents cells likely to 

become oligodendrocytes. H-J) Log odds plots for each mature cell type based on WOT 

analysis. For every cell from each timepoint, the log odds to become a given cell type versus 

all other are plotted. In H, red cells express DCX > 3 (normalized expression); in I, red cells 

express TTYH1 > 3; in J, red cells express MOG > 3. Each panel also contains a table with 

the top 15 genes that had expression highly correlated with high probability for a given cell 

to enter a macrostate (see Methods).

Frazel et al. Page 37

Nat Neurosci. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. scRNAseq of mouse glial differentiation uncovers lineage-specific precursors and 
transient states.
A) Mouse differentiation schematic. B) Micrograph of differentiated astrocytes displaying 

robust GFAP staining after 12 days of differentiation with CNTF (CNTF was not 

used for any subsequent differentiations in this figure). mESC line 1: A17iCre, mESC 

line2: Bl6/CAST dPIGA. Scale bar = 100 μm, representative image from 3 independent 

differentiations. C) Force-directed graph (FLE) graph of all mouse timepoints (58,268 

cells total). D) FLE graph with RNA velocity streamlines overlain, to depict flow of cell 
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states over time based on splicing ratios for each gene. Cells were clustered with the 

Louvain algorithm (resolution: 0.7); clusters are labeled by number on the plot. E) Multiple 

macrostates were detected with the Waddington Optimal Transport (WOT) algorithm; 

arrowheads depict neurons (state 4) and early astrocytes (state 6). F,G) Probability maps for 

each mature cell type based on the WOT algorithm, scale represents the probability for each 

cell to eventually enter a given state. H,J) Log odds plots for each mature cell type based on 

WOT analysis. For every cell from each timepoint, the log odds to become a given cell type 

versus the other cell type are plotted. In both panels, red cells express DCX > 1. I,K) Gene 

ontology (GO) term analysis of genes identified via WOT as driving fate commitment for 

neuron (purple) and early astrocyte (brown) macrostates. GO IDs are in parentheses next to 

their descriptor; terms were tested for enrichment via Wilcoxon ranked-sum test, with 0.25 

fold-change cutoff.
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Figure 3. Analysis of subsets of early mouse astrocyte differentiation.
A) Schematic of mouse data subset and reanalyzed for this figure. B) Force-directed graph 

(FLE) plot of reclustered, subset data colored by batch. C) FLE graph with RNA velocity 

streamlines depicts flow of cell states over time based on splicing ratios for each gene. 

Neuronal (purple) and intermediate astrocyte (orange) fates are depicted with arrowheads. 

D) FLE graph of the 4 macrostates identified by WOT analysis of this data subset. E,F) 
Probability maps for each mature cell type based on the WOT algorithm, scale represents the 

probability for each cell to eventually enter a given state (state 1 [intermediate astrocyte] or 3 

[neuron]).
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Figure 4. Comparison of putative cell surface marker gene expression patterns in differentiated 
and primary cells.
A) Uniform Manifold Approximation and Projection (UMAP) of later mouse differentiation 

timepoints integrated via Harmony with published postnatal day 3 (P3) mouse astrocyte 

data. B) RNA velocity streamlines are overlain on UMAP with Louvain clusters colored for 

the integrated data (clustering resolution: 0.6). C) Feature plot of Mki67 expression depicts 

likely mitotic cells across both datasets. D) Feature plots of Atp1b2, the gene for the surface 

protein ACSA-2 used to enrich for astrocytes in the original P3 dataset. Clear heterogeneity 
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of ACSA-2 expression is visible across both datasets. Feature plots for Sox9 expression, 

an early astrocyte precursor marker. E) Feature plot for Slc1a3 expression shows medium 

levels of expression in astrocyte-like differentiating cells, but not in the neuronal-like cells. 

F) Heatmap of BITFAM detected activities for each cluster from panel B (later mouse 

differentiation timepoints with P3 primary astrocyte data). Clusters are colored on the x-axis 

corresponding to panel B (legend to the right; D: from differentiated cells, P3: from primary 

P3 cells), and TFs with detected activity are on the y-axis. P3 data obtained from23
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Figure 5. Multiomic analysis of two different astrocyte differentiation time series.
A) Schematic of modified, no-EB mouse astrocyte differentiation protocol. Time points used 

for multiomic analysis are marked. B) Bioinformatic analysis workflow for multiomic data 

processing. C) (left) Force-directed graph (FLE) of gene expression from 55,137 nuclei 

collected for multiomic analysis, from 6 time points. See Extended Data Fig. 8 for quality 

control information. (right) FLE graph with RNA velocity streamlines overlain, to depict 

flow of cell states over time based on splicing ratios for each gene. Cells were clustered 

with the Louvain algorithm (resolution: 0.6); clusters are labeled by number on the plot. 

D,E) Feature plots and violin plots of marker gene expression for either the BMP4/FGF1 

(S100a6; D) or CNTF (Fabp7; E) conditions. *** p < 0.001; differential expression testing 

via Wilcoxon ranked-sum test as implemented in Seurat. F) (top panel) Plot of normalized 

pseudobulk scATAC signal for all cells from each growth factor condition. Peaks are labeled 

with one asterisk if they have increased signal in one condition versus the other, or two 

asterisks if the peak is only present in one condition versus the other. (bottom panel) 

scATAC signal was grouped into peaks using the MACS2 algorithm (see Methods), and 

peaks were then correlated with gene expression. Correlation scores are highlighted with 

colored lines in the “Gene-peaks links” panel. Gene body diagrams are from ENSEMBL, as 

implemented in the “coverage_plot” command in Signac.
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Figure 6. Data integration and functional analyses of differentiated immature astrocytes.
A) UMAP plot of final mouse differentiation timepoints integrated with mouse embryonic 

brain dataset5. Samples were integrated using Harmony to correct for different scRNAseq 

technologies; 109,700 cells remained after quality control filtering. Dashed boxes on the 

UMAP plot highlight areas of overlap between differentiated cells and cells from the 

primary atlas. B) Atlas cells from A) labeled with annotations from the primary cell atlas. 

Select groups are highlighted; full annotation plot can be found in S18A. C) Cells were 

clustered using the Louvain algorithm at low resolution (0.1), and differentiated cells cluster 
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with a subset of embryonic mouse brain cells; marker genes for the dashed clusters are 

presented in Extended Data Fig. 10D, with feature plots for select genes in Extended Data 

Fig. 10E,F. D) Overview of astrocyte functional assays tested. E) Quantitative Reverse 

Transcription PCR (qRT-PCR) results of differentiated immature astrocytes exposed to 

TIC (TNF, IL1a, and C1q,) or CNTF (control) demonstrates dramatic induction after 

24 h of many genes previously identified as upregulated in primary mouse brain after 

lipopolysaccharide (LPS) injection1. Unpaired, two-sided t-test between no-TIC and TIC-

treated samples, n=3 independent culture wells, asterisk represents p < 0.01 for all samples. 

Data are plotted as mean ± s.e.m F) qRT-PCR data for one gene with decreased expression 

in TIC-treated differentiated astrocytes after 24h, Fbln5 (statistical analysis as in previous 

panel). G) Single frames from chronic imaging of TIC-treated cells (top) with CellTracker 

motility analysis overlay (bottom). H) Analysis of chronic imaging via CellTracker shows 

increased motility in TIC-treated cells compared to untreated controls (p < 0.0001, statistical 

analysis as in panel E). I) Single frames from chronic imaging of cells subjected to the 

scratch assay 2 (left) and 14 (right) hours after scratch. Frames are taken from Movie 

S1, with contrast and brightness identically enhanced in both frames for display purposes. 

J) Quantification of scratch repair over time demonstrates significant decreases in scatch 

diameter over 12 h (p < 0.01, statistical analysis as in panel E, n=8 repair areas quantified 

total [2 areas per image from 2 images per well, 2 biologically independent replicate wells; 

each area was quantified as an average of 4 lines drawn]). Quantification example can be 

found in Extended Data Fig. 10I.
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